无机材料科学基础课件_ppt课件
合集下载
无机材料科学基础相图热力学基本原理及相平衡PPT课件
第6页/共124页
3、自由度 (f) 定义: 温度、压力、组分浓度等可能影响系统平衡状态的变量中, 可以在一定范围内改变而不会引起旧相消失新相产生的 独立变量的数目 具体看一个二元系统的自由度。
L f=2
L+A f=1
f =0 E L+B f=1
A+B f=1
A
B
第7页/共124页
相律应用必须注意以下四点: 1. 相律是根据热力学平衡条件推导而得,因而只能处理真实 的热力学平衡体系。 2. 相律表达式中的“2”是代表外界条件温度和压强。 如果电场、磁场或重力场对平衡状态有影响,则相律中的 “2”应为“3”、“4”、“5”。如果研究的体系为固态物质,可以 忽略压强的影响,相律中的“2”应为“1”。 3. 必须正确判断独立组分数、独立化学反应式、相数以及限 制条件数,才能正确应用相律。 4. 自由度只取“0”以上的正值。如果出现负值,则说明体系可 能处于非平衡态。
第1页/共124页
2. 介稳态 即热力学非平衡态,经常出现于硅酸盐系统中。
如:
α-石英
870 ℃
573℃
α-鳞石英 163℃
1470℃ α-方石英 180~270℃
β-石英
β-鳞石英 117℃
β-方石英
γ-鳞石英
说明:介稳态的出现不一定都是不利的。由于某些介稳态具有 所需要的性质,因而创造条件(快速冷却或掺加杂质) 有意把它保存下来。 如:水泥中的β -C2S,陶瓷中介稳的四方氧化锆 ; 耐火材料硅砖中的鳞石英以及所有的玻璃材料。
B%
B
(1) T1: 固相量 S% = 0 ; 液相量 L%=100%;
(2) T2: S% = M2L2/S2L2 ×100% ;L% =M2S2/S2L2 ×100%
3、自由度 (f) 定义: 温度、压力、组分浓度等可能影响系统平衡状态的变量中, 可以在一定范围内改变而不会引起旧相消失新相产生的 独立变量的数目 具体看一个二元系统的自由度。
L f=2
L+A f=1
f =0 E L+B f=1
A+B f=1
A
B
第7页/共124页
相律应用必须注意以下四点: 1. 相律是根据热力学平衡条件推导而得,因而只能处理真实 的热力学平衡体系。 2. 相律表达式中的“2”是代表外界条件温度和压强。 如果电场、磁场或重力场对平衡状态有影响,则相律中的 “2”应为“3”、“4”、“5”。如果研究的体系为固态物质,可以 忽略压强的影响,相律中的“2”应为“1”。 3. 必须正确判断独立组分数、独立化学反应式、相数以及限 制条件数,才能正确应用相律。 4. 自由度只取“0”以上的正值。如果出现负值,则说明体系可 能处于非平衡态。
第1页/共124页
2. 介稳态 即热力学非平衡态,经常出现于硅酸盐系统中。
如:
α-石英
870 ℃
573℃
α-鳞石英 163℃
1470℃ α-方石英 180~270℃
β-石英
β-鳞石英 117℃
β-方石英
γ-鳞石英
说明:介稳态的出现不一定都是不利的。由于某些介稳态具有 所需要的性质,因而创造条件(快速冷却或掺加杂质) 有意把它保存下来。 如:水泥中的β -C2S,陶瓷中介稳的四方氧化锆 ; 耐火材料硅砖中的鳞石英以及所有的玻璃材料。
B%
B
(1) T1: 固相量 S% = 0 ; 液相量 L%=100%;
(2) T2: S% = M2L2/S2L2 ×100% ;L% =M2S2/S2L2 ×100%
无机材料科学基础非晶态固体新PPT课件
• (2)二价金属氧化物 RO • 二价金属氧化物对粘度的影响很复杂,它们一方面和R2O一样能使硅氧负离子团解
聚;另一方面它们电价较高,而半径又不大,因此其离子势较大,能夺取硅氧负离 子团中的O2-来包围自己,导致硅氧负离子图聚合。使粘度增加。综合这两个相反 的效应R2-降低粘度的次序是:Ba2+>Sr2+>Ca2+>Mg2+。
大,对粘度其主要作用的是[SiO4]中的Si-O键,这时,加入的正离子半径越小,降 低粘度的作用越大。 次序是:Li+>Na+>K+>Rb+>Cs+
第13页/共88页
• ②当熔体中碱含量高时, O/Si比值 较大时,硅氧四面体接近于岛状, [SiO4]之间主要靠R-O键连接,这时 作用力矩最大的Li+就具有较大的粘度 了。因此,在这种情况下一价碱金属 氧化物的影响 次序是:
3、模型有助于理解熔体结构中聚合物的多样性和 复杂性,从而得出熔体结构特点是近程有序而远程无 序。
第26页/共88页
硅酸盐熔体的结构特征: 1.基本结构单元- [SiO4] 四面体 2.基本结构单元在熔体中存在状态-聚合体 基本结构单元在熔体中组成形状不规则、大小不同的聚合离子团,在这些离子团间存在
•
即急冷后成玻璃体结构为近程有序远程无序。
第5页/共88页
强度 I
气体 熔体
玻璃
晶体
sinθ λ
X射线衍射图相似 表明了液体中某一质点最邻近的几个质点的排列
形式与间距和晶体中的相似。这体现了液体结构中 的近程有序和远程无序的特征。
第6页/共88页
• (三)硅酸盐熔体 • 因为硅酸盐晶体是以[SiO4]形式存在,Si-O键结合力强,在转变成熔体时难
无机材料科学基础(共117张PPT)
无机材料科学基础
29
四次旋转反伸轴
L
4 i
无机材料科学基础
L
4 i
A
B
C
D
30
六次旋转反伸轴
L
6 i
L
6 i
无机材料科学基础
三方柱
31
5 、旋转反映轴——映转轴(Lsn)
映转轴由一根假想的直线和垂直于直线的一个平面构成, 即图形绕此直线旋转一定角度后并对此平面进行反映后,相 同部分重复出现。 旋转反映轴有:L1s、L2s、L3s、L4s、L6s。
2、《硅酸盐物理化学》 浙江大学等 建工出版社
3、《结晶学》
翁臻培等
建工出版社
4、《陶瓷导轮》
W.D. 金格瑞等 建工出版社
5、《如何看硅酸盐相图》 沈鹤年·
轻工出版社
6、《固体材料结构基础》 张孝文等
建工出版社
7、《无机材料物理化学》 叶瑞伦等
建工出版社
无机材料科学基础
ቤተ መጻሕፍቲ ባይዱ
6
第一章 结晶学基础
何谓结晶学?
