第5章单纯形法

合集下载

运筹学第5章-目标规划

运筹学第5章-目标规划

[1/2] -1 1 1/2 -1/2
1/2 0 0 -3/2 3/2 1 -1
1
1
-1/2
3/2 -3/2
1
2020/5/30
20
注意:此时, P2行仍有负检验数,要选X2进基,因为d2+
的 检验数是
p1
3 2
p2 0

0
0
P1 0
0
P1 P2 0
CB XB b
x1
X2
d1-
d1+ d2-
d2+ d3-
min d
5x2
d
d
15
(4) “设备B既要充分利用,又要尽量不加班”可表示

min d d
4x1
d
d
16
2020/5/30
10
3、目标的优先级和权系数
不同的目标重要程度不同,优先级不同;
同一层次优先级的不同目标,重要程度不同,权重不同
优先级因子:P1, P2 , P3,,...且
n
aij x j bi ,
i 1,2,....m
j1
n
clj x j
dl
d
l
gl ,
l 1,2,....L
j1
xi
0,
d
l
,
dl
0, i
1,...,m;
j
1,...L
刚性约束 柔性约束
2020/5/30
14
§5.2 目标规划的图解分析法
求解目标规划的思路: 刚性约束必须严格满足; 按优先级次序,从高层到低层逐层优化; 在不增加高层偏差值的情况下,使本层的偏差达到最小。
P1 d1- 10 [1] 0 1 -1

第5章-单纯形法

第5章-单纯形法
所有变量的解都是大于等于零,才能断定这个解是基本可行解,这个基是可行
基。那么我们能否在求解之前,就找到一个可行基呢?也就是说我们找到的一个
基能保证在求解之后得到的解一定是基本可行解呢?由于在线性规划的标准型中
要求bj都大于等于零,如果我们能找到一个基是单位矩阵,或者说一个基是由单位 矩阵的各列向量所组成(至于各列向量的前后顺序是无关紧要的事)例如,
xm a x m ,m 1 m 1 a m ,n xn bm ,
x j 0. j 1, 2, , n
以下用 xii1,2, ,m表示基变量,用 x jj m 1 ,m 2 , ,n
表示非基变量。
§2 单纯形法的表格形式
把第i个约束方程移项,就可以用非基变量来表示基变量xi, xi bi ai,m1xm1ai,m2xm2 ai,nxn
i1
a1j
,cma2j
amj
c1,c2, ,cmpj
§2 单纯形法的表格形式
上面假设x1,x2,…xm是基变量,即第i行约束方程的基变量正好是xi,而 经过迭代后,基将发生变化,计算zj的式子也会发生变化。如果迭代后的 第i行约束方程中的基变量为xBi,与xBi相应的目标函数系数为cBi,系数列
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
从最优解判别定理知道,当某个σj>0时,非基变量xj变为基变量不取 零值可以使目标函数值增大,故我们要选基检验数大于0的非基变量换到基 变量中去(称之为入基变量)。若有两个以上的σj>0,则为了使目标函数 增加得更大些,一般选其中的σj最大者的非基变量为入基变量,在本例题 中σ2=100是检验数中最大的正数,故选x2为入基变量。

运筹学钱颂迪答案

运筹学钱颂迪答案

运筹学钱颂迪答案【篇一: 803 运筹学】class=txt>运筹学考试大纲一、考试性质运筹学是我校航空运输管理学院硕士生入学考试的综合考试科目之一,它是我校为招收交通运输规划与管理学科硕士研究生而实施的水平考试,其评价标准是普通高等院校优秀本科毕业生能够达到的及格以上水平,以保证被录取者较好地掌握了必备的专业基础知识。

本门课程主要考试内容包括:线性规划及其对偶理论、运输问题、目标规划、整数规划、动态规划、图与网络分析,注重考察考生是否已经掌握运筹学最基本的理论知识与方法。

二、考试形式与试卷结构1.答卷方式:闭卷、笔试2.答卷时间: 180 分钟3.题型比例:满分 150 分,基本概念 20% ,计算及证明题 80%三、考查要点1.线性规划及对偶理论:单纯形法,改进单纯形法。

线性规划的对偶理论,对偶单纯形法,灵敏度分析;2.运输问题:运输问题的数学模型;用表上作业法求解运输问题;产销不平衡的运输问题及其求解方法;3.目标规划:目标规划的数学模型,目标规划的图解法与单纯形法;4.整数规划:0-1 型整数规划,分支定界解法,割平面解法,指派问题;5.动态规划:动态规划的基本概念和基本方法,动态规划的最优性原理与最优性定理,动态规划与静态规划的关系,动态规划的应用;6.图与网络分析:图与树的基本概念,最短路问题,网络最大流问题,最小费用最大流问题,中国邮路问题,网络计划。

四、主要参考书目1、郭耀煌,李军 .运筹学原理与方法. 成都:西南交通大学出版社,2004 ;2 、钱颂迪主编. 运筹学(修订版). 北京:清华大学出版社,1991 。

【篇二:运筹学大纲(13 、 14 级使用)2014.9 】(理论课程)开课系(部):数理教研部课程编号:380020 、 381703课程类型:专业必修课或学科必修课总学时: 48 或 32学分:3或2适用专业:信息管理与信息系统、投资学、工业工程、工程管理、经济统计学、物流管理开课学期: 3 或 4 或 5先修课程:高等数学、线性代数一、课程简述本课程是以经济活动方面的问题以及解决这类问题的原理和方法作为研究的对象,把经济活动中的问题归结为对应的某种数学模型,运用数学知识等工具求得最合理的工作方案。

