2019-2020学年高中数学 第三章 概率 2.2 建立概率模型教案 北师大版必修3.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学第三章概率 2.2 建立概率模型教案北
师大版必修3
教学分析
本节教材通过例2的四种模型的所有可能结果数越来越少,调动起学生思考探究的兴趣;教师在教学中要注意通过引导学生体会不同模型的特点以及对各种方法进行比较,提高学生分析和解决问题的能力.
三维目标
1.使学生能建立概率模型来解决简单的实际问题,提高学生分析问题和解决问题的能力.
2.通过学习建立概率模型,培养学生的应用能力.
重点难点
教学重点:建立古典概型.
教学难点:建立古典概型.
课时安排
1课时
教学过程
导入新课
思路1.计算事件发生概率的大小时,要建立概率模型,把什么看成一个基本事件是人为规定的.今天我们学习如何建立概率模型,教师点出课题.
思路2.解决实际应用问题时,要转化为数学问题来解决,即建立数学模型,这是高中数学的重点内容之一,也是高考的必考内容,同样解决概率问题也要建立概率模型,教师点出课题.
推进新课
新知探究
提出问题
1.回顾解应用题的步骤?
2.什么样的概率属于古典概型?
讨论结果:
1.解应用题的一般程序:
①读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.
②建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.
③解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.
④答:将数学结论还原给实际问题的结果.
2.同时满足以下两个条件的概率属于古典概型:
①试验的所有基本事件只有有限个,每次试验只出现其中一个基本事件;
②每一次试验中,每个基本事件出现的可能性相等.
应用示例
思路1
例1 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球.试计算第二个人摸到白球的概率.
分析:我们只需找出4个人按顺序依次摸球的所有可能结果数和第二个人摸到白球的可能结
果数.为此考虑用列举法列出所有可能结果.
解法一:用A 表示事件“第二个人摸到白球”.把2个白球编上序号1,2;2个黑球也编上序号1,2.于是,4个人按顺序依次从袋中摸出一球的所有可能结果,可用树状图直观地表示出来(如图1).
图1
树状图是进行列举的一种常用方法.从上面的树状图可以看出,试验的所有可能结果数为24.由于口袋内的4个球除颜色外完全相同,因此,这24种结果的出现是等可能的,试验属于古典概型.在这24种结果中,第二个人摸到白球的结果有12种,因此“第二个人摸到白球”的概率P(A)=
2412=2
1, 这与第一节的模拟结果是一致的.
还可以建立另外的模型来计算“第二个人摸到白球”的概率.如果建立的模型能使得试验的所有可能结果数变少,那么我们计算起来就更简便. 解法二:因为是计算“第二个人摸到白球”的概率,所以我们可以只考虑前两人摸球的情况.前两人依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图2).
图2
从上面的树状图可以看出,这个模型的所有可能结果数为12,因为口袋里的4个球除颜色外完全相同,因此,这12种结果的出现是等可能的,这个模型也是古典概型.在上面12种结果中,第二个人摸到白球的结果有6种,因此“第二个人摸到白球”的概率P(A)=
126=2
1. 这里,我们是根据事件“第二个人摸到白球”的特点,利用试验结果的对称性,只考虑前两人摸球的情况,从而简化了模型.
还可以从另外一个角度来考虑这个问题.因为口袋里的4个球除颜色外完全相同,因此,可以对2个白球不加区别,对2个黑球也不加区别,这样建立的模型的所有可能结果数就会更少,由此得到例2的另一种解法.
解法三:只考虑球的颜色,4个人按顺序依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图3).
图3
试验的所有可能结果数为6,并且这6种结果的出现是等可能的,这个模型是古典概型.在这6种结果中,第二个人摸到白球的结果有3种,因此“第二个人摸到白球”的概率P(A)=
63=2
1. 下面再给出一种更为简单的解法. 解法四:只考虑第二个人摸出的球的情况,他可能摸到这4个球中的任何一个,这4种结果出现的可能性是相同的.第二个人摸到白球的结果有2种,因此“第二个人摸到白球”的概率P(A)=
42=2
1. 点评:画树状图进行列举是计算结果个数的基本方法之一.
解法一利用树状图列出了4个人依次从袋中摸出一球的所有可能结果,共有24种,其中第二个人摸到白球的结果有12种,因此算得“第二个人摸到白球”的概率为
2
1. 解法二利用试验结果的对称性,只考虑前两人摸球的情况,所有可能结果减少为12种,简化了模型.
解法三只考虑球的颜色,对2个白球不加区别,对2个黑球也不加区别,所有可能结果只有6种.
解法四只考虑第二个人摸出的球的情况,所有可能结果变为4种,这个模型最简单. 尽管解法二,三,四建立的模型在解决该问题时比解法一简便,但解法一也有它的优势,利用解法一可以计算出4个人顺次摸球的任何一个事件的概率,而解法二,三,四却不能做到.教师要提醒学生,本章古典概率的计算,解法一是最基本的方法.
对于一个实际问题,有时从不同的角度考虑,可以建立不同的古典概型来解决. 变式训练
小明和小刚正在做掷骰子游戏,两人各掷一枚骰子,当两枚骰子点数之和为奇数时,小刚得1分,否则小明得1分.这个游戏公平吗?
分析:计算双方获胜的概率,来判断游戏是否公平.
解:设(x,y)表示小明抛掷骰子点数是x ,小刚抛掷骰子点数是y ,则该概率属于古典概型.所有的基本事件是:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),