金属材料机械性能的指标及意义(优.选)
2.2金属的力学性能

30
<140 非铁 金属 >130
10 30
12 30
36~130 8~35
10 2.5
30 60
3、表示方法
XXX HBS(W) XX / XXX / XX
硬度值 试验力保持 压头直径(mm ) 实验力(N) G=mg(g=9.807) 表示用直径5mm硬质合金球在7355N试验力作用下保持 10~15s测得的布氏硬度值为500 表示用直径10mm钢球压头在9807N试验力作用下保持30s 测得的布氏硬度值为120
除低碳钢、中碳钢及少数合金钢有屈服现象外,对于 大多数没有明显的屈服现象的金属材料。 定义:条件屈服强度: Rp0.2( σ0.2 指出: 是工程技术中最重要的机械性能指标之一;
)
规定:产生0.2%残余伸长时的应力作为条件屈服强度。
是设计零件时作为选用金属材料的重要依据。
• 工程上各种构件或机器零件工作时均不允许 发生过量塑性变形,因此屈服强度ReL和规定 残余延伸强度Rp0.2是工程技术上重要的力学 性能指标之一,也是大多数机械零件选材和 设计的依据。
• ReL 和Rp0.2 常作为零件选材和设计的依据。 • 传统的强度设计方法,对韧性材料,以屈服 强度为标准,规定许用应力[σ ]= ReL /n, 安全系数n一般取2或更大。
3)抗拉强度
定义:指在外力作用下由产生大量塑性变形到断裂前所承受的
最大应力,故又称强度极限。 公式:
Fm Rm 或 S0
菏泽高级技工学校
想一想:
1、金属材料受力后会有什么反应?
2、金属的力学性能的指标一般有哪些? 怎样获得这些指标?
3、金属材料为什么会发生断裂?
§2-2金属的力学性能
金属材料的力学性能

金属材料的力学性能使用性能⎪⎩⎪⎨⎧性)高温。
氧化性(热稳定化学性能:耐蚀性、抗密度、熔点等性、导热性、热膨胀、物理性能:电学性、磁、塑性、韧性、钢度等力学性能:强度、硬度工艺性能⎪⎪⎪⎩⎪⎪⎪⎨⎧切削加工焊接性压力加工(冲压性)铸造性可锻性金属材料的力学性能:金属材料在一定的温度条件和受外力作用下,抵抗变形、断裂的能力称材料的力学性能又称为机械性能。
主要有四大指标:1、 强度指标:抗拉强度b σ 屈服强度s σ:(疲劳强度、屈强比)2、塑性指标⎩⎨⎧断面收缩率伸长率(延伸率)δ 3、硬度指标⎪⎪⎩⎪⎪⎨⎧D HL HV HRC HB )里氏硬度()维氏硬度()洛氏硬度()布氏强度( 4、韧性指标⎩⎨⎧IC k k K A a 断裂韧度冲击韧性1、强度指标将规定尺寸的试棒在拉伸实验机上进行静拉伸实验,以测定该试件对外力载荷的抗力,可求强度指标和塑性指标。
(1)拉伸曲线图(2)应力应变图应力0A 外力=σ (单位面积所受力) 应变0L L ∆=ε (单位长度的变形量)对原材料、焊接工艺及焊接试板均有严格的标准进行规定。
对圆形拉伸试样分标准试样和比例试样,每种又分为长试样和短试样⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧===(短)(长)任意选用比例试样:短试样)长试样)标距标准试样:直径006000000065.53.11(5(1020A L A L d d L d L L d (3)拉伸试验分为四个阶段中碳钢 低碳钢(拉伸图) 变形量ΔL (应变ε)σ标距L 0①弹性变形阶段:变形量L ∆与外力(或应变和应力)成正比(即虎克定律)。
该阶段最高值:e ':P σ:称比例极限(即保持直线关系的最大负荷)。
e σ:弹性极限:我们把材料产生最大弹性变形时的应力称由于检测精度,国标规定以残余变形量为0.01%时的应力为弹性极限。
A F e e =σ 应力:单位面积上材料抵抗变形的力称为应力。
钢铁的物理力学性能和机械性能

