数字图像处理第十章

合集下载

数字图像处理课件ppt

数字图像处理课件ppt

06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换

(完整版)数字图像处理知识点总结

(完整版)数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。

2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解。

5.图像处理五个模块:采集、显示、存储、通信、处理和分析。

第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0<i(x,y)<∞,反射分量0<r(x,y)<1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠。

9.将像素灰度转换成离散的整数值的过程叫量化。

10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。

但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。

例如对细节比较丰富的图像数字化。

14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

数字图像处理复习提纲

数字图像处理复习提纲
3.数字图像处理的内容不包括() A.图像数字化 B.图像增强 C.图像分割 D.数字图像存储
4. 图像分辨率的单位dpi表示单位长度( )上包含的像素数目。 A.米 B.厘米 C. 寸 D.英寸
5.一幅大小为16*16,灰度级为2的图像,像素点有()个 A.256 B. 512 C. 1024
第2章 matlab软件 • 熟悉matlab界面:命令窗口、工作间、命令历史窗口、路
素少的灰度级,使灰度直方图均衡分布。
histeq,adapthisteq 2.直方图规定化:将直方图按照参考图像的直 方图进行均衡化
[hgram,x]=imhist(I1);
J=histeq(I,hgram) ; • 图像增强:突出有用的特征,便于分析和处理。
方法:直方图均衡化、图像平滑、图像锐化和伪彩色处理
• hold on/off
• grid on/off • 格式化:title,text, legend, label • 特殊字符:: \pi, \omega, \Theta, ^2
第4章 matlab工具箱 • 浏览工具箱:菜单栏-主页-?-image processing toolbox • 图像类型:RGB图像,索引图像,灰度图像,二值图像 • 各种图像的数据结构 • 图像的数据类型:uint8,uint16,double,im2double • 图像类型转换:rgb2gray; ind2rgb, rgb2ind; ind2gray,
• Fourier, DFT,FFT
• fft2, ifft2 • fftshift的作用 • 傅里叶变换的幅度谱和相位谱 • fft高频和低频滤波,字符识别 • 为什么引入DCT?保持傅里叶变换的功能有减少数据量。 • DCT主要用于图像压缩。

(完整版)数字图像处理每章课后题参考答案

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。

1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。

根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。

图像处理着重强调在图像之间进行的变换。

比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。

图像处理主要在图像的像素级上进行处理,处理的数据量非常大。

图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。

图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。

图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。

图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。

第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。

胡学龙《数字图像处理(第二版)》课后习题解答

胡学龙《数字图像处理(第二版)》课后习题解答
3ຫໍສະໝຸດ 第 2 章 图像的数字化与显示
2.1 设有大小为 32×32 的图标,图标的每个像素有 8 种颜色,共有多少种不同的图标?
如果每 100 万个可能的图标中有一个有意义,识别一个有意义的图标需要 0.1 s,则选出所
有有意义的图标需要多长时间?
解:图标数为
832×32 = 10925 种
有意义的图标数 10925/106 = 10919 种
第 1 章 概述
1.1 连续图像和数字图像如何相互转换? 答:数字图像将图像看成是许多大小相同、形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像 (连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字 化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅 度值(可能是灰度或色彩)整数化的过程称为量化。
2
1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘 莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 PHOTOSHOP 支持多 达 20 多种图像格式和 TWAIN 接口,接受一般扫描仪、数码相机等图像输入设备采集的图 像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能 可以很方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对 图像进行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色 模式的转换、改变图像的尺寸和分辨率、制作网页图像等。
4
110 106 129 129 127 122 117 88 84 112 111 131 130 128 118 111 97 97 133 127 138 131 124 111 102 100 97 166 151 144 126 124 111 99 96 93 158 143 139 130 120 100 96 97 100 128 121 126 122 88 62 65 68 79 106 92 107 114 82 52 42 41 56