23
一个晶体中可以有对称面,也可以没有对称面;可以有一个,也可 以有多个,但最多不能超过9个。
1P
5P
无机材料科学基础
24
3 、对称轴(Ln):通过晶体中心的一条假想的直线,绕这 条直线旋转一定的角度后,能使图形相 同的部分重复出现
对应的对称操作:绕对称轴的旋转 轴次(n):旋转一周重复的次数 基转角():重复时所旋转的最小角度
7
§1-1 晶体的基本概念与性质
一、 晶体的基本概念
1、晶体的基本概念
以NaCl晶体为例
Cl Na
0.563nm
晶体:内部质点在三维空间按周期性重复排列的固体; 或具有格子构造的固体。
无机材料科学基础PPT课件
第三章 晶体结构缺陷——3.4 非化学计量化合物
3.4 非化学计量化合物
资源加工与生物工程学院
非化学计量化合物:实际化合物中负离子与正离子 的比例不符合定比或倍比定律的化合物。
特点: 1)产生及缺陷浓度与气氛性质、压力有关; 2)可看作是本身高低氧化态之间的固溶体;
第三章 晶体结构缺陷——3.4 非化学计量化合物
根据质量物作是用P型定半律导体K。 [OiP'O']2[1h/2•]2
为什么TiO2-x是一种n型半导体?
第三章 晶体结构缺陷——3.4 非化学计量化合物
资源加工与生物工程学院
色心、色心的产生及恢复
“色心”——由于电子补偿而引起的一种缺陷。
F-色心:负离子空位+电子
X、γ、中子或电子射线辐照某些晶体会产生颜色。 原因:由于辐照破坏晶格,产生了各类点缺陷。为在缺 陷区域保持电中性,过剩电子或电子空穴处于缺陷位置上。 点缺陷上的电荷具有一系列分离的允许能级,相当于在可见 光谱区域的光子能级,能吸收一定波长的光,使材料呈现某 种颜色。 把经辐照而变色的晶体加热,能使缺陷扩散掉,使辐照 破坏得到修复,晶体失去颜色。
[e]
P6 O2
1
PZn
P2 O2
1
Zn不完全电离时:
[e]
P4 O2
第三章 晶体结构缺陷——3.4 非化学计量化合物
资源加工与生物工程学院
实测ZnO电导率与氧
-2.1
分压的关系支持了单电荷
间隙模型,即后一种是正
-2.3
确的。
logσ
-2.5
-2.7
0.6
1.0
1.4
1.8
2.2
Log PO2 (mmHg)
3.4 非化学计量化合物
资源加工与生物工程学院
非化学计量化合物:实际化合物中负离子与正离子 的比例不符合定比或倍比定律的化合物。
特点: 1)产生及缺陷浓度与气氛性质、压力有关; 2)可看作是本身高低氧化态之间的固溶体;
第三章 晶体结构缺陷——3.4 非化学计量化合物
根据质量物作是用P型定半律导体K。 [OiP'O']2[1h/2•]2
为什么TiO2-x是一种n型半导体?