钢铁的物理力学性能和机械性能fangjym 的钢铁的物理力学性能和机械性能钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等.单独作用下所显示的各种机械性能。
钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能;通过冷弯试验可得到钢材的冷弯性能;通过冲击韧性试验可得到冲击韧性。
1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。
3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
金属材料的力学性能指标

金属材料的力学性能指标金属材料是工程中常用的材料之一,其力学性能指标对于材料的选择和设计具有重要意义。
力学性能指标是评价金属材料力学性能的重要依据,主要包括强度、韧性、塑性、硬度等指标。
下面将对金属材料的力学性能指标进行详细介绍。
首先,强度是评价金属材料抵抗外部力量破坏能力的指标。
强度可以分为屈服强度、抗拉强度、抗压强度等。
其中,屈服强度是材料在受到外部力作用下开始产生塑性变形的应力值,抗拉强度是材料在拉伸状态下抵抗破坏的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。
强度指标直接影响着材料的承载能力和使用寿命。
其次,韧性是材料抵抗断裂的能力。
韧性指标包括冲击韧性、断裂韧性等。
冲击韧性是材料在受到冲击载荷作用下抵抗破坏的能力,断裂韧性是材料在受到静态载荷作用下抵抗破坏的能力。
韧性指标反映了材料在受到外部冲击或载荷作用下的抗破坏能力,对于金属材料的使用安全性具有重要意义。
再次,塑性是材料在受力作用下产生塑性变形的能力。
塑性指标包括伸长率、收缩率等。
伸长率是材料在拉伸破坏前的延展性能指标,收缩率是材料在受力破坏后的收缩性能指标。
塑性指标直接影响着金属材料的加工性能和成形性能,对于金属材料的加工工艺和成形工艺具有重要影响。
最后,硬度是材料抵抗划伤、压痕等表面破坏的能力。
硬度指标包括洛氏硬度、巴氏硬度等。
硬度指标反映了材料表面的硬度和耐磨性能,对于金属材料的耐磨性和使用寿命具有重要意义。
综上所述,金属材料的力学性能指标是评价材料性能的重要依据,强度、韧性、塑性、硬度等指标直接影响着材料的使用性能和工程应用。
在工程设计和材料选择中,需要根据具体的工程要求和使用环境,综合考虑各项力学性能指标,选择合适的金属材料,以确保工程的安全可靠性和经济性。
钢材机械性能 标准

钢材机械性能标准
钢材作为一种常用的金属材料,在工程领域中有着广泛的应用。
而钢材的机械性能则是评价其质量优劣的重要指标之一。
钢材的机械性能标准是指钢材在受力作用下所表现出来的力学性能,包括强度、韧性、硬度、塑性等指标。
本文将对钢材机械性能标准进行详细介绍,以便读者更好地了解和应用钢材材料。
首先,钢材的强度是指材料在受力作用下所能承受的最大应力。
强度是衡量钢材抗压、抗拉、抗弯等性能的重要参数。
一般来说,钢材的强度越高,其承载能力就越大,因此在工程设计中需要根据实际情况选择合适的强度等级的钢材。
其次,钢材的韧性是指材料在受到冲击或挤压作用时能够吸收能量并发生形变的能力。
韧性是衡量材料抗冲击能力的重要指标,对于一些需要承受冲击载荷的工程结构来说,韧性是至关重要的。
此外,钢材的硬度是指材料抵抗划伤、切削等表面破坏的能力。
硬度高的钢材具有较好的耐磨性和耐切削性,适用于一些对材料表面要求较高的工程领域。
最后,钢材的塑性是指材料在受力作用下能够发生形变而不破坏的能力。
塑性好的钢材能够在受到外力作用后发生塑性变形,适用于一些对材料变形要求较高的工程结构。
综上所述,钢材的机械性能标准是评价钢材质量优劣的重要依据,其中强度、韧性、硬度和塑性是其主要指标。
在选择和应用钢材材料时,需要根据工程实际情况合理选择合适的机械性能标准,以确保工程结构的安全可靠性。
希望本文对读者对钢材机械性能标准有所帮助,谢谢阅读!。
冲压金属材料的性能