第五章单纯形法2表格形式

第五章单纯形法2表格形式

§5.2单纯形法的表格形式
迭代 次数 基
CB
x1 2
x2 1
x3 0
x4 0
x5 0
b
比值
x3 0
0 5 100
15
-
x4 0
6 2 010
24 24/6
0
x5 0
1 1 001
5
5
zj
0 0 000 Z=0
j= cj -zj 2 1 0 0 0
z c3 b1 c4 b2 c5 b3 0 15 0 24 0 5 0
X 0,0,15,24,5T
§5.2单纯形法的表格形式
迭代 次数

CB
x1 2
x3 0
0
x4 0
6
0
x5 0
1
zj
0
j= cj -zj 2
x2 x3 x4 x5
b
比值
1 000
5 1 0 0 15
-
2 0 1 0 24 24/6
1 001
5
5
0 000 Z=0
1 000
max z 2x1 x2 0x3 0x4 0x5
max z 2x1 x2 0x3 0x4 0x5
5x2 x3
15
6
x1 x1
2
x2 x2
x4 24 x5 5
x1, x2 , x3, x4 , x5 0
§5.2单纯形法的表格形式
第1步:求初始基可行解,列出初始单纯形表。 例
P1 P2 P3 P4 P5
0 5 1 0 0 6 2 0 1 0 1 1 0 0 1
第2步:最优性检验
➢如果表中所有检验数j 0,且基变量中不含 有人工变量时,表中的基可行解,即为最优解, 计算结束。

第5章 整数线性规划-第1-4节

第5章 整数线性规划-第1-4节

现设想,如能找到像CD那样的直线去切割域R(图 5-6),去掉三角形域ACD,那么具有整数坐标的C 点(1,1)就是域R′的一个极点,
如在域R′上求解①~④, 而得到的最优解又恰 巧在C点就得到原问题 的整数解,所以解法 的关键就是怎样构造 一个这样的“割平 面”CD,尽管它可能 不是唯一的,也可能 不是一步能求到的。 下面仍就本例说明:
例 2
求解A
max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数
① ② ③ (5.2) ④ ⑤
解 先不考虑条件⑤,即解相应的线性规划B,①~④ (见图5-2),得最优解x1=4.81,x2=1.82,z0=356
可见它不符合整数条件⑤。 这时z0是问题A的最优目标函数值 z*的上界,记作z0= z 。 而在x1=0,x2=0时, 显然是问题A的一个整数可行解, 这时z=0,是z*的一个下界, z 记作 =0,即0≤z*≤356 z。
第3节 割平面解法
在原问题的前两个不等式中增加非负松弛 变量x3、x4,使两式变成等式约束: -x1+x2+x3 =1 ⑥ 3x1+x2 +x4=4 ⑦ 不考虑条件⑤,用单纯形表解题,见表5-2。
表5-2
CB 0 0 1 1 cj XB x3 x4 cj-zj x1 x2 cj-zj b 1 4 0 3/4 7/4 -5/2 1 x1 -1 3 1 1 0 0 1 x2 1 1 1 0 1 0 0 x3 1 0 0 -1/4 3/4 -1/2 0 x4 0 1 0 1/4 1/5 -1/2
第二步:比较与剪支
各分支的最优目标函数中若有小于 z 者,则剪 掉这支(用打×表示),即以后不再考虑了。若大 于 z ,且不符合整数条件,则重复第一步骤。一直 到最后得到z*为止,得最优整数解xj* ,j=1,…,n。 用分支定界法可解纯整数线性规划问题和混合 整数线性规划问题。它比穷举法优越。因为它仅在 一部分可行解的整数解中寻求最优解,计算量比穷 举法小。若变量数目很大,其计算工作量也是相当 可观的。

第五章线性规划

第五章线性规划

15
解:设xij为第i个人做第j项工作,(xij=1或0)
Max Z=0.6x11+0.2x12+0.3x13+0.1x14+0.7x21+0.4x22+0.3x23+0.2x24 +0.8x31+x32+0.7x33+0.3x34 +0.7x41+0.7x42+0.5x43+0.4x44
x11+x12+x13+x14=1
x1-x2≤2
x2
x1,x2≥0
4
可行解域 (1,1)
-2
2
x1
-2
23
4、无可行解
Min Z=x1+2x2 s.t. x1+x2≤1 2x1+x2≥4 x1,x2≥0
可行域为空
x2
集,无可行 解!
4 (1,2)
1 12
x1
24
三、线性规划的几何意义
线性规划的可行解域为凸多边形(凸集)。 可行解域凸多边形有若干个顶点,顶点的个数是有限的。
8
解:设按第j种方案下料的原材料为xj根
min Z= 5x1 + 6x2+23x3+5x4+24x5+6x6+23x7+5x8
2x1 + x2 +x3+x4
≥100
2x2 +x3+ 3x5+2x6+x7 ≥150
x1
+x3+3x4+ x6+3x7+5x8≥100
xi 0 (i =1,…,8),且为整数
资源约束 变量非负约束3