第三章 晶体结构缺陷——3.4 非化学计量化合物
资源加工与生物工程学院
色心、色心的产生及恢复
“色心”——由于电子补偿而引起的一种缺陷。
F-色心:负离子空位+电子
X、γ、中子或电子射线辐照某些晶体会产生颜色。 原因:由于辐照破坏晶格,产生了各类点缺陷。为在缺 陷区域保持电中性,过剩电子或电子空穴处于缺陷位置上。 点缺陷上的电荷具有一系列分离的允许能级,相当于在可见 光谱区域的光子能级,能吸收一定波长的光,使材料呈现某 种颜色。 把经辐照而变色的晶体加热,能使缺陷扩散掉,使辐照 破坏得到修复,晶体失去颜色。
[e]
P6 O2
1
PZn
P2 O2
1
Zn不完全电离时:
[e]
P4 O2
第三章 晶体结构缺陷——3.4 非化学计量化合物
资源加工与生物工程学院
实测ZnO电导率与氧
-2.1
分压的关系支持了单电荷
间隙模型,即后一种是正
-2.3
确的。
logσ
-2.5
-2.7
0.6
1.0
1.4
1.8
2.2
Log PO2 (mmHg)
无机材料科学基础23页PPT
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
无机材料科学基础
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢
无机材料科学基础
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢
《无机材料科学基础》绪论PPT课件
12
2021/3/12
13
2021/3/12
14
2021/3/12
15
• 飞机和材料
从莱特兄弟实现飞行的梦想以来,航空和航天器发生了巨变。为了飞得快 和远,就要采用强度高和比重小的材料,重视材料的比强度,即强度/比重 之比。因此,航空和航天器中铝、镁合金用量大。随着航空技术的进一步发 展,轻质和高比强度的钛合金、碳纤维高分子复合材料、硼纤维金属复合材 料等得到愈来愈多的采用。
6
材料结构关系
• 材料的结构包括不同晶体结构和非晶体,以及显微镜下的微观
结构,哪些主要因素能够影响和改变结构?只有了解了这些才
能实现控制结构的目的。
• 材料的性能包括物理性能、化学性能、力学性能。
• 其内部结构包括 四个层次:①原 子结构;②结合 键;③原子的排 列方式;④显微 组织
2021/3/12
• 材料科学和材料工程之间的区别主要在于着眼点的不同或者说
各自强调的中心不同,它们之间并没有一条明确的界线,因此,
后来人们常常将二者放在一起,采用一个复合名词-材料科学
2021/3/1与2 工程(MSE,Material Science and Engineering)
8
材料科学 :是一门科学,它从事与材料本质的发现、分析和了 解方面的研究,其目的在于提供材料结构的统一描绘或模型,以 及解释这种结构与性能之间的关系。它包括下面的三个环节,核 心是结构和性能。
实践中总结出来的共同规律而形成的一门课程。该课程是把基础科学理论,特别是物理 化学、无机化学、结构化学、结晶化学、固体物理中的基本理论,具体应用到无机非金 属材料的制备和性能研究上,成为介于基础科学和专业技术之间的一门重要的专业基础 理论课程。
2021/3/12
13
2021/3/12
14
2021/3/12
15
• 飞机和材料
从莱特兄弟实现飞行的梦想以来,航空和航天器发生了巨变。为了飞得快 和远,就要采用强度高和比重小的材料,重视材料的比强度,即强度/比重 之比。因此,航空和航天器中铝、镁合金用量大。随着航空技术的进一步发 展,轻质和高比强度的钛合金、碳纤维高分子复合材料、硼纤维金属复合材 料等得到愈来愈多的采用。
6
材料结构关系
• 材料的结构包括不同晶体结构和非晶体,以及显微镜下的微观
结构,哪些主要因素能够影响和改变结构?只有了解了这些才
能实现控制结构的目的。
• 材料的性能包括物理性能、化学性能、力学性能。
• 其内部结构包括 四个层次:①原 子结构;②结合 键;③原子的排 列方式;④显微 组织
2021/3/12
• 材料科学和材料工程之间的区别主要在于着眼点的不同或者说
各自强调的中心不同,它们之间并没有一条明确的界线,因此,
后来人们常常将二者放在一起,采用一个复合名词-材料科学
2021/3/1与2 工程(MSE,Material Science and Engineering)
8
材料科学 :是一门科学,它从事与材料本质的发现、分析和了 解方面的研究,其目的在于提供材料结构的统一描绘或模型,以 及解释这种结构与性能之间的关系。它包括下面的三个环节,核 心是结构和性能。
实践中总结出来的共同规律而形成的一门课程。该课程是把基础科学理论,特别是物理 化学、无机化学、结构化学、结晶化学、固体物理中的基本理论,具体应用到无机非金 属材料的制备和性能研究上,成为介于基础科学和专业技术之间的一门重要的专业基础 理论课程。
无机材料概论PPT课件
复合材料是多相材料,主要包括:基本相和增强相。 ➢ 基体相:为连续相材料,将改善性能的增强相材料固结成一体, 并起传递应力的作用; ➢ 增强相:起承受应力(结构复合材料)和显示功能(功能复合 材料)的作用。
复合材料既能保持原组成材料的重要特色,又通过复合效应使 各组分的性能互相补充,获得原组分不具备的许多优良性能。
property-technics process
第一章 无机材料概论
What is Materials?
资源加工与生物工程学院
世界万物,凡于我有用者,皆谓之材料。 材料是具有一定性能,可以用来制作器件、构 件、工具、装置等物品的物质。 材料存在于我们周围,与我们的生活、我们的 生命息息相关。
第一章 无机材料概论
第6章:凝聚多相系统相平衡——从相平衡的观点,介绍凝聚单 元系统到四元系统相图的基本知识、基本类型和有关实际相图, 重点讨论凝聚三元系统相图的规律性及其在无机材料研究和生产 等方面的应用;
第一章 无机材料概论
资源加工与生物工程学院
第7~10章:过程动力学——重点介绍无机材料研究和制备 中物理化学变化过程(扩散、固相反应、相变、烧结)的 机理、过程的动力学以及影响因素
第一章 无机材料概论
资源加工与生物工程学院
复合材料种类繁多,目前无统一分类方法,一般可根据复 合材料三要素分类。
按基体材料分类,有金属基复合材料,陶瓷基复合材料, 水泥、混凝土基复合材料,塑料基复合材料,橡胶基复合材料 等;
按增强剂形状可分为粒子、纤维及层状增强复合材料; 按性能可分为结构复合材料和功能复合材料。
准晶材料:指准周期性晶体材料的简称,准晶仍然 是晶体,准晶中的原子分布有严格的位置序,但位 置序无周期性,即没有周期性平移对称关系,在准 晶材料中存在不符合传统晶体学的五次、八次、十 二次对称轴。 准晶从结构角度看是一种新的物质形态,但实 际上它们仅在特定的金属合金中形成,是成分范围 较窄的金属间化合物。
复合材料既能保持原组成材料的重要特色,又通过复合效应使 各组分的性能互相补充,获得原组分不具备的许多优良性能。
property-technics process
第一章 无机材料概论
What is Materials?