第一章材料的性能教学重点:材料的力学性能指标及其物理意义;重点:材料的力学性能指标及其物理意义一、弹性与刚度评价材料力学性能最简单和最有效的办法就是测定材料的拉伸曲线。
将标准试样(见图1-1)施加一单轴拉伸载荷,使之发生变形直至断裂,便可得到试样伸长率(试样原始标距的伸长与原始标距之比的百分率)随应力(试验期间任一时刻的力除以试样原始横截面积之商)变化的关系曲线,称为应力-应变曲线,图1-2为低碳钢的应力-应变曲线。
图1-1 圆形标准拉伸试样图1-2 低碳钢的应力-应变曲线在应力-应变曲线中,OA段为弹性变形阶段,此时卸掉载荷,试样恢复到原来尺寸。
A点所对应的应力为材料承受最大弹性变形时的应力,称为弹性极限。
其中OA’部分为一斜直线,应力与应变呈比例关系,A’点所对应的应力为保持这种比例关系的最大应力,称为比例极限。
由于大多数材料的A点和A’点几乎重合在一起,一般不作区分。
在弹性变形范围内,应力与伸长率的比值称为弹性模量E。
E实际上是OA线段的斜率:αtgE=(MPa),其物理意义是产生单位弹性变形时所需应力的大小。
弹性模量是材料最稳定的性质之一,它的大小主要取决于材料的本性,除随温度升高而逐渐降低外,其他强化材料的手段如热处理、冷热加工、合金化等对弹性模量的影响很小。
材料受力时抵抗弹性变形的能力称为刚度,其指标即为弹性模量。
可以通过增加横截面积或改变截面形状来提高零件的刚度。
二、强度与塑性 1、强度材料在外力作用下抵抗变形和破坏的能力称为强度。
根据加载方式不同,强度指标有许多种,如抗拉强度、抗压强度、抗弯强度、抗剪强度、抗扭强度等。
其中以拉伸试验测得的屈服强度和抗拉强度两个指标应用最多。
⑴ 屈服强度在图1-2中, 应力超过B 点后, 材料将发生塑性变形。
在BC 段,塑性变形发生而力不增加,这种现象称为屈服。
B 点所对应的应力称为屈服强度(σ S )。
屈服强度反映材料抵抗永久变形的能力,是最重要的零件设计指标之一。
材料知识

常用金属材料的一般知识常用金属材料的力学性能所谓力学性能是指金属在外力作用时表现出来的性能,包括强度、塑性、硬度、韧性及疲劳强度等。
表示金属材料各项力学性能的具体数据是通过在专门试验机上试验和测定而获得的。
1、强度:是指材料在外力作用下抵抗塑性变形和破裂的能力。
抵抗能力越大,金属材料的强度越高。
强度的大小通常用应力来表示,根据载荷性质的不同,强度可分为抗拉强度、抗压强度、抗剪强度、抗扭强度和抗弯强度。
在机械制造中常用抗拉强度作为金属材料性能的主要指标。
(1)屈服强度钢材在拉伸过程中当载荷不再增加甚至有所下降时,仍继续发生明显的塑性变形现象,称为屈服现象。
材料产生屈服现象时的应力,称为屈服强度。
有些金属材料(如高碳钢、铸钢等)没有明显的屈服现象,测定很困难。
在此情况下,规定以试样长度方向产生0.2%塑性变形时的应力作为材料的“条件屈服强度”,或称屈服极限。
用σ0.2表示。
屈服强度标志着金属材料对微量变形的抗力。
材料的屈服强度越高,表示材料抵抗微量塑性变形的能力越大,允许的工作应力也越高。
(2)抗拉强度钢材在拉伸时,材料在拉断前所承受的最大应力,称为抗拉强度。
用符号σb 表示。
其计算方法如下:σb=F b/S0式中F b——试样破坏前所承受的最大拉力,N;S0——试样原始横截面积,mm²。
抗拉强度是材料在破坏前所能承受的最大应力。
σb的值越大,表示材料抵抗拉断的能力越大。
它也是衡量金属材料强度的重要指标之一。
其实用意义是:金属结构件所承受的工作应力不能超过材料的抗拉强度,否则会产生断裂,甚至造成严重事故。
2、塑性:断裂前金属材料产生永久变形的能力,称塑性。
一般用拉伸试棒的延伸率和断面收缩率来衡量。
(1)延伸率试样拉断后的标距长度伸长量与试样原始标距长度的比值的百分率,称为延伸率,用符号δ来表示。
其计算方法如下:δ=(L1-L0)/ L0×100%式中L1——试样拉断后的标距长度,mm;L0——试样原始标距长度,mm。
极限抗拉强度(uts)_概述说明以及解释