运筹学5-单纯形法

运筹学5-单纯形法

保持可行性 保持可行性 保持可行性
保持可行性
X1
X2
X3
...
Xk
保持单调增 保持单调增 保持单调增
Z1
Z2
Z3
...
保持单调增
Zk
当Zk 中非基变量的系数的系数全为负值时,这时的基 本可行解Xk 即是线性规划问题的最优解,迭代结束。
(2) 线性规划的典则形式
标准型
Max Z CX AX b
s.t X 0
j 1
j 1
j 1
j 1
与X 0 相比,X 1 的非零分量减少1个,若对应的k-1个 列向量线性无关,则即为基可行解;否则继续上述步
骤,直至剩下的非零变量对应的列向量线性无关。
几点结论
❖ 若线性规划问题有可行解,则可行域是一个凸多边形或 凸多面体(凸集),且仅有有限个顶点(极点);
❖ 线性规划问题的每一个基可行解都对应于可行域上的 一个顶点(极点);
10
令 x1 0 x2 0
则 x3 15
X 0 0 15 24T
x4 24
为基本可行解,B34为可行基
B
0
X 24
3
108
A
0
X 34
0
15 24
0
0
X 23
12
45 0
1 基本解为边界约束方程的交点; 2 基对应于可行解可行域极点; 3 相邻基本解的脚标有一个相同。
1 0
1 0
B23 1 0 B24 1 1 B34 0 1
C42
2!
4! 4
2
!
43 21 21 21
6
由于所有|B|≠ 0, 所以有6个基阵和 6个基本解。

运筹学第五章

运筹学第五章

A 原材料(kg) 设备(台时) 2 1 B 1 2 限量 11 10
单位利润
8
10
minZ=P1 d1+ +P2 (d2-+ d2+) +P3 d3OR2 4
例2的解法
解:问题分析:找差别、定概念(与单目标规划相 比) 1)绝对约束:必须严格满足的等式约束和不 等式约束,称之为绝对约束。 2x1+1.5x2≤50 (1) (2) 2)目标约束:那些不必严格满足的等式约束和 不等式约束,称之为目标约束(软约束)。目标 约束是目标规划特有的,这些约束不一定要求严 格完全满足,允许发生正或负偏差,因此在这些 约束中可以加入正负偏差变量。
16

例4:min Z
x1 x1 s .t . x 1 x2 x1
OR2
p d p d p (2 d d x d d 40 x d d 50 d d 24 d d 30 , x ,d ,d 0 ( i 1, 2 , 3 ,4 )
OPERATIONS RESEARCH
运筹学
徐 玲
OR2
1
第五章

目标规划
要求 1、理解概念 2、掌握建模 3、掌握图解法和单纯形解法 4、理解目标规划的灵敏度分析
OR2
2
5.1目标规划的概念及数学模型1
多目标问题 多目标线性规划 产品 例1

资源 原材料(kg) 设备(台时) 单位利润
OR2 8
7)目标规划的目标函数: 目标规划的目标函数是按各约束的正、负偏 差变量和赋予相应的优先因子而构造的。 目标函数的基本形式有三种: 1、要求恰好达到目标值,即正负偏差变量都要尽 可能地小,这时, minZ=f(d++d-). 2、要求不超过目标值,即允许达不到目标值但正 偏差变量要尽可能地小,这时, minZ=f(d+). 3、要求超过目标值,即超过量不限但负偏差变量 要尽可能的小,这时, minZ=f(d-) 显然,本题目标函数表示为:

第5章 灵敏度分析

第5章  灵敏度分析

5.1 目标函数中价值系数的变化分析
由最优单纯形表可得
3 1 B p3 , p1 2 1 ,C 2 6 5 4 0 0,C B 5, 2 0 1 1 3 1 1 2 B 1 A 1 1 0 6 2 3
5.1 目标函数中价值系数的变化分析
其中, xi (i 1,2) 分别表示生产 1 产品和 2 产品的数量。用图解法如 图 5-1 所示求得最优解 B( x1 50, x2 250 ) ,即生产 1 产品 50 单位,生 产 2 产品 250 单位可以获得最大利润。假设两种产品中的某一产品的单位 利润增加或减少时,为了获取最大利润,就有可能增加或减少这一产品的 产量,也就是改变最优解。实际上产品利润在一定范围内变化时,整个线 性规划的最优解是不会变化的, 即仍然生产 50 单位的 1 产品和 250 单位的 2 产品而获利最大。当然其中某一产品利润变化超出一定范围的话,最优 解就会受到影响了。用图解法可以确定这一变化的范围,即确定其变化的 上限和下限。
用单纯形法可求得最优单纯形表如表 5-2 所示
5.1 目标函数中价值系数的变化分析
表 5-2 最优单纯形表
XB
x3
x1
0
x2
1
x3
1
x4
3 2
x5
1 -2
x6
-1
b
5
x1
1
1
0
6 -1 2
3
11
j
0
-1
0
-1
-1
47
最优方案是产品 A 生产 11 吨, 产品 C 生产 5 吨, 产品 B 和 D 不生产, 最大利润为 47 千元。
5.1 目标函数中价值系数的变化分析

《管理运筹学》第四版第5章单纯形法课后习题解析

《管理运筹学》第四版第5章单纯形法课后习题解析

《管理运筹学》第四版第5章单纯形法课后习题解析《管理运筹学》第四版课后习题解析第5章单纯形法1.解:表中a 、c 、e 、f 是可⾏解,f 是基本解,f 是基本可⾏解。

2.解:(1)该线性规划的标准型如下。

max 5x 1+9x 2+0s 1+0s 2+0s 3 s.t. 0.5x 1+x 2+s 1=8 x 1+x 2-s 2=100.25x 1+0.5x 2-s 3=6 x 1,x 2,s 1,s 2,s 3≥0(2)⾄少有两个变量的值取零,因为有三个基变量、两个⾮基变量,⾮基变量取零。

(3)(4,6,0,0,-2)T(4)(0,10,-2,0,-1)T(5)不是。

因为基本可⾏解要求基变量的值全部⾮负。

(6)略 3.解:令333x x x ''-'=,z f -=改为求f max ;将约束条件中的第⼀个⽅程左右两边同时乘以-1,并在第⼆和第三个⽅程中分别引⼊松弛变量5x 和剩余变量6x ,将原线性规划问题化为如下标准型:j x '、j x ''不可能在基变量中同时出现,因为单纯性表⾥⾯j x '、j x ''相应的列向量是相同的,只有符号想法⽽已,这时候选取基向量的时候,同时包含两列会使选取的基矩阵各列线性相关,不满⾜条件。