资源加工与生物工程学院
世界万物,凡于我有用者,皆谓之材料。 材料是具有一定性能,可以用来制作器件、构 件、工具、装置等物品的物质。 材料存在于我们周围,与我们的生活、我们的 生命息息相关。
第一章 无机材料概论
第6章:凝聚多相系统相平衡——从相平衡的观点,介绍凝聚单 元系统到四元系统相图的基本知识、基本类型和有关实际相图, 重点讨论凝聚三元系统相图的规律性及其在无机材料研究和生产 等方面的应用;
第一章 无机材料概论
资源加工与生物工程学院
第7~10章:过程动力学——重点介绍无机材料研究和制备 中物理化学变化过程(扩散、固相反应、相变、烧结)的 机理、过程的动力学以及影响因素
第一章 无机材料概论
资源加工与生物工程学院
复合材料种类繁多,目前无统一分类方法,一般可根据复 合材料三要素分类。
按基体材料分类,有金属基复合材料,陶瓷基复合材料, 水泥、混凝土基复合材料,塑料基复合材料,橡胶基复合材料 等;
按增强剂形状可分为粒子、纤维及层状增强复合材料; 按性能可分为结构复合材料和功能复合材料。
准晶材料:指准周期性晶体材料的简称,准晶仍然 是晶体,准晶中的原子分布有严格的位置序,但位 置序无周期性,即没有周期性平移对称关系,在准 晶材料中存在不符合传统晶体学的五次、八次、十 二次对称轴。 准晶从结构角度看是一种新的物质形态,但实 际上它们仅在特定的金属合金中形成,是成分范围 较窄的金属间化合物。
无机材料科学基础第二章PPT课件
国际上通用的是密勒指数(Miller)
➢晶向指数:点阵中一维方向结点连线-行列:
行列平行方向-晶向(如:晶棱方向)
(1)建立坐标系,原点在待标晶向上
(2)选取该晶向上原点
以外的任一点P(xa,yb,zc)
zc
P
(3)将xa,yb,zc化简为互质
O
整数比u,v,w,且
yb
xa
u∶v∶w = xa∶yb∶zc
离子半径:离子中心到其作用力所及的有 效范围的距离。正、负离子都看成球体。离 子半径是衡量键性、键强、配位关系及极化 的重要数据。
2.6.2 球体紧密堆积原理
1、等大球体的最紧密堆积及其空隙:
【 紧密堆积结构】
Close-packed structures
ABABA.. packing
hcp & fcc
2、晶胞的分类
初级晶胞: 简单晶胞,只在平行六面体的八个角顶有阵点。
复合晶胞: 除角顶外,在其体心、面心或低心位置上也有 阵点。
3、描述晶胞的形状大小
晶胞的表示-晶胞参数
三条晶轴:a,b,c 轴间夹角:α,β,γ
4、晶系和布拉菲点阵
分类依据:棱长、夹角 七种类型:七大晶系 布拉菲点阵:14种
六方紧密堆积
hcp structure
(hexagonally-close packed)
ABCABC.. packing
立方紧密堆积
fcc structure
(face-centered cubic, 面心立方)
1、等大球体的最紧密堆积及其空隙:
(1)六方最紧密堆积:ABAB……紧密堆积 方式,密排面平行于(0001)。
• {100}=(100)+(010)+(001)
➢晶向指数:点阵中一维方向结点连线-行列:
行列平行方向-晶向(如:晶棱方向)
(1)建立坐标系,原点在待标晶向上
(2)选取该晶向上原点
以外的任一点P(xa,yb,zc)
zc
P
(3)将xa,yb,zc化简为互质
O
整数比u,v,w,且
yb
xa
u∶v∶w = xa∶yb∶zc
离子半径:离子中心到其作用力所及的有 效范围的距离。正、负离子都看成球体。离 子半径是衡量键性、键强、配位关系及极化 的重要数据。
2.6.2 球体紧密堆积原理
1、等大球体的最紧密堆积及其空隙:
【 紧密堆积结构】
Close-packed structures
ABABA.. packing
hcp & fcc
2、晶胞的分类
初级晶胞: 简单晶胞,只在平行六面体的八个角顶有阵点。
复合晶胞: 除角顶外,在其体心、面心或低心位置上也有 阵点。
3、描述晶胞的形状大小
晶胞的表示-晶胞参数
三条晶轴:a,b,c 轴间夹角:α,β,γ
4、晶系和布拉菲点阵
分类依据:棱长、夹角 七种类型:七大晶系 布拉菲点阵:14种
六方紧密堆积
hcp structure
(hexagonally-close packed)
ABCABC.. packing
立方紧密堆积
fcc structure
(face-centered cubic, 面心立方)
1、等大球体的最紧密堆积及其空隙:
(1)六方最紧密堆积:ABAB……紧密堆积 方式,密排面平行于(0001)。
• {100}=(100)+(010)+(001)
无机材料科学基础第五章 固溶体PPT课件
金属和金属形成的固溶体都是置换式的。如, Cu-Zn系中的α和η固溶体都是置换式固溶体。
在金属氧化物中,主要发生在金属离子位 置 上 的 置 换 , 如 : MgO-CaO , MgO-CoO , PbZrO3-PbTiO3,Al2O3-Cr2O3等。
