(完整版)高中物理电磁感应经典计算题

合集下载

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)题一题目:一个导线截面积为$2.5\times10^{-4}m^2$,长度为$0.3m$,放在磁感应强度为$0.5T$的均匀磁场中,将导线两端连接到一个电阻为$2\Omega$的电阻器上,求电阻器中的电流。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁感应强度以及导线的运动速度有关。

在此题中,导线不运动,所以感应电动势为零。

因此,电路中的电流完全由电源提供,根据欧姆定律,可以使用$U=IR$求解电流。

答案:电路中的电流为0A。

题二题目:一个充满磁感应强度为$1T$的磁场的金属环,直径为$0.2m$,环的厚度可以忽略不计。

当磁场方向垂直于环的平面并向上时,将环从磁场中抽出后,环中的磁场强度变为多少?解析:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,环中会产生感应电动势导致感应电流的产生。

在此题中,环被抽出磁场后,磁通量减小,从而产生感应电动势。

根据安培环路定理和比奥-萨伐尔定律,感应电动势的方向与磁场的变化方向相反,因此感应电流会生成一磁场。

根据安培定律和环形线圈的磁场公式,可以计算出环中的新的磁场强度。

答案:环中的新磁场强度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

题三题目:一根长度为$0.5m$的直导线与一个磁场相垂直,导线两端的电动势为$2V$,导线的电阻为$4\Omega$,求导线在磁场中运动的速度。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁场强度以及导线的运动速度有关。

在此题中,导线的电动势和电阻已知,可以使用欧姆定律$U=IR$解出电流,并使用感应电动势的公式$E=Bvl$解出运动速度。

答案:导线在磁场中的运动速度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

人教版高中物理选修3-2第四章 电磁感应单元练习题(含详细答案)

人教版高中物理选修3-2第四章 电磁感应单元练习题(含详细答案)