4.解:(1)表5-10,,,,,, 24423 1863 1334 7234max 654332163321543321433214321≥'''=-''+'--=++''+'-+-=+''+'---++-=x x x x x x x x x x x x x x x x x x x x x x x x x x x f 约束条件:(2)线性规划模型如下。

max 6x 1+30x 2+25x 3 s.t. 3x 1+x 2+s 1=40 2x 2+x 3+s 2=50 2x 1+x 2-x 3+s 3=20 x 1,x 2,x 3,s 1,s 2,s 3 ≥0(3)初始解的基为(s 1,s 2,s 3)T ,初始解为(0,0,0,40,50,20)T,对应的⽬标函数值为0。

单纯形法

单纯形法

矩阵A表示为: A = ( p1 ,p2 ,…,pn ) , 其中 pj = ( a1j ,a2j ,…,amj )T。若找 到一个可行基,无防设 B = ( p1 ,p2 ,…,pm ) ,则m个基变 量为 x1 , x2 , …, xm,n-m个非基变量 为 xm+1 ,xm+2 ,…,xn 。通过运算, 所有的基变量都可以用非基变量来表 示:
f(x
6 )=3
二、单纯形法的基本思路 要找到线性规划问题的最优解,只要在基本 可行解中寻找就可以了。虽然基本可行解的数 目是有限个(不超过Cnm个),但当m,n较大时, 要用“穷举法”求出所有基本可行解是行不通 的。利用LP问题基本可行解(极点)的方法来 求解较大规模的问题是不可行的。 单纯形法的基本思路是:从线性规划问题的 一个基本可行解开始,沿边界转换到另一个使 目标函数值增大的基本可行解。反复迭代,直 到目标函数值达到最大时,就得到了最优解。



基本解 对于基B,令非基变量为零,求得满足AX=b的解,称 为基B对应的基本解。若得到的基变量的值均非负, 则称为基本可行解,同时称这个基B为可行基。 令非基变量 XN = 0,求得基变量 XB的值称为基本解 即 XB = B1 b XB 是基本解的必要条件为XB 的非零分量个数 m 基本可行解 基本解 XB 的非零分量都 0 时,称为基本可行解, 否则为基本非可行解 基本可行解的非零分量个数 < m 时,称为退化解
2.线性规划的基、基本解与基本可行解
基:设B是A矩阵中的一个非奇异(可逆)的 m×m子矩阵,则称B为线性规划的一个基。 与B中的这些列向量对应的变量称为基变量, m Cm n 个基。 其余变量称为非基变量。最多有
在标准型中,技术系数矩阵有 n×m 列,即 A = ( P1, P2 , … , Pn×m ) A中线性独立的 m 列,构成该标准型的一个基, 即 B = ( P1 , P2 , … , Pm ), | B | 0 P1 , P2 , … , Pm 称为基向量 与基向量对应的变量称为基变量,记为 XB = ( x1 , x2 , … , xm )T,其余的变量称为非基变 量,记为 XN = ( xm+1 , xm+2 , … , xm+n ) T , 故有 X = XB + XN m Cm n 个基 最多有

单纯形法

单纯形法

目录第一章单纯形法的提出……………………………………………………………1.1 单纯形法提出背景……………………………………………………………第二章单纯形法的一般原理………………………………………………………2.1 单纯形法的基本思路…………………………………………………………2.2 确定初始基本可行解…………………………………………………………2.3 最优性检验……………………………………………………………………2.4 基变换…………………………………………………………………………2.5 解的判别定理…………………………………………………………………2.6 单纯形法求解线性规划问题的程序框图……………………………………第三章表格单纯形法………………………………………………………………3.1单纯型表求解…………………………………………………………………3.2 用单纯形法求解线性规划问题的举例………………………………………第四章人工变量及其处理方法……………………………………………………4.1大M法…………………………………………………………………………4.2两阶段法………………………………………………………………………4.3无最优解和无穷多最优解……………………………………………………4.4退化与循环……………………………………………………………………第五章单纯形法的矩阵表示………………………………………………………总结……………………………………………………………………………………参考文献………………………………………………………………………………第一章 单纯形法的提出1.1 单纯形法的提出背景单纯形法是1947年由George Bernard Dantzing(1914-2005)创建的,单纯形法的创建标志着线性规划问题的诞生。