数字图像处理PPT——第十章 图像的正交变换

数字图像处理PPT——第十章 图像的正交变换
F (u , v) = ∑∑ f ( x, y ) ⋅ e
x =0 y =0 M −1 N −1 M −1 N −1
图像处理
− j 2π xu M − j 2π yv N
⋅e
yv xu − j 2π ⎡ ⎤ − j 2π M N = ∑ ⎢ ∑ f ( x, y ) ⋅ e ⎥e x =0 ⎣ y =0 ⎦
f ( x, y )e
⇔ F (u − u0 , v − v0 )
xu0 yv0 − j 2π ( + ) M N
f ( x − x0 , y − y0 ) ⇔ F (u , v)e
二维DFT的主要性质
图像处理
旋转性 空间域函数旋转角度 θ 0 ,那么在变换 域此函数的Fourier也旋转同样的角度。 反之,若 F(u,v) 旋转某一角度,则 f (x, y) 在空间域也旋转同样角度。

j 2πux N
1 = N
N / 2 −1
∑ f ( x)W
x =0
N −1
ux N
1 2 = [ 2 N
N / 2 −1

x =0
2 2 ux f (2 x)WN + N

x =1
u f (2 x + 1)WN ( 2 x +1) ]
N 1 1 M −1 1 M −1 ux ux u MΔ [ ∑ f (2 x)WM + f (2 x + 1)WM WN ] ∑ 2 2 M x =0 M x =1 k 1 u W2kN = WN / 2 = [ Fe (u ) + WN Fo (u )] 2 0≤u≤M
−∞
j 2πux
du
x为时域变量,u为频率变量,以上公式称 为Fourier变换对。

精品课件-数字图像处理-第10章

精品课件-数字图像处理-第10章

17 图10.1.3 灰度变换效果图及其直方图
18
3.伪彩色增强 伪彩色图像是将一幅亮度图像按照特定的彩色编码进行 彩色变换后得到的图像。因为人眼对色彩变化的敏感程度远 大于亮度的变化,这样就可以看到图像更加精细的结构。本 系统采用一种简单的变换函数,其变换关系如图10.1.4所示, 图10.1.5所示为相应的火焰图像伪彩色显示效果。
像素点j的灰度值,它可以通过调用相应的图像卡功能函数
获得。
24
(2)温度场的二维分布:反映炉内火焰温度场梯度;反 映三个区面积的大小以判断燃烧阶段;帮助判断火焰中心区 域是否偏斜等。
(3)火焰有效区域面积。火焰着火,就一定有火焰有效 区面积;火焰熄火,有效区面积就为0。因此,火焰有效区 域面积是火焰检测的一个重要判据,其计算公式如下:
37
2)炉膛火焰检测的判据 根据现场情况设定了火焰正常燃烧时的有效火焰灰度作 为判定阈值。Sgi为大于灰度阈值g0的火焰像素点的面积,gi 为当前炉膛火焰平均灰度。 当gi>g0,即Sgi>0时,火焰安全燃烧; 当gi>g0,且gi在一定时间内持续下降,即Sgi>0且Sgi下 降时,熄火预警; 当gi<g0并持续数秒,且gi持续下降,即Sgi<0时,熄火警 报。
42
设GⅠ、GⅡ、GⅢ分别为三个区域的平均灰度值,当满足 GⅠ-GⅡ≥GⅠ,GⅡ-GⅢ≥GⅡ时,火焰燃烧正常,其中判断阈 值GⅠ、GⅡ在安装调试时再设定;在燃烧区停止投粉后,三个 区域内的亮度几乎相等,GⅠ=GⅡ=GⅢ=炉膛背景火焰亮度; 当“黑龙”存在时,GⅠ=GⅡ=GⅢ=煤粉灰度,这是判断火 焰燃烧情况的另一个判据。
12 图10.1.2 火焰检测系统结构图
13
10.1.2 火焰温度场的测量 高温火焰的温度分布直接反映了煤粉炉的燃烧状况,对

数字图像处理_课件_11

数字图像处理_课件_11

33
距离与角度标记图
数第 字十 图一 像章 处表 理示
和 描 述
r θ
A r(θ)
A
0 3 π 5 3 7 2 4 2 4 θ 42 4
(a) r(θ)为常量;
r(θ) 2A
A
0 4
3 24
r θ A
π 5 3 7 2 θ 42 4
(b) 标记图由重复出现的模式r(θ)=Asecθ, 0≤θ≤π/4