第四章电磁感应一、单选题1.如图所示,一个有弹性的金属圆环被一根橡皮绳吊于通电直导线的正下方,直导线与圆环在同一竖直面内,当通电直导线中电流增大时,弹性圆环的面积S和橡皮绳的长度l将()A.S增大,l变长B.S减小,l变短C.S增大,l变短D.S减小,l变长2.关于涡流,下列说法中不正确的是()A.真空冶炼炉是利用涡流来熔化金属的装置B.家用电磁灶锅体中的涡流是由恒定磁场产生的C.阻尼摆摆动时产生的涡流总是阻碍其运动D.铁芯用相互绝缘的硅钢片叠成能减小涡流3.如图中画出的是穿过一个闭合线圈的磁通量随时间的变化规律,以下哪些认识是正确的()A.第0.6 s末线圈中的感应电动势是4 VB.第0.9 s末线圈中的瞬时电动势比0.2 s末的小C.第1 s末线圈的瞬时电动势为零D.第0.2 s末和0.4 s末的瞬时电动势的方向相同4.如图所示,一个由导体做成的矩形线圈,以恒定速率v运动,从无场区进入匀强磁场区,磁场宽度大于矩形线圈的宽度da,然后出来,若取逆时针方向的电流为正方向,那么下列图中的哪一个图能正确地表示回路中的电流与时间的函数关系()A.B.C.D.5.如图所示,一个带正电的粒子在垂直于匀强磁场的平面内做圆周运动,当磁感应强度均匀增大时,此粒子的动能将()A.不变B.增大C.减少D.以上情况都有可能6.如图所示,一沿水平方向的匀强磁场分布在宽度为2L的某矩形区域内(长度足够大),该区域的上、下边界MN、PS是水平的.有一边长为L的正方形导线框abcd从距离磁场上边界MN的某高处由静止释放下落并穿过该磁场区域,已知当线框的ab边到达MN时线框刚好做匀速直线运动(以此时开始计时),以MN处为坐标原点,取如图坐标轴x,并规定逆时针方向为感应电流的正方向,则关于线框中的感应电流与ab边的位置坐标x间的以下图线中,可能正确的是()A.B.C.D.7.如下图所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与导线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放导线框,它由实线位置下落到虚线位置未发生转动,在此过程中()A.导线框中感应电流的方向依次为ACBA→ABCA→ACBAB.导线框的磁通量为零时,感应电流也为零C.导线框所受安培力的合力方向依次为向上→向下→向上D.导线框所受安培力的合力为零,做自由落体运动8.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1 s时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1 s时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为()A.B. 1C. 2D. 49.法拉第电磁感应定律可以这样表述:闭合电路中感应电动势的大小()A.跟穿过这一闭合电路的磁通量成正比B.跟穿过这一闭合电路的磁感应强度成正比C.跟穿过这一闭合电路的磁通量的变化率成正比D.跟穿过这一闭合电路的磁通量的变化量成正比10.某线圈中产生了恒定不变的感应电流,关于穿过该线圈的磁通量Φ随时间t变化的规律,可能是下面四幅图中的()A.B.C.D.二、多选题11.(多选)如图,足够长的U型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为l,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计,其上端所接定值电阻为R.给金属棒ab一沿斜面向上的初速度v0,并与两导轨始终保持垂直且接触良好,ab棒接入电路的电阻为r,当ab棒沿导轨上滑距离x时,速度减小为零.则下列说法不正确的是()A.在该过程中,导体棒所受合外力做功为mvB.在该过程中,通过电阻R的电荷量为C.在该过程中,电阻R产生的焦耳热为D.在导体棒获得初速度时,整个电路消耗的电功率为v012.(多选)在如图所示的各图中,闭合线框中能产生感应电流的是()A.B.C.D.13.如图所示,在匀强磁场中放有平行铜导轨,它与大线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在导轨上的金属棒ab的运动情况(两线圈共面放置)是()A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动三、实验题14.如图是做探究电磁感应的产生条件实验的器材.(1)在图中用实线代替导线把它们连成实验电路.(2)由哪些操作可以使灵敏电流计的指针发生偏转()A.闭合开关B.断开开关C.保持开关一直闭合D.将线圈A从B中拔出(3)假设在开关闭合的瞬间,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,灵敏电流计的指针向______(填“左”或“右”)偏转.15.英国物理学家法拉第在1831年发现了“磁生电”现象.现在某一课外活动小组的同学想模仿一下法拉第实验,于是他们从实验室里找来了两个线圈A、B,两节干电池、电键、电流计、滑动变阻器等器材,如图所示.请同学们帮助该活动小组,用笔画线代替导线,将图中的器材连接成实验电路.四、计算题16.