C3S的固溶体C54S16MA2.相当于18个Si中有两个被置换。
可编辑课件PPT
18
实例
在面心立方结构中,例如MgO中,氧八面体间 隙都已被Mg离子占满,只有氧四面体间隙是空的。 在TiO2中,有二分之一的八面体空隙是空的。在萤 石结构中,氟离子作简单立方排列,而正离子Ca2+ 只占据了有立方体空隙的一半,在晶胞中有一个较 大的间隙位置。在沸石之类的具有网状结构的硅酸 盐结构中,间隙就更大,具有隧道型空隙。 因此, 对于同样的外来杂质原子,可以预料形成填隙式固 溶体的可能性或固溶度大小的顺序将是沸石>萤石 >TiO2>MgO。实验证明是符合的。
SrO、BaO,使他们形成正硅酸盐。或
添加B2O3、P2O5、Cr2O3为稳定剂,使他 们形成[BO4]、[PO4]、[CrO4]置换[SiO4] 而形成固溶体。
可编辑课件PPT
9
2、晶体结构类型的影响
若溶质与溶剂晶体结构类型相同,能形成连 续固溶体,这也是形成连续固溶体的必要条件,而 不是充分必要条件。
二、置换型固溶体
三、间隙型固溶体
四、形成固溶体后对晶体性质的影响
五、固溶体的研究方法
可编辑课件PPT
1
第一节 固溶体的分类
一、根据外来组元在主晶相中所处位置 ,可分 为置换固溶体和间隙固溶体。
二、按外来组元在主晶相中的固溶度,可分为 连续型(无限型)固溶体和有限型固溶体。
在金属氧化物中,主要发生在金属离子位 置 上 的 置 换 , 如 : MgO-CaO , MgO-CoO , PbZrO3-PbTiO3,Al2O3-Cr2O3等。
C3S的固溶体C54S16MA2.相当于18个Si中有两个被置换。
可编辑课件PPT
18
实例
在面心立方结构中,例如MgO中,氧八面体间 隙都已被Mg离子占满,只有氧四面体间隙是空的。 在TiO2中,有二分之一的八面体空隙是空的。在萤 石结构中,氟离子作简单立方排列,而正离子Ca2+ 只占据了有立方体空隙的一半,在晶胞中有一个较 大的间隙位置。在沸石之类的具有网状结构的硅酸 盐结构中,间隙就更大,具有隧道型空隙。 因此, 对于同样的外来杂质原子,可以预料形成填隙式固 溶体的可能性或固溶度大小的顺序将是沸石>萤石 >TiO2>MgO。实验证明是符合的。
SrO、BaO,使他们形成正硅酸盐。或
添加B2O3、P2O5、Cr2O3为稳定剂,使他 们形成[BO4]、[PO4]、[CrO4]置换[SiO4] 而形成固溶体。
可编辑课件PPT
9
2、晶体结构类型的影响
若溶质与溶剂晶体结构类型相同,能形成连 续固溶体,这也是形成连续固溶体的必要条件,而 不是充分必要条件。
二、置换型固溶体
三、间隙型固溶体
四、形成固溶体后对晶体性质的影响
五、固溶体的研究方法
可编辑课件PPT
1
第一节 固溶体的分类
一、根据外来组元在主晶相中所处位置 ,可分 为置换固溶体和间隙固溶体。
二、按外来组元在主晶相中的固溶度,可分为 连续型(无限型)固溶体和有限型固溶体。
无机材料科学基础教程课件
第一章 晶体几何基础
晶体与材料
组成材料的物质(包括天然的固态物质)按其 原子(分子)的聚集状态可分为晶体与非晶体。 晶体可以有单晶体和多晶体,其构成的材料分 别为单晶材料和多晶材料。 单晶材料有人造半导体材料单晶硅和锗、金刚 石、红宝石等,多晶材料包括金属及陶瓷等。 晶体固有的性质对材料的性质具有重要的决定 作用。
晶体与材料
金属和陶瓷等很大一部分材料主要是由晶体 组成的晶质材料。在晶质材料中,晶体本身的性 质是影响材料性质的最主要因素之一。 例如构成耐火材料的主晶相一般具有较高的 熔点;氮化铝陶瓷良好的导热性,是因为氮化铝 晶粒具有高的热导率,等等。Fra bibliotek晶体与材料
一般来讲,一种晶体具有一定的物质组成和一 定的内部结构,物质组成确定后,晶体的性质主要 与其内部结构(或者说内部质点的排列方式)有关。 例如,金刚石和石墨,都是由碳构成的,由于 碳的排列方式(内部结构)不同,金刚石具有很高 的硬度,而石墨则很软。当然,不同的物质成分, 也可具有相同的排列方式。 本章就是关于晶体内部质点排列规律性及由此 决定的晶体宏观形态规律性的认识。
晶体与材料
组成材料的物质(包括天然的固态物质)按其 原子(分子)的聚集状态可分为晶体与非晶体。 晶体可以有单晶体和多晶体,其构成的材料分 别为单晶材料和多晶材料。 单晶材料有人造半导体材料单晶硅和锗、金刚 石、红宝石等,多晶材料包括金属及陶瓷等。 晶体固有的性质对材料的性质具有重要的决定 作用。
晶体与材料
金属和陶瓷等很大一部分材料主要是由晶体 组成的晶质材料。在晶质材料中,晶体本身的性 质是影响材料性质的最主要因素之一。 例如构成耐火材料的主晶相一般具有较高的 熔点;氮化铝陶瓷良好的导热性,是因为氮化铝 晶粒具有高的热导率,等等。Fra bibliotek晶体与材料