储b0和b1的位置,以便在步骤5中使用。

2. 令b=b1和c=c1 [见图 (c)]。
7
数 第 3. 从c开始按顺时针方向行进,令b的8个邻点为
字十 图一
n1, n2, …, n8。找到标为1的第一个nk。
像章 处表
4.
令b=nk和c=nk-1。
理示 和
5.
重复步骤3和步骤4,直到b=b0且找到的下一
10
数第 字十 图一 像章 处表 理示
和 描 述
➢ 如果给定一个区域而非其边界,那么边界追踪 算法会工作得很好。也就是说,该过程提取一 个二值区域的外边界。
➢ 如果目的是找到一个区域中的孔洞的边界(这 种边界称为该区域的内边界),一种简单的方 法是提取这些孔洞(见9.5.9节),并将它们当 做0值背景上的1值区域来处理。对这些区域应 用边界追踪算法将得到原始区域的内边界。
和r(θ)=Acscθ, π/4<θ≤π/2构成。
34
两个二值区域的标记图
1. 根据其外部特征(其边界)来表示区域;
2. 根据其内部特征(如组成该区域的像素)表 示它。
3
数 第 ➢ 选择用来作为描绘子的特征都应尽可能
字十 图一

数字图像处理与机器视觉-基于MATLAB实现 第10章 图像识别基础

数字图像处理与机器视觉-基于MATLAB实现 第10章 图像识别基础
模式识别方法: 模式分类或模式匹配的方法有很多,总体分为四大类:
• 以数据聚类的监督学习方法; • 以统计分类的无监督学习方法; • 通过对基本单元判断是否符合某种规则的结构模式识别方法; • 可同时用于监督或者非监督学习的神经网络分类法。 1.线性判用一条直线来划分已有的学 习集的数据,然后根据待测点在直线的那一边决定的分类。如下图可以做出一条直线来 划分两种数据的分类。但是一般情况下的特征数很多,想降低特征数维度。可以通过投 影的方式进行计算。然而使得一个多维度的特征数变换到一条直线上进行计算。可以减 少计算工作的复杂度。
10.2 模式识别方法
c.对称连接网络 对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上 权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因 为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有 隐藏单元的对称连接的网络被称为“玻尔兹曼机” 。 神经网络可以看成是从输入空间到输出空间的一个非线性映射,它通过调整权重和 阈值来“学习”或发现变量间的关系,实现对事物的分类。由于神经网络是一种对数据 分布无任何要求的非线性技术,它能有效解决非正态分布和非线性的评价问题,因而受 到广泛的应用。由于神经网络具有信息的分布存储,并行处理及自学习能力等特点,它 在泛化处理能力上显示出较高的优势。
模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行 处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智 能的重要组成部分。
基于监督学习的模式识别系统由4大部分组成,即待识别对象、预处理、特征提取和分 类识别,如图10-1所示。
图10-1 模式识别流程图

《数字图像处理(matlab版)》教程课件

《数字图像处理(matlab版)》教程课件
kittlerMet : 表示kittler 最小分类错误(minimum error thresholding)全局二 值化算法。









0.25
算 法
算 法 算 法




OTSU
Niblack
KittlerMet
Kapur






/2、图像的点运算
五、直方图均衡化
DB f
添 加 高 斯 白 噪 声
添 加 椒 盐 噪 声
/4、空间域图像增强 二、空间域滤波
滤波过程就是在图像f(x,y)中逐点移动模板,使模板中心和点(x,y)重合,滤波器 在每一点(x,y)的响应是根据模板的具体内容并通过预先定义的关系来计算的。
W(-1,-1) W(-1,0) W(-1,1)
W(0,-1) W(0,0) W(0,1)
原 图 像 及 直 方 图
图像变暗后灰度均衡化 图像变亮后灰度均衡化
/3、图像的几何变换
一、图像平移
正变换
1 0 0
[ x1 y1 1] [ x0 y0 1] 0 1 0
Tx
Ty
1
逆变换
1
0 0
[x0 y0 1] [x1 y1 1] 0
1 0
Tx
Ty
1
strel %用来创建形态学结构元素 translate(SE,[y x])%原结构元素SE上y和x方向平移 imdilate%形态学膨胀
thresh法:最大类间方差法自动单阈值分割。
Kapur算法:一维直方图熵阈值算法
niblack算法:局部阈值分割 阈值的计算公式是T = m + k*v,其中m为以该像素点为中心的区域的平 均灰度值,v是该区域的标准差,k是一个系数。