如图所示,长为L=0.2 m、电阻为r=0.3 Ω、质量为m=0.1 kg的金属棒CD垂直放在位于水平面上的两条平行光滑金属导轨上,两导轨间距也为L,棒与导轨接触良好,导轨电阻不计,导轨左端接有R =0.5 Ω的电阻,量程为0~3.0 A的电流表串联在一条导轨上,量程为0~1.0 V的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定的外力F使金属棒右移,当金属棒以v=2 m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一电表未满偏.问:(1)此时满偏的电表是什么表?说明理由.(2)拉动金属棒的外力F多大?(3)导轨处的磁感应强度多大?17.如图所示,ef、gh为水平放置的足够长的平行光滑导轨,导轨间距为L=1 m,导轨左端连接一个R =3 Ω的电阻,一根电阻为1 Ω的金属棒cd垂直地放置在导轨上,与导轨接触良好,导轨的电阻不计,整个装置放在磁感应强度为B=2 T的匀强磁场中,磁场方向垂直于导轨平面向上.现对金属棒施加4 N的水平向右的拉力F,使棒从静止开始向右运动,试解答以下问题:(1)金属棒达到的最大速度v是多少?(2)金属棒达到最大速度后,R上的发热功率为多大?18.如图所示,两根足够长的光滑金属导轨ab、cd竖直放置,导轨间距离为L,电阻不计.在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止开始释放.金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g.求:(1)磁感应强度的大小;(2)灯泡正常发光时金属棒的运动速率.五、填空题19.如图所示,线圈ABCO面积为0.4 m2,匀强磁场的磁感应强度B=0.1 T,方向为x轴正方向,通过线圈的磁通量为________Wb.在线圈由图示位置绕z轴向下转过60°的过程中,通过线圈的磁通量改变了________Wb.(可以用根式表示)20.图甲为“探究电磁感应现象”实验中所用器材的示意图.现将电池组、滑动变阻器、带铁芯的线圈A、B、电流计及开关连接成如图所示的电路.(1)开关闭合后,下列说法中正确的是________.A.只要将线圈A放在线圈B中就会引起电流计指针偏转B.线圈A插入或拔出线圈B的速度越大,电流计指针偏转的角度越大C.滑动变阻器的滑片P滑动越快,电流计指针偏转的角度越大D.滑动变阻器的滑片P匀速滑动时,电流计指针不会发生偏转(2)在实验中,如果线圈A置于线圈B中不动,因某种原因,电流计指针发生了偏转.这时,线圈B相当于产生感应电流的“电源”.这个“电源”内的非静电力是________.如果是因为线圈A插入或拔出线圈B,导致电流计指针发生了偏转.这时,是________转化为电能.(3)上述实验中,线圈A可等效为一个条形磁铁,将线圈B和灵敏电流计简化如图乙所示.当电流从正接线柱流入灵敏电流计时,指针向正接线柱一侧偏转.则乙图中灵敏电流计指针向其________接线柱方向偏转(填“正”或“负”).21.如下图所示,半径为r的金属圆环绕通过直径的轴OO′以角速度ω匀速转动,匀强磁场的磁感应强度为B,以金属环的环面与磁场方向重合时开始计时,求在转动30°角的过程中,环中产生的平均感应电动势为________.22.如图所示,金属环直径为d、总电阻为2R,匀强磁场磁感应强度为B,垂直穿过环所在平面.电阻为的导体杆AB沿环表面以速度v向右滑至环中央时,杆两端的电压为________.23.如下图甲所示,环形线圈的匝数n=1000,它的两个端点a和b间接有一理想电压表,线圈内磁感应强度B的变化规律如图乙所示,线圈面积S=100 cm2,则Uab=________,电压表示数为________V.答案解析1.【答案】D【解析】当通电直导线中电流增大时,穿过金属圆环的磁通量增大,金属圆环中产生感应电流,根据楞次定律,感应电流要阻碍磁通量的增大:一是用缩小面积的方式进行阻碍;二是用远离直导线的方法进行阻碍,故D正确.2.【答案】B【解析】高频感应炉是用涡流来熔化金属对其进行冶炼的,炉内放入被冶炼的金属,线圈内通入高频交变电流,这时被冶炼的金属中产生涡流就能被熔化.故A正确;电磁炉利用高频电流在电磁炉内部线圈中产生磁场,当含铁质锅具放置炉面时,铁磁性锅体被磁化,锅具即切割交变磁感线而在锅具底部产生交变的涡流,恒定磁场不会产生涡流,故B错误;阻尼摆摆动时产生的涡流总是阻碍其运动,当金属板从磁场中穿过时,金属板板内感应出的涡流会对金属板的运动产生阻碍作用.故C正确;在整块导体内部发生电磁感应而产生感应电流的现象称为涡流现象,要损耗能量,不用整块的硅钢铁芯,其目的是为了减小涡流,故D正确.本题选择错误的,故选B.3.【答案】A【解析】由法拉第电磁感应定律知:感应电动势E=可知:0.3~0.8 s:E===-4 V,负号表示方向与正方向相反,A正确;图象的斜率表示电动势的大小,由图象知第0.9 s末线圈中的瞬时电动势比0.2 s末的大,B错误;第1 s末线圈的磁感强度为零,但磁通量的变化率不为零,电动势不为零,C错误;第0.2 s末和0.4 s末的图象斜率一正一负,瞬时电动势的方向相反,D错误.4.【答案】C【解析】根据楞次定律,线圈进入磁场的过程,穿过线圈的磁通量向里的增加,产生逆时针方向的感应电流,因为速度恒定,所以电流恒定,故A、D错误;离开磁场时,穿过线圈的向里的磁通量减少,所以产生顺时针方向的电流,B错误,C正确.5.