线性规划问题是研究在线性约束条件下,求线性函数的极值问题。

然而,对这类极值问题,经典的极值理论是无能为力的,只有单纯形法才能有效解决这类极值问题的求解。

第五章 单纯形法

第五章 单纯形法

3.人工变量法
用单纯形法求最小值问题,与求最大值问题 类似,其区别在于判别数为零或者正值,即
Cj-Zj≥0时得到最优解,在决定“换入”及“换 时得到最优解,在决定“换入” 时得到最优解 变量时, 出”变量时,取Cj-Zj为负且绝对值最大者为主 为负且绝对值最大者为主 元列,其余步骤同求最大值问题。 元列,其余步骤同求最大值问题。 这种求线性规划的方法,称为“人工变量法” 这种求线性规划的方法,称为“人工变量法”或 称为“ 称为“大M”法,这就是当一个 线性规划问题在 法 仍不能提供基本可行解时, 增加了松弛变量后 仍不能提供基本可行解时, 需要采用“人工变量” 需要采用“人工变量”来获得一个初始的基本可 行解。 行解。
将线性规划问题转化为标准型 编制初始单纯行表 判别基本可行解是否为最优 找出“换入” 换出”变量, 找出“换入”或“换出”变量,以便进行换基
对于求最大值问 题,全部判别数 为零与负数时, 为零与负数时, ≤0, 即Cj-Zj ≤0,得最 优解
先找出主元行与主元列:对于求极大值问题, 先找出主元行与主元列:对于求极大值问题,取Cj-Zj 为正数且最大者所在的列为主元列, 为正数且最大者所在的列为主元列,取bi/aij为正数且最 大者所在的行为主元行, 大者所在的行为主元行,主元行与主元列之交点元素称 为主元素,在右上方记“ ” 为主元素,在右上方记“*”主元素正上方对应的变量 换入”变量,主元素左边对应的基变量为“换出” 为“换入”变量,主元素左边对应的基变量为“换出” 变量。 变量。
第五章
单纯形法
5.1 线性规划求解的相关概念
一、相关定理 定理1 线性规划问题的可行解集S是凸集。 定理1 线性规划问题的可行解集S是凸集。 定理2 线性规划问题的基本可行解X 定理2 线性规划问题的基本可行解X对应于可 行域S的顶点。也就是说, 行域S的顶点。也就是说,可行域的顶点就 是线性规划问题的基本可行解。 是线性规划问题的基本可行解。 定理3 若线性规划问题有最优解, 定理3 若线性规划问题有最优解,它一定在 其可行域的顶点上达到。 其可行域的顶点上达到。

单纯形法原理讲解

单纯形法原理讲解

1、初始基可行解的确定
= b − a1m+1xm+1 −... − a1n xn x1 1 x = b2 − a2m+1xm+1 −... − a2n xn 2 .......................................... xm = bm − amm+1xm+1 −... − amn xn 令 xm+1 = ... = xn = 0 : 有 : xi = bi (i =1 2,...m) , X = (b , b2 ,..., bm,0,0,...,0)是 初 基 行 。 一 始 可 解 1
∴当 m+k → +∞, Z → +∞. x
最优解判断小结
(用非基变量的检验数)
所有σ j ≤ 0 换基继续
N Y Y
对任一σj >0 有 a ik ≤ 0
N Y
无界解
Y
基变量中有 非零人工变量 无可行解
N
某非基变量 检验数为零
以后 讨论
无穷多最优解
N
唯一最优解
3、基变换
换入变量确定
m (σm+ j > 0) = σm+k ax
x 变量。 换 变 x2 为换入变量,应换出 ?5为 出 量
= 8 − 2x2 ≥ 0 x3 思考:当 ′ ak 2 ≤ 0 时 x4 =16 - 4 x1 ≥ 0 会怎样? x5 =12 − 4x2 ≥ 0 x2 = min(8/ 2, −,12/ 4) = 3
′ ′ ′ b1 b2 b3 ′ θ =m in{ , , ak 2 > 0} = m 8/ 2,−,12 / 4) = 3 in( ′ ′ ′ a12 a22 a32

单纯形法的计算方法

单纯形法的计算方法

第4章 单纯形法的计算方法单纯形法求解线性规划的思路: 一般线性规划问题具有线性方程组的变量数大于方程个数, 这时有不定的解。

但可以从线性方程组中找出一个个的单纯形, 每一个单纯形可以求得一组解, 然后再判断该解使目标函数值是增大还是变小, 决定下一步选择的单纯形。

这就是迭代, 直到目标函数实现最大值或最小值为止。

4.1 初始基可行解的确定为了确定初始基可行解, 要首先找出初始可行基, 其方法如下。

(1)第一种情况:若线性规划问题 max z =nj j j=1c x ∑1,1,2,...,0,1,2,...nij j i j ja xb i mx j n =⎧==⎪⎨⎪≥=⎩∑从Pj ( j = 1 , 2 , ⋯ , n )中一般能直接观察到存在一个初始可行基121(,,...,)n B P P P 0 0⎛⎫ ⎪0 1 0 ⎪== ⎪ ⎪0 0 1⎝⎭(2)第二种情况:对所有约束条件是“ ≤”形式的不等式, 可以利用化为标准型的方法, 在每个约束条件的左端加上一个松弛变量。

经过整理, 重新对j x 及ij a ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n )进行编号, 则可得下列方程组11,111122,1122,1112.........,,...,0m m n n m m n n m m m m nn n nn x a x a x b x a x a x b x ax a x b x x x +++++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩显然得到一个m ×m 单位矩阵121(,,...,)n B P P P 0 0⎛⎫ ⎪0 1 0 ⎪== ⎪ ⎪0 0 1⎝⎭ 以B 作为可行基。

将上面方程组的每个等式移项得111,111222,112,11.........m m n nm m n nm m m m m mn n x b a x a x x b a x a x x b a x a x ++++++=---⎧⎪=---⎪⎨ ⎪⎪=---⎩令12...0,m m n x x x ++====由上式得(1,2,...,)i i x b i m == 又因i b ≥0, 所以得到一个初始基可行解12()12()(,,...,,0,...,0)(,,...,,0,...,0)Tm n m Tm n m X x x x b b b --= =个个(3)第三种情况:对所有约束条件是“ ≥”形式的不等式及等式约束情况, 若不存在单位矩阵时, 就采用人造基方法。