一般来讲,一种晶体具有一定的物质组成和一 定的内部结构,物质组成确定后,晶体的性质主要 与其内部结构(或者说内部质点的排列方式)有关。 例如,金刚石和石墨,都是由碳构成的,由于 碳的排列方式(内部结构)不同,金刚石具有很高 的硬度,而石墨则很软。当然,不同的物质成分, 也可具有相同的排列方式。 本章就是关于晶体内部质点排列规律性及由此 决定的晶体宏观形态规律性的认识。
无机材料科学基础课件
L
v
S
图4.2.1沾湿过程
拉 开 固 液 界 面 , 外 界 对 体 系 做 的 功 为附着功,表示将单位截面积的液固界面拉开所作 的功。 注:生产中,通常采用化学性能相近的两相系统, 可以降低 γ SL ,以便提高粘附功。
3、铺展(图4.2.3) 置一液滴于一固体表面。恒温恒压下,若此液 滴在固体表面上自动展开形成液膜,则为铺展润 湿。 体系自由能的变化为:
3. 若θ=00,液体对毛细管完全润湿,液面是凹面。
P 2 γM 1 ⋅ ⇒ P凹 < P0 则 ln = − ρRT r P0
毛细管凝结:蒸汽压对平面液体未达饱和,但对管内凹 面液体已呈饱和,此蒸汽在毛细管内会凝聚成液体。
举例:陶瓷生坯中的水,水泥地面冻裂
4.开尔文公式适用于固体溶解度
2 γ SL M c ln = c0 dRTr
4.1.2 晶体表面结构 表面力的存在使固体表面处于较高能量状 态。系统总会通过各种途径来降低这部分过剩的 能量,这就导致表面质点的极化、变形、重排并 引起原来晶格的畸变。 威尔(Weyl)等人基于结晶化学原理,研究 了晶体表面结构,认为晶体质点间的相互作用, 键强是影响表面结构的重要因素,提出了晶体的 表面双电层模型,如图4.1.6、4.1.7所示。。
2. 弯曲液面上的饱和蒸气压
开尔文公式
P 2 γM 1 ln = ⋅ P0 ρ RT r
γM 1 1 P ln = ( + ) P0 ρRT r1 r2
讨论: 1.开尔文公式同样适用于不同曲率半径下固体 表面上蒸汽压的计算。 凸面蒸气压>平面>凹面;
2. 开尔文公式应用于毛细血管内液体:
P 2 γM 1 ln = − ⋅ cos θ ρRT r P0
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hari Bala
HPU
孟哈日巴拉
相律应用必须注意以下四点: 1.只能处理真实的热力学平衡体系。
2.相律表达式中的“2”是代表外界条件温度 和压力。如果研究的体系为固态物质,可以忽略
压力的影响,相律中的“2”应为“1”。 3.必须正确判断独立组分数、独立化学反应 式、相数以及限制条件数,才能正确应用相律。 4.自由度只取 0 或 0 以上的正值。
Hari Bala
HPU
孟哈日巴拉
相平衡的研究方法
相图即平衡状态图,反映的是体系所处的热力学平衡状态, 与达平衡所需的时间无关。 平衡态 一个不随时间而发生变化的状态。 相图是在实验结果的基础上制作的,所以测量方法、测试 的精度等都直接影响相图的准确性和可靠性。 研究凝聚系统相平衡,有二种基本方法:动态法和静态法。
相
系统中具有相同物理与化学性质的完全均匀部分的总和称为相。
特点: 1、相与相之间有界面。各相可以用机械方法
加以分离,越过界面时性质发生突变。 2、 一个相必须在物理性质和化学性质上都是均匀的, 这里的“均匀”是指一种微观尺度的均匀,但一个相不 一定只含有一种物质。 3、一种物质可以有几个相。同一个相不一定连续。
Hari Bala
HPU
孟哈日巴拉
相数(P):一个系统中所含相的数目,叫做相数,以P表示。 按照相数的不同,系统可分为: 单相系统(P=1) 二相系统(P=2) 三相系统(P=3)等等。 含有两个相以上的系统,统称为多相系统。
1、气体 不论有多少种气体都只可能有一个气相。 对于系统中的气体,因其能够以分子形式按任何比例互相均 匀混合。
##
注意:指的平衡不是在高压条件
Hari Bala
HPU
孟哈日巴拉
2、液体 对于系统中液体,纯液体是一个相。 混合液体则视其互溶程度而定,能完全互溶形成真溶液的, 即为一相;若出现液相分层便不止一相。
3、固体 1)形成机械混合物 几种固态物质形成的机械混合物,不管其粉磨得多细,都 不可能达到相所要求的微观均匀,因而都不能视为单相。有 几种物质就有几个相。 在硅酸盐系统中,在低共熔温度下从具有低共熔组成的液相 中折出的低共熔混合物是几种晶体的机械混合物。因而,从 液相中析出几种晶体,即产生几种新相。
Hari Bala
HPU
孟哈日巴拉
独立组元
系统中每一个能单独分离出来并能独立存在的化学纯物质 称为物种或组元。 足以表示形成平衡系统中各相组成所需要的最少数目的物 种(组元)称为独立组元。它的数目,称为独立组元数,以 符号C表示。
C= 组元数-独立化学反应数目-浓度限制条件
通常把具有n个独立组元的系统称为n元系统。 按照独立组分数目的不同,可将系统分为 单元系统(C=1) 二元系统(C=2) 三元系统(C=3)等。
