平行四边形的面积教学反思8篇完美版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行四边形的面积教学反思》
平行四边形的面积教学反思(一):
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点。教学中透过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,透过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,能够把要探究的平行四边形转化成我们学过的什么图形呢?二透过学生实际操作,用不同方法把平行四边形转化成长方形,并透过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,必须要做到一练一小结,提醒学生要注意的问题。
平行四边形的面积公式是几何图形面积计算第一次运用转化思想方法推导得出的。因此,本节课让学生形象直观地明白什么是转化,深刻理解转化的本质,就显得尤为重要。对于转化思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让转化本领成为学生思维的主角,并当作学习的一个重点让学生掌握。我首先出示三个图形让学生透过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生应对计算平行四边形面积这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎样会有两个答案呢?激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用底乘高的猜测是正确的,透过观察图形的动态变化,从比较中发现用相邻两边相乘是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的你会求阴影部分的面积吗?,不仅仅是巩固新知,而是将转化本领内化成解题技巧。
这节课,采用先让学生大胆猜测,再进行留意求证的教学思路,教师有意识地把经历猜想与验证蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生透过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这贴合数学知识发现的一般规律,因而具有比较一般的方法论好处。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的潜力,同时也受到了科学思想方法的启蒙。
平行四边形的面积教学反思(二):
九月份,我们五年级全体数学教师在杨秀霞专家的指导下,就《平行四边形的面积》这一资料经过了说课、上课、评课等一系列的教研活动,我很荣幸被抽到最后一轮上课。收获很大。
1、提高了我的专业素养。原先在确定一节课的教学目标时,我会照着教学大纲或备课手册的做法抄下来,而此刻我能根据自己的教学资料确定本节课的教学目标,如在本节课中我会把大部分时间花在数方格和剪拼上,充分发挥学生创造性思维和动手操作的潜力。因此,我的教学目标就确定为
①借助学生已有的经验和方格图,让学生初步感知平行四边形的面积可能与它的底和对应高有关,再透过剪、拼进一步确定平行四边形的面积计算公式,并能根据公式正确计算平行四边形的面积.
②在操作、观察、比较的过程中,渗透转化的思想,发展学生的空间观念,使学生获得探索图形资料的基本方法和基本经验。
1、注重了学法的指导,将转化思想进行了有效的渗透,让学生学会用以前的知识来解决现有的问题。长方形的面积的计算是平行四边形面积计算的生长点,是认知前提,是能够利用的起固定作用的知识。因此,开始,先复习长方形面积的计算方法和长方形公式的由来,让学生实现知识的迁移。本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在比较长方形和平行四边形两个图形这一教学环节中,给足学生数方格的时间,突出怎样去数方格(先数满格,不满一格的视为半格,为什么?)为以后学习不规则图形面积埋下伏笔。还有一种数法,将图形的沿高切下,平移,使学生发现多出的三角形与缺的三角形大小相等,如果剪下来平移到缺的地方能够转化成长方形,有了这样的感悟,然后放手让学生将自己准备的平行四边形透过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有十分直观的转化感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时教师能够进行适时的小结:探索图形的面积公式,我们能够把没学过的图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。我们能够将数学方法传递给学生,这样有利于
学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。
2、注重了学生数学思维的发展,重视了对学生学习知识水平的进一步深化,透过有梯度的练习设计,提高学生对平行四边形面积计算掌握水平。开始以长方形面积计算和公式的由来,激发学生探究欲望到底平行四边形的面积怎样求?在明白了平行四边形面积与底、高有关后,进一步学生明确平行四边形的面积应用底乘高,而不能边长乘边长,提高了学生对平行四边形的面积的掌握水平。教学讨论面积公式后,以开放练习的形式,出示1、基础练习,使学生关注这个平行四边形的底和对应的高分别是多少,再让学生指一指底和对应的高分别在什么位置,问问学生用底和不对应的高相乘可不能够,这样就强调了用底和对应的高相乘,学生对平行四边形的面积计算的认识也会更深。在本课的教学中平行四边形
底和高对应关系的寻找是很重要的一个环节,这就为日后学习三角形、梯形等平面图形的面积计算奠定了基础;
3、讨论,明白平行四边形的两条底和一条高,怎样求面积?再根据面积和另一条底,怎样求它对应的高?这些练习进一步丰富了学生的认识,有效的提高了课堂教学的效率。
4、在课堂教学中,教师的应变潜力十分重要,有效的把握学生课堂生成,灵活应对课堂突发的状况,是我教学中应注重的。
平行四边形的面积教学反思(三):
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且透过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的潜力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,透过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,能够用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,透过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长宽,得到平行四边形面积计算公式是底高,利用讨论交流等形式要求学生把自己操作――转化――推导的过程叙述出来,以发展学生思维和表达潜力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的潜力都有重要作用。
二、渗透转化思想,让所积累的经验为新知服务
转化是数学学习和研究的一种重要思想方法。我在教学本节课时采用了转化的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,之后引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法