数字图像处理ch01(MATLAB)-课件

数字图像处理ch01(MATLAB)-课件

2024/10/12
第一章 绪论
17
2024/10/12
第一章 绪论
18
2024/10/12
第一章 绪论
19
2024/10/12
第一章 绪论
20
<2>几何处理
放大、缩小、旋转,配准,几何校正,面积、周长计算。
请计算台湾的陆地面积
2024/10/12
第一章 绪论
21
<3>图象复原
由图象的退化模型,求出原始图象
图像处理是指按照一定的目标,用一系列的操 作来“改造”图像的方法.
2024/10/12
第一章 绪论
7
➢图象处理技术的分类(从方法上进行分类)[2]
1.模拟图象处理(光学图像处理等)
用光学、电子等方法对模拟信号组成的图像,用光学器 件、电子器件进行光学变换等处理得到所需结果(哈哈 镜、望远镜,放大镜,电视等).
2024/10/12
第一章 绪论
22
<4>图象重建[3]
[3]此图像来自罗立民,脑成像,
2024/10/12
第一章 绪论
23
/zhlshb/ct/lx.htm
2024/10/12
第一章 绪论
图形用户界面,动画,网页制作等
2024/10/12象处理的基本概念,和基 本问题,以及一些典型的应用。
2024/10/12
第一章 绪论
33
提问
摄像头(机),扫描仪,CT成像装置,其他图象成像装置
2)图象的存储
各种图象存储压缩格式(JPEG,MPEG等),海量图象数据库技术
3)图象的传输
内部传输(DirectMemoryAccess),外部传输(主要是网络)

数字图像处理课件整理版

数字图像处理课件整理版

2020年数字图像处理课件整理精品版第一章■课程性质和任务通过本课程的学习,系统地了解数字图像的基本概念、数字图像形成的原理,掌握数字图像处理的理论基础和技术方法。

着重掌握数字图像的增强、复原、压缩和分割的技术方法,为今后能够从事有关数字图像处理的研究和技术方法应用等工作掌握必备的基础知识。

数字图像处理的概念1•什么是图像■图像可定义为一个二维函数f (X, y)■ (x,y)——空间坐标■幅度值f (x, y)——图像该点的灰度(或强度)■数字图像:坐标x、y和幅度f(x,y)均是有限的离散数值■数字图像中每个由坐椒x,y)指定的点称为像素(pixel)0■数字图像可看作是由像素组成的二维矩阵。

灰度图像像索精品好文档.推荐学习交潦■对于单色即灰度图像而言,每个像素的亮度用一个数值来表示,通常数值范围在0到255之间。

0表示黑、255表示白,而其它表示灰度级别。

彩色图像■彩色图像可以用红、绿、蓝三元组的二维矩阵來表示。

'255240240'O16080 'O80160"R =255O80G =255255160 B =O O240 255O O O255O255255255通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该像素中没有,而255 则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。

2.什么是数字图像处理数字图像处理就是利用计算机系统对数字图像进行各种目的的处理3.数字图像的表示方法空间上:图像抽样对连续图像f (x, v)进行数字化幅度上:灰度级量化■数字图像常用矩阵来表示:/((),()) _/(0,1) …/((KN-1)f(x9y)= m°) /ai) /(LA-1)• • • •/'(xYZ—LO) /'(A/—LT) •…yXA•/—L“V—1) vx=0, 1, ••• ,M-1 ,(xj)=0~255,.”=(),1,…少」* (灰度级为256,设灰度量化为8bit)16X方向,抽样M行y方向,每行抽样N点整个图像共抽样MXN个像素点—般取M=N=2n=64, 128, 256, 512, 1024, 2048……四、数字图像处理的三个层次■从计算机处理的角度可以由低到高将数字图像处理分为三个层次。

23887 《数字图像处理(第3版)》习题解答(上传)(1)

23887 《数字图像处理(第3版)》习题解答(上传)(1)

胡学龙编著《数字图像处理(第 3 版)》思考题与习题参考答案目录第1章概述 (1)第2章图像处理基本知识 (4)第3章图像的数字化与显示 (7)第4章图像变换与二维数字滤波 (10)第5章图像编码与压缩 (16)第6章图像增强 (20)第7章图像复原 (25)第8章图像分割 (27)第9章数学形态学及其应用 (31)第10章彩色图像处理 (32)第1章概述1.1连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、形状一致的像素组成。