Hari Bala
HPU
孟哈日巴拉
自由度
在一定范围内,可以任意改变而不引起旧相消失或新相产 生的独立变量称为自由度,平衡系统的自由度数用 f 表示。 这些变量主要指组成(即组分的浓度)、温度和压力等。 一个系统中有几个独立变量就有几个自由度。
##
注意:对于给定的相平衡系统,在保持系统中相的数目和 相的状态不发生变化的条件下,并不是温度、压力、组分的 浓度等所有的变量都可以任意改变。
Hari Bala
HPU
孟哈日巴拉
2)生成化合物 固态物质间每生成一个新的化合物,则形成一种新的固态 物质,即产生一个新相。 总结: 3)形成固溶体 气相只能一个相,不论多少种气体混在一起 由于在固溶体晶格上各物质的化学质点是随机均匀分布的, 都一样形成一个气相。 其物理性质和化学性质符合相的均匀性要求,因而几个物质 液体可以是一个相,也可以是两个相(互溶 程度有限时)。 间形成的固溶体为一个相。 固体如果是连续固溶体为一相;其它情况下, 4)同质多晶现象 一种固体物质是一个相。 在硅酸盐物系中,这是极为普遍的现象。同一物质的不同 晶型(变体)虽具有相同化学组成,但由于其晶体结构和物理性 质不同,因而分别各自成相。有几种变体,即有几个相。
Hari Bala
HPU
动态法
最普通的动态法是热分析法。这种方法主要是观察系统中 的物质在加热和冷却过程中所发生的热效应。当系统以一定 速度加热或冷却时,如系统中发生某了相变。则必然伴随吸 热或放热的能量效应,测定此热效应产生的温度,即为相变 发生的温度, 常用的有 加热或冷却(步冷)曲线法; 差热分折法。 此外还有 热膨胀曲线法; 电导(电阻)法。
无机材料科学 基础课件
孟哈日巴拉
6.1 相平衡及其研究方法 一、相平衡的基本概念 1、系统 2、相 3、独立组元 4、自由度 5、外界影响因素 二、相律 三、相平衡的研究方法 1、动态法 2、静态法 四、应用相图时应注意的几个问题
Hari Bala
HPU
孟哈日巴拉
相平衡的基本概念
系 统
系统:选择的研究对象称为系统。 环境:系统以外的一切物质都称为环境。
Hari Bala
HPU
孟哈日巴拉
外界影响因素
影响系统平衡状态的外界因素包括:温度、压力、电场、
磁场、重力场等等。外界影响因素的数目称为影响因素数, 用符号 n 表示。在一般情况下只考虑温度和压力对系统平衡 状态的影响,即n=2。
##
注意:影响凝聚系统平力对陶瓷系统中相平衡的影响 并不总是可以忽略不计的,在非常高的温度或在加压下研究 系统时,压力必须做为变量予以考虑。
孟哈日巴拉
(1)加热或冷却(步冷)曲线法
这种方法是将一定组成的体系,均匀加热至完全熔 融或加热完全溶解后,使之均匀冷却,测定体系在每一 时刻下的温度。作出时间一温度曲线,这样的曲线称为 加热曲线或步冷曲线。如果系统在均匀加热或冷却过程 中不发生相变化,则温度的变化是均匀的,曲线是圆滑 的;反之,若有相变化发生,则因有热效应产生,在曲 线上必有突变和转折。曲线的转折程度和热效应的大小 有关,相变时热效应小,曲线出现一个小的转折点,相 变时热效应大,曲线上便会出现一个平台。
Hari Bala
HPU
孟哈日巴拉
相 律
相平衡的一般规律 吉布斯(W.Gibbs) 1876年导出了多相平衡系统的普遍规律— 相律。 相律的数学表达式为: f= C - P + n (6-1) 一般情况下,只考虑温度和压力对系统的平衡状态的影响, 即n=2,则相律表达式为: f= C - P + 2 (6-2) 凝聚系统的相律公式为: f= C - P + 1
HPU
孟哈日巴拉
相律应用必须注意以下四点: 1.只能处理真实的热力学平衡体系。
2.相律表达式中的“2”是代表外界条件温度 和压力。如果研究的体系为固态物质,可以忽略
压力的影响,相律中的“2”应为“1”。 3.必须正确判断独立组分数、独立化学反应 式、相数以及限制条件数,才能正确应用相律。 4.自由度只取 0 或 0 以上的正值。
Hari Bala
HPU
孟哈日巴拉
相平衡的研究方法
相图即平衡状态图,反映的是体系所处的热力学平衡状态, 与达平衡所需的时间无关。 平衡态 一个不随时间而发生变化的状态。 相图是在实验结果的基础上制作的,所以测量方法、测试 的精度等都直接影响相图的准确性和可靠性。 研究凝聚系统相平衡,有二种基本方法:动态法和静态法。
相
系统中具有相同物理与化学性质的完全均匀部分的总和称为相。
特点: 1、相与相之间有界面。各相可以用机械方法
加以分离,越过界面时性质发生突变。 2、 一个相必须在物理性质和化学性质上都是均匀的, 这里的“均匀”是指一种微观尺度的均匀,但一个相不 一定只含有一种物质。 3、一种物质可以有几个相。同一个相不一定连续。
Hari Bala
HPU
孟哈日巴拉
相数(P):一个系统中所含相的数目,叫做相数,以P表示。 按照相数的不同,系统可分为: 单相系统(P=1) 二相系统(P=2) 三相系统(P=3)等等。 含有两个相以上的系统,统称为多相系统。