第五章 单纯形法

第五章 单纯形法

x4 0 1 0
x5 0 0 1
基变量
b
300 400 250
基向量
非基向量
0
对应基本解:(0,0,300,400,250)
一、问题的提出
基 B1=(p1 ,p2 ,p3) B2=(p1,p2 ,p4 ) B3=(p1 ,p2 ,p5) B4=(p1 ,p3 ,p4) B5=(p1 ,p3 ,p5) B6=(p1 ,p4 ,p5) B7=(p2 ,p3,p4) B8=(p2 ,p3,p5) 基向量 基变量 非基 向量 p4 ,p5 p3 ,p5 p3 ,p4 p2 ,p5 p2 ,p4 p2 ,p3 p1 ,p5 p1 ,p4 非基 变量 x4 ,x5 x3 ,x5 x3 ,x4 x2 ,x5 x2 ,x4 x2 ,x3 x1 ,x5 x1 ,x4 基本解 (75,250,-25,0,0) (50,250,0,50,0) (100,200,0,0,50) 不存在 (200,0,100,0,50) (300,0,0,-200,-50) (0,250,50,150,0) (0,400,-100,0,150) 是 否 是 否 是否可行 否 是 是 p1 ,p2 ,p3 x1 ,x2 ,x3 p1 ,p2 ,p4 x1 ,x2 ,x4 p1 ,p2 ,p5 x1 ,x2 ,x5 p1 ,p3 ,p4 x1 ,x3 ,x4 p1 ,p3 ,p5 x1 ,x3 ,x5 p1 ,p4 ,p5 x1 ,x4 ,x5 p2 ,p3 ,p4 x2 ,x3 ,x4 p2 ,p3 ,p5 x2 ,x3 ,x5
一、问题的提出

既然如此,如果我们在技术矩阵中取出三列, 组成一个可逆阵,令其余两列对应的变量为 零,则一定可以得到一个解。
一、问题的提出

机械优化设计第5章线性规划

机械优化设计第5章线性规划
xi 0(i 1, 2,L , n) bj 0( j 1, 2,L , m)
值1万元;需占用一车间工作日5天,
6 x1 2x2 24
二车间工作日2天。现一车间可用于
x1 0 x2 0
生产A、B产品的时间15天,二车间
可用于生产A、B产品的时间24天。
试求出生产组织者安排A、B两种产
品的合理投资产数,以获得最大的总
产值。
例5-2:生产甲种产品每件需使用材料9kg、3个工时、4kw电,获 利润60元。生产乙种产品每件需用材料4kg、10个工时、5kw电, 可获利120元。若每天能供应材料360kg,有300个工时,能供 200kw电。试确定两种产品每天的产量,使每天可能获得的利润 最大?
分析:每天生产的甲、乙两种产品分别为 x1, x2 件
f (x1, x2 ) 60x1 120x2 max (利润最大) g1( X ) 9x1 4x2 360 (材料约束)
g2 ( X ) 3x1 10x2 300 (工时约束)
g3( X ) 4x1 5x2 200 (电力约束)
在年度计划按月分配时一般要考虑:1)从数量和品种上保 证年度计划的完成;2)成批的产品尽可能在各个月内均衡生 产或集中在几个月内生产;3)由于生产技术准备等方面原因, 某些产品要在某个月后才能投产;4)根据合同要求,某些产 品要求在年初交货;5)批量小的产品尽可能集中在一个月或 几个月内生产出来,以便减少各个月的品种数量等等。如何在 满足上述条件的基础上,使设备均衡负荷且最大负荷。
获利 物资 地区
甲 乙 丙
钢材
260 210 180
铝材
300 250 400
铜材
400 550 350

运筹学(第四版)清华大学出版社《运筹学》教材编写组-第章

运筹学(第四版)清华大学出版社《运筹学》教材编写组-第章

27
清华大学出版社
2.1.4 线性规划问题的解概念
❖ 1.可行解 ❖ 2.基 ❖ 3.基可行解 ❖ 4.可行基
28
清华大学出版社
2.1.4 线性规划问题的解的概 念
1. 可行解
❖ 定义
满足约束条件(1-5)、(1-6)式的解X=(x1,x2,…,xn)T, 称为线性规划问题的可行解,其中使目标函数达到最 大值的可行解称为最优解。
21
清华大学出版社
2.1.3 线性规划问题的标准型式
线性规划问题的几种表示形式
用向量形式表示的标准形式线性规划
M
'' 1
:目标函数:max
z
CX
n
约束条件: j1 Pj x j
b
x
j
0,
j 1,2,,n
C c1 ,c2 ,,cn ;
x1
a1 j
b1 Xx2 ; NhomakorabeaPj
a2
j
若约束条件为“≤”型不等式,则可在不等式左端加入非负松弛变 量,把原“≤”型不等式变为等式约束; 若约束条件为“≥”型不等式,则可在不等式左端减去一个非负剩 余变量(也称松弛变量),把不等式约束条件变为等式约束。 (3) 若存在取值无约束的变量xk,可令
xk xk' xk" xk' , xk" 0
2.1.3 线性规划问题的标准型式
M1 : 目标函数:max z c1x1 c2 x2 cn xn
a11x1 a12 x2 约束条件:a21x1 a22 x2
a1n xn b1 a2n xn b2
am1x1 am2 x2 amn xn bm
x1, x2 , , xn 0