极限抗拉强度(uts) 概述说明以及解释1. 引言1.1 概述在材料工程领域,极限抗拉强度(Ultimate T ensile Strength, UTS)是一个重要的力学性质参数。
它代表了材料在拉伸过程中所能承受的最大应力值,通常以单位面积上承受的最大拉应力来表示。
UTS是评估材料抵抗拉伸破坏能力的重要指标,也是进行设计和选择材料时必须考虑的因素之一。
1.2 文章结构本文将通过以下几个方面对UTS进行概述和说明。
首先,我们将明确UTS的定义和意义,解释其在材料工程中所起到的作用;接着,我们将讨论影响UTS的因素,包括材料特性、加工过程和环境条件等;然后,我们将探讨UTS在工程应用中的重要性以及其与其他力学性质之间的关系;最后,我们将总结文章并展望UTS研究未来发展方向。
1.3 目的本文旨在全面介绍极限抗拉强度(UTS),深入探讨其定义、计算方法以及在材料工程中的作用。
通过对UTS相关因素及其影响的详细讨论,我们希望读者能够更好地理解UTS的重要性,并在工程应用中合理利用和考虑这一参数。
此外,我们还将展望UTS研究的未来发展方向,为相关领域的科学研究提供参考和借鉴。
通过本文的阅读,读者将有机会深入了解UTS并认识到其在材料工程中的关键作用。
2. 极限抗拉强度(UTS) 的定义和意义2.1 UTS的概念极限抗拉强度(Ultimate Tensile Strength,简称UTS)是指材料在拉伸过程中能承受的最大应力值。
它表示了材料抵抗断裂的能力,也可以理解为在材料被完全破坏之前所能承受的最大拉力。
2.2 UTS的计算方法UTS通常用来描述金属材料的机械性能。
计算UTS时,可以通过将样品放入万能试验机等设备中进行拉伸测试来测量最大加载力和截面积。
然后,将最大加载力除以截面积即可得到UTS值。
2.3 UTS在材料工程中的作用极限抗拉强度是评估材料质量和性能的重要参数之一,在材料工程中具有重要意义。
首先,UTS可以帮助工程师选择合适的材料以满足设计要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料机械性能的指标及意义
材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。
锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。
(1)强度强度是指金属材料在外力作用下对变形或断裂的抗力。
强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2(国外用Re表示)和抗拉强度σb(国外用Rm表示),高温下工作时,还要考虑蠕变极限σn和持久强度σD。
(2)塑性塑性是指金属材料在断裂前发生塑性变形的能力。
塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度。
(3)韧性韧性是指金属材料抵抗冲击负荷的能力。
韧性常用冲击功Ak和冲击韧性值αk表示。
Αk值或αk 值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。
而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。
表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力。
(4)硬度硬度是衡量材料软硬程度的一个性能指标。
硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。
最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。
而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。
因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。
在断裂力学基础上建立起来的材料抵抗裂纹扩展断裂的韧性性能称为断裂韧性。
(Kic,Gic)
常用的35CrMo在850℃油淬,550℃回火后,机械性能如下:
σb≥980MPa;σs≥835 MPa;δ5≥12%;ψ≥45%;AK≥63J;
而高级优质的35CrMoA的性能应该更加优良稳定。
最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改
1 / 1word.。