1、气体 不论有多少种气体都只可能有一个气相。 对于系统中的气体,因其能够以分子形式按任何比例互相均 匀混合。
##
注意:指的平衡不是在高压条件
Hari Bala
HPU
孟哈日巴拉
2、液体 对于系统中液体,纯液体是一个相。 混合液体则视其互溶程度而定,能完全互溶形成真溶液的, 即为一相;若出现液相分层便不止一相。
3、固体 1)形成机械混合物 几种固态物质形成的机械混合物,不管其粉磨得多细,都 不可能达到相所要求的微观均匀,因而都不能视为单相。有 几种物质就有几个相。 在硅酸盐系统中,在低共熔温度下从具有低共熔组成的液相 中折出的低共熔混合物是几种晶体的机械混合物。因而,从 液相中析出几种晶体,即产生几种新相。
Hari Bala
HPU
孟哈日巴拉
独立组元
系统中每一个能单独分离出来并能独立存在的化学纯物质 称为物种或组元。 足以表示形成平衡系统中各相组成所需要的最少数目的物 种(组元)称为独立组元。它的数目,称为独立组元数,以 符号C表示。
C= 组元数-独立化学反应数目-浓度限制条件
通常把具有n个独立组元的系统称为n元系统。 按照独立组分数目的不同,可将系统分为 单元系统(C=1) 二元系统(C=2) 三元系统(C=3)等。
Hari Bala
HPU
孟哈日巴拉
自由度
在一定范围内,可以任意改变而不引起旧相消失或新相产 生的独立变量称为自由度,平衡系统的自由度数用 f 表示。 这些变量主要指组成(即组分的浓度)、温度和压力等。 一个系统中有几个独立变量就有几个自由度。
##
注意:对于给定的相平衡系统,在保持系统中相的数目和 相的状态不发生变化的条件下,并不是温度、压力、组分的 浓度等所有的变量都可以任意改变。
Hari Bala
HPU
孟哈日巴拉
2)生成化合物 固态物质间每生成一个新的化合物,则形成一种新的固态 物质,即产生一个新相。 总结: 3)形成固溶体 气相只能一个相,不论多少种气体混在一起 由于在固溶体晶格上各物质的化学质点是随机均匀分布的, 都一样形成一个气相。 其物理性质和化学性质符合相的均匀性要求,因而几个物质 液体可以是一个相,也可以是两个相(互溶 程度有限时)。 间形成的固溶体为一个相。 固体如果是连续固溶体为一相;其它情况下, 4)同质多晶现象 一种固体物质是一个相。 在硅酸盐物系中,这是极为普遍的现象。同一物质的不同 晶型(变体)虽具有相同化学组成,但由于其晶体结构和物理性 质不同,因而分别各自成相。有几种变体,即有几个相。
Hari Bala
HPU
动态法
最普通的动态法是热分析法。这种方法主要是观察系统中 的物质在加热和冷却过程中所发生的热效应。当系统以一定 速度加热或冷却时,如系统中发生某了相变。则必然伴随吸 热或放热的能量效应,测定此热效应产生的温度,即为相变 发生的温度, 常用的有 加热或冷却(步冷)曲线法; 差热分折法。 此外还有 热膨胀曲线法; 电导(电阻)法。
无机材料科学 基础课件
孟哈日巴拉
6.1 相平衡及其研究方法 一、相平衡的基本概念 1、系统 2、相 3、独立组元 4、自由度 5、外界影响因素 二、相律 三、相平衡的研究方法 1、动态法 2、静态法 四、应用相图时应注意的几个问题
Hari Bala
HPU
孟哈日巴拉
相平衡的基本概念
系 统
系统:选择的研究对象称为系统。 环境:系统以外的一切物质都称为环境。
Hari Bala
HPU
孟哈日巴拉
外界影响因素
影响系统平衡状态的外界因素包括:温度、压力、电场、
磁场、重力场等等。外界影响因素的数目称为影响因素数, 用符号 n 表示。在一般情况下只考虑温度和压力对系统平衡 状态的影响,即n=2。
##
注意:影响凝聚系统平力对陶瓷系统中相平衡的影响 并不总是可以忽略不计的,在非常高的温度或在加压下研究 系统时,压力必须做为变量予以考虑。
孟哈日巴拉
(1)加热或冷却(步冷)曲线法
这种方法是将一定组成的体系,均匀加热至完全熔 融或加热完全溶解后,使之均匀冷却,测定体系在每一 时刻下的温度。作出时间一温度曲线,这样的曲线称为 加热曲线或步冷曲线。如果系统在均匀加热或冷却过程 中不发生相变化,则温度的变化是均匀的,曲线是圆滑 的;反之,若有相变化发生,则因有热效应产生,在曲 线上必有突变和转折。曲线的转折程度和热效应的大小 有关,相变时热效应小,曲线出现一个小的转折点,相 变时热效应大,曲线上便会出现一个平台。
Hari Bala
HPU
孟哈日巴拉
相 律
相平衡的一般规律 吉布斯(W.Gibbs) 1876年导出了多相平衡系统的普遍规律— 相律。 相律的数学表达式为: f= C - P + n (6-1) 一般情况下,只考虑温度和压力对系统的平衡状态的影响, 即n=2,则相律表达式为: f= C - P + 2 (6-2) 凝聚系统的相律公式为: f= C - P + 1