运筹学答案_第_5_章__单纯形法

运筹学答案_第_5_章__单纯形法
b、有两个变量的值取零,因为有三个基变量、两个非基变量,非基变量 取零。
c、(4,6,0,0,-2) d、(0,10,-2,0,-1) e、不是。因为基本可行解要求基变量的值全部非负。
3、解:a、
迭代次数 基变量
cB x1
x2 x3
x4 x5
x6
b
6 30 25 0 0 0
s1
0 3 1 0 1 0 0 40
第 5 章 单纯形法
1、解:表中 a、c、e、f 是可行解,a、b、f 是基本解,a、f 是基本可行解。
2、解:a、该线性规划的标准型为: max 5 x1+9 x2 s.t.0.5 x1+x2+s1=8 x1+x2-s2=10 0.25 x1+0.5 x2-s3=6 x1,x2,s1,s2,s3 ≥0.
6、解:a、有无界解 b、最优解为(0.714,2.143,0),最优值为-2.144。
7、解:a、无可行解 b、最优解为(4,4),最优值为 28。 c、有无界解 d、最优解为(4,0,0),最优值为 8。
பைடு நூலகம்
0
s2
0 0 2 1 0 1 0 50
s3
0 2 [1] -1 0 0 1 20
xj cj-xj
0
0
00
0
6
30*
25
0
0
00 0
b、线性规划模型为: max 6 x1+30 x2+25 x3 s.t.3 x1+x2+s1 = 40 2 x1+x3+s2= 50 2 x1+x2-x3+s3=20 x1,x2,x3,s1,s2,s3 ≥0
c、初始 解的基为(s1, s2, s3),初始解为( 0,0,0,40,50,20), 对应的目标函数值为 0。