这样,数字图像可以用二维矩阵表示。

将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。

图像的数字化包括离散和量化两个主要步骤。

在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。

1.2采用数字图像处理有何优点?答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。

(1)处理精度高。

(2)重现性能好。

(3)灵活性高。

2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。

3.数字图像处理技术适用面宽。

4.数字图像处理技术综合性强。

1.3数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。

1.4 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。

答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可以看成是静态的图像。

图形是人工或计算机生成的图案,而动画则是通过把人物的表情、动作、变化等分解后画成许多动作瞬间的画幅,再用摄影机连续拍摄成一系列画面,给视觉造成连续变化的图画。

数字图像处理大纲总结

数字图像处理大纲总结

第一章:数字图像处理基础概念★1、数字图像处理的内容:(1)图像获取、表示和表现(图像的数字化和图像变换)(2)图像增强(3)图像复原(4)图像重建(5)图像压缩编码(6)图像分割(7)图像分析(8)模式识别(9)图像理解★2、数字图像处理的层次关系(P 3):狭义图像处理-------图像分析-----------图像理解。

抽象程度低-------------------------------- 高数据量大-------------------------------- 小语义低层-------------------------------- 高层★3、数字图像处理的特点:(1)处理精度高,再现性好(2)处理通用性强、灵活性高、多样性广(3)图像数据量庞大(4)处理费时(5)图像处理技术综合性强★4、数字图像处理的目的:(1)提高图像的视感质量,以达到赏心悦目的目的。

(2)提取图像中所包含的某些特征或特殊信息,以便于计算机分析(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。

5、数字图像处理的发展方向(1)在进一步提高精度的同时着重解决处理速度问题。

(2)移植和借鉴其他学科的技术和研究成果,创造新的处理方法。

(3)加强边缘学科的研究工作(4)加强理论研究(5)图像处理领域的标准化6、论述数字图像处理技术在生产生活中的应用(1)在生物医学中的应用:利用电磁波谱成像分析系统诊断病情:如显微镜图像分析,DNA成像分析,CT及核磁共振、超声波、X射线成像分析等(2)遥感航天中的应用:检测土地变化;农林资源的调查;自然灾害监测、预报;地势、地貌测绘;地质构造解译、找矿;环境污染检测等等(3)工业应用:无损探伤,石油勘探,生产过程自动化,工业机器人研制等(4)军事公安领域运用:卫星侦察照片的测绘、判读,雷达图像处理,导弹制导,军事仿真等(5)其他应用:图像远距离通信、电视会议、天气预报、现场视频管理等第二章:图像数字化与灰度直方图★1、直方图的性质(P 23):(1)灰度直方图只能反映图像的灰度分布情况,而不能反映图像像素的位置(2)一幅图像对应唯一的灰度直方图,反之不成立。

(数字图像处理)第十章小波变换的图像处理

(数字图像处理)第十章小波变换的图像处理

边缘检测与特征提取
80%
边缘检测原理
利用小波变换对图像进行多尺度 分解,通过检测小波系数中的突 变点实现边缘检测。
100%
特征提取
小波变换能够提供图像的多尺度 、多方向信息,因此可以用于提 取图像中的纹理、形状等特征。
80%
应用领域
边缘检测和特征提取在目标识别 、图像分割、场景理解等领域具 有广泛应用。
Meyer小波
Meyer小波是一种具有无穷光滑性和正交性的小 波基函数,其频率响应接近理想滤波器。Meyer 小波适用于对信号进行高精度的分解和重构,如 音频信号处理、图像处理等。
02
图像处理中的小波变换应用
图像压缩与编码
小波变换压缩原理
利用小波变换对图像进行多尺度分解,得到不同频率的子 带图像,通过对子带图像进行量化和编码实现压缩。
多分辨率分析实现
多分辨率分析可以通过构建一系列嵌套的子空间来实现,每个子空间对应一个 特定的尺度。通过在不同尺度下对信号或图像进行投影和重构,可以得到信号 或图像在不同尺度下的分量表示。
常见小波基函数介绍
Haar小波
Haar小波是最简单的小波基函数之一,具有紧 支撑性和正交性。它的波形类似于方波,适用于 对信号进行粗略的分解和重构。
不同噪声水平下算法性能分析
针对不同噪声水平(如高斯噪声、椒盐噪声等),分析并 比较各种去噪算法的性能表现。
算法实时性与计算复杂度评估
评估各种去噪算法的实时性和计算复杂度,为实际应用提 供参考依据。
05
小波变换在边缘检测中的应用
基于小波变换的边缘检测算法
小波基选择
选择适合图像处理的小波基,如 Haar小波、Daubechies小波等,用 于实现小波变换。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档