第五章单纯形法

第五章单纯形法

17
基解:在约束方程组(1.7)中,令所有非基变量为 xm+1=xm+2=…=xn=0零,以因为有|B|≠0,根据 克莱姆法则,由m个约束方程可解出m个基变量的唯 一解XB=(x1,…,xm)T。将这个解加上非基解中变量 取0的值有X=(x1,x2,…,xm,0,0,…,0)T,称X为线 性规划问题的基解。显然在基解中变量取非零值的个 数不大于方程数m,故基解的总数不超过Cnm个。
基本解:记基变量为XB=(xj1,xj2,…,xjm)T,非基变量构成
的列向量记为XN,并令XN =0,则有AX=ΣPjxj=BXB=b,于是有 XB=B-1b。称XB=B-1b, XN =0为线性规划(L)的一个基本解。
基可行解:若基本解中XB=B-1b≥0,则称该解为基可行解,这时
基B也称为可行基。
减去非a1负1x1变+a量12xx2n++1,+称a为1nx剩n -余xn变+1=量b1,有 ⑷令变xj量= xxjj无- x约j束,。对模型中的变量进行代换。
(5)对于x≤0的情况,令x =-x,显然x ≥0。
12
(6)对于b<0的情况,不等式两边同乘以-1
例:将下述线性规划化为标准型
max z x1 2x2 3x3
同理,取B5=(P2,P4),可得x2 =3,x4=18, x1 =x3 =0是基可行解。
同理,取B6=(P3 , P4 ),可得x3=15,x4=24, x1 =x2 =0是基可行解。
22
可行域极点的数量
如果线性规划有50个变量,20个约束条件,全部是等号约
束。按照以上的算法,每计算一个基础解,要从50个变量中选
4.711 03 1.510 6 (年) 360204365
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管理运筹学
8
§1 单纯形法的基本思路和原理
• 2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,
如果所有检验数 ≤0,j 则这个基本可行解是最优解。下面
我们用通俗的说法来解释最优解判别定理。设用非基变量
表示的目标函数为如下形式
z z0 jxj
jJ
由于所有的xj的取值范围为大于等于零,当所有的
• 在 j cj zj 行中填入cj-zj所得的值,如 150050;
• z表示把初始基本可行解代入目标函数求得的目标函数值,即b列*cB列; • 初始基本可行解为s1=300,s2=400,s3=250,x1=0,x2=0; • 由于250/1最小,因此确定s3为出基变量;
• 由 在于列的2 交汇1 处0,为因主此元确,定这x里2为是入a32基=1变,量在。表出中基画变圈量以所示在区行别,。入基变量所
0 1 0 0 1
其中pj为系数矩阵A第j列的向量。A的秩为3,A的秩m小于此方程组的变
量的个数n,为了找到一个初始基本可行解,先介绍以下几个线性规划的
基本概念。
基: 已知A是约束条件的m×n系数矩阵,其秩为m。若B是A中m×m阶非
奇异子矩阵(即可逆矩阵),则称B是线性规划问题中的一个基。
基向量:基B中的一列即称为一个基向量。基B中共有m个基向量。
0 0 1 1 0 0 0 1 0 那么显然所求得的基本解一定是基本可行解,这个单位矩阵或由单位矩阵各列向 量组成的基一定是可行基。实际上这个基本可行解中的各个变量或等于某个bj或等 于零。
管理运筹学
6
§1 单纯形法的基本思路和原理
在本例题中我们就找到了一个基是单位矩阵。
1 0 0 B2 0 1 0
a 2 2 1
a 3 2 1
管理运筹学
12
§1 单纯形法的基本思路和原理
其中
b a
3 32
的值最小,所以可以知道在原基变量中系数向量为 e3
0,0,1T
的基变量s3为出基变量,这样可知x2,s1,s2为基变量,x1,s3为非基变量。 令非基变量为零,得
x2+s1=300, x2+s2=400, x2=250. 求解得到新的基本可行解x1=0,x2=250,s1=50,s2=150. 这时目标函数值为
都小
j
于等于零时,可知 j x j 是一个小于等于零的数,要使z
j J
的值最大,显然 j x j 只有为零。我们把这些xj取为非基 j J
变量(即令这些xj的值为零),所求得的基本可行解就使目标 函数值最大为z0。
**对于求目标函数最小值的情况,只需把 j ≤0改为 ≥j0
管理运筹学
9
§1 单纯形法的基本思路和原理
n
bi aijxj. i1,2, ,m
jm1
把以上的表达式带入目标函数,就有
m
n
zc1x1c2x2 cnxn cixi cjxj
i1
jm1
其中:
n
n
z0
cj zj xj z0 jxj
jm1
jm1
m
z0 cibi, j cj zj;
i1
m
zj ciaij c1a1j c2a2j cmamj c1,c2,
0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的各 列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行 解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作为初始可行 基,我们将构造初始可行基,具体做法在以后详细讲述。
管理运筹学
7
§1 单纯形法的基本思路和原理
第五章 单 纯 形 法
• §1 单纯形法的基本思路和原理 • §2 单纯形法的表格形式 • §3 求目标函数值最小的线性规划的问题的
单纯形表解法 • §4 几种特殊情况
管理运筹学
1
§1 单纯形法的基本思路和原理
单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优 解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此 点是否是最优解。直到找到一个顶点为其最优解,就是使得其目标函数值最优的 解,或者能判断出线性规划问题无最优解为止。
非基向量:在A中除了基B之外的一列则称之为基B的非基向量。
基变量:与基向量pi相应的变量xi叫基变量,基变量有m个。
管理运筹学
3
§1 单纯形法的基本思路和原理
非基变量:与非基向量pj相应的变量xj叫非基变量,非基变量有n-m个。 由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个
基,令这个基的非基变量为零,再求解这个m元线性方程组就可得到唯一
在讲解单纯形法的表格形式之前,先从一般数学模型里推导出检验
数 j 的表达式。
可行基为m阶单位矩阵的线性规划模型如下(假设其系数矩阵的前m 列是单位矩阵):
m ax z c1 x1 c2 x2 cn xn . x1 a x 1,m 1 m 1 a1,n xn b1 , x2 a x 2,m 1 m 1 a 2,n xn b2 ,
的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到了 1 1 0 为A的一个基,令这个基的
B3 1 0 0
1 0 1
非基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
管理运筹学
4
§1 单纯形法的基本思路和原理
x2+s1≤300, x2=400, x2+s3=250.
x1=0,x2=400,s1=-100,s2=0,s3=-150 由于在这个基本解中s1=-100,s3=-150,不满足该线性规划s1≥0,
数都为零了。此时目标函数中所有变量的系数即为各变量的检验数,把变
量xi的检验数记为σi。显然所有基变量的检验数必为零。在本例题中目标 函数为50x1+100x2。由于初始可行解中x1,x2为非基变量,所以此目标函 数已经用非基变量表示了,不需要再代换出基变量了。这样我们可知
σ1=50,σ2=100,σ3=0,σ4=0,σ5=0。
向量为 pjj1,2, ,n则
z j c B 1 , ,c B m p j c B p j,
其中,(cB)是由第1列第m行各约束方程中的基变量相应的目标函数依 次组成的有序行向量。
单纯形法的表格形式是把用单纯形法求出基本可行解、检验其最优性、
迭代某步骤都用表格的方式来计算求出,其表格的形式有些像增广矩阵,
通过第二章例1的求解来介绍单纯形法:
目标函数: max 50x1+100x2 约束条件:x1+x2+s1≤300,
2x1+x2+s2≤400, x2+s3≤250.
xj≥0 (j=1,2),sj≥0 (j=1,2,3)
管理运筹学
2
§1 单纯形法的基本思路和原理
它的系数矩阵 ,
1 1 1 0 0
A(p1,p2,p3,p4,p5)2 1 0 1 0
s3≥0的约束条件,显然不是此线性规划的可行解,一个基本解可以是 可行解,也可以是非可行解,它们之间的主要区别在于其所有变量的解 是否满足非负的条件。我们把满足非负条件的一个基本解叫做基本可行 解,并把这样的基叫做可行基。
管理运筹学
5
§1 单纯形法的基本思路和原理
一般来说判断一个基是否是可行基,只有在求出其基本解以后,当其基本解
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
从最优解判别定理知道,当某个σj>0时,非基变量xj变为基变量不取 零值可以使目标函数值增大,故我们要选基检验数大于0的非基变量换到基 变量中去(称之为入基变量)。若有两个以上的σj>0,则为了使目标函数 增加得更大些,一般选其中的σj最大者的非基变量为入基变量,在本例题 中σ2=100是检验数中最大的正数,故选x2为入基变量。
二、 最优性检验
所谓最优性检验就是判断已求得的基本可行解是否是最优解。
1. 最优性检验的依据——检验数σj 一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求
只用非基变量来表示目标函数,这只要在约束等式中通过移项等处理就可
以用非基变量来表示基变量,然后用非基变量的表示式代替目标函数中基
变量,这样目标函数中只含有非基变量了,或者说目标函数中基变量的系
而其计算的方法也大体上使用矩阵的行的初等变换。以下用单纯形表格来
求解第二章的例1。
max 50x1+100x2+0·s1+0·s2+0·s3. x1+x2+s1=300 2x1+x2+s2=400 x2+s3=250
x1, x2, s1, s2, s3≥0. 把上面的数据填入如下的单纯形表格
管理运筹学
x1 x2 s1 300, 2 x1 x2 s2 400, x2 s3 250.
在第二步中已经知道x2为入基变量,我们把各约束方程中x2的为正的系数除 对应的常量,得
b 1 3 0 0 3 0 0 , b 2 4 0 0 4 0 0 , b 3 2 5 0 2 5 0 .
a 1 2 1
i1
a1j
,cma2j
amj
c1,c2, ,cmpj
管理运筹学
15
§2 单纯形法的表格形式
上面假设x1,x2,…xm是基变量,即第i行约束方程的基变量正好是xi,而 经过迭代后,基将发生变化,计算zj的式子也会发生变化。如果迭代后的 第i行约束方程中的基变量为xBi,与xBi相应的目标函数系数为cBi,系数列
相关文档
最新文档