【答案】B【解析】当垂直纸面向里的磁场增强时,产生逆时针的涡旋电场,带正电的粒子将受到这个电场对它的电场力作用,而使动能增加,故B正确.6.【答案】D【解析】在第一个L内,线框匀速运动,电动势恒定,电流恒定;在第二个L内,线框只在重力作用下加速,速度增大;在第三个L内,安培力大于重力,线框减速运动,电动势减小,电流减小.这个过程加速度逐渐减小,速度是非线性变化的,电动势和电流都是非线性减小的,选项A、B均错误.安培力再减小,也不至于减小到小于第一段时的值,因为当安培力等于重力时,线框做匀速运动,选项C错误,D正确.7.【答案】A【解析】根据右手螺旋定则可知导线上方的磁场方向垂直于纸面向外,下方的磁场方向垂直于纸面向里,而且越靠近导线磁场越强.所以闭合导线框ABC在下降过程中,导线框内垂直于纸面向外的磁通量先增大,当增大到BC边与导线重合时,达到最大,再向下运动,导线框内垂直于纸面向外的磁通量逐渐减小至零,然后随导线框的下降,导线框内垂直于纸面向里的磁通量增大,当增大到A点与导线重合时,达到最大,继续下降时由于导线框逐渐远离导线,使导线框内垂直于纸面向里的磁通量再逐渐减小,所以根据楞次定律可知,感应电流的磁场总是阻碍内部磁通量的变化,所以感应电流的磁场先向内,再向外,最后向内,所以导线框中感应电流的方向依次为ACBA→ABCA→ACBA,A正确;当导线框内的磁通量为零时,内部的磁通量仍然在变化,有感应电动势产生,所以感应电流不为零,B错误;根据对楞次定律的理解,感应电流的效果总是阻碍导体间的相对运动,由于导线框一直向下运动,所以导线框所受安培力的合力方向一直向上,不为零.C、D错误.8.【答案】B【解析】设原磁感应强度是B,线框面积是S.第1 s内ΔΦ1=2BS-BS=BS,第2 s内ΔΦ2=2B·-2B·S=-BS.因为E=n,所以两次电动势大小相等,B正确.9.【答案】C【解析】由法拉第电磁感应定律可知,闭合电路中产生的感应电动势的大小与磁通量的变化率成正比,与磁通量及磁通量的变化量无关.故A、B、D错误,C正确.10.【答案】B【解析】要想该线圈中产生恒定不变的感应电流,则要求该线圈中产生的感应电动势是恒定不变的,要想线圈中产生恒定不变的感应电动势,由法拉第电磁感应定律可知,穿过线圈的磁通量的变化率应是恒定的,即在Φ-t图象中,其图线是一条倾斜的直线.11.【答案】ABC【解析】在该过程中,导体棒和金属导轨组成的系统所受合外力做功为mv,A错误;由q=IΔt,I=,E==,通过电阻R的电荷量为q=,B错误;由于不知摩擦力是否存在,所以C错误;在导体棒获得初速度时,电路中电动势为E=Blv0,I=,P=I2(r+R)=v0,D正确.12.【答案】AB【解析】感应电流产生的条件是:只要穿过闭合线框的磁通量变化,闭合线框中就有感应电流产生.A图中,线框转动过程中,通过线框的磁通量发生变化,线框中有感应电流产生;B图中离直导线越远磁场越弱,所以当线框远离导线时,线框中磁通量不断变小,所以B图中有感应电流产生;C图中一定要把条形磁铁周围的磁感线空间分布图弄清楚,在图示位置,线框中的磁通量为零,在向下移动过程中,线框的磁通量一直为零,磁通量不变,线框中无感应电流产生;D图中,线框中的磁通量一直不变,无感应电流产生.故选A、B.13.【答案】BC【解析】14.【答案】(1)见解析(2)ABD(3)右【解析】(1)将灵敏电流计与大线圈B组成闭合回路,电源、开关、小线圈A组成闭合回路,电路图如图所示.(2)将开关闭合或断开,导致穿过线圈的磁通量变化,产生感应电流,灵敏电流计指针偏转,故A、B正确;保持开关一直闭合,则穿过线圈B的磁通量不变,没有感应电流产生,灵敏电流计指针偏转,故C错误;将螺线管A插入(或拔出)螺线管B时穿过线圈B的磁通量发生变化,线圈B中产生感应电流,灵敏电流计指针偏转,故D正确.(3)在开关闭合的瞬间,穿过线圈B的磁通量增大,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,穿过线圈B的磁通量减小,灵敏电流计的指针向右偏转.15.【答案】【解析】线圈A与带电池的电路相连,线圈B与电流计相连,当滑动滑动变阻器时,线圈A中的电流变化,从而引起B中产生感应电流,也可以保持滑动器划片不动,线圈A插入或者拔出时,都可以引起B中产生感应电流.16.【答案】(1)见解析(2)1.6 N(3)4 T【解析】(1)假设电流表满偏,则I=3.0 A,R两端电压U=IR=3.0×0.5 V=1.5 V,将大于电压表的量程,不符合题意,故满偏电表应该是电压表.(2)由能量关系知,电路中的电能是外力做功转化来的,所以有Fv=I2(R+r),I=,两式联立得F==1.6 N.(3)磁场是恒定的,且不发生变化,由于CD运动而产生感应电动势,因此是动生电动势.根据法拉第电磁感应定律有E=BLv,根据闭合电路欧姆定律得E=U+Ir以及I=,联立三式得B=+=4 T.17.【答案】(1)4 m/s(2)12 W【解析】(1)当金属棒速度最大时,拉力与安培力相等.=F,v m==4 m/s(2)回路中电流为I==2 A,电阻上的发热功率为P=I2R=12 W.18.【答案】(1)(2)【解析】(1)设小灯泡的额定电流为I0,有P=I R,①由题意,在金属棒沿导轨竖直下落的某时刻后,小灯泡保持正常发光,流经MN的电流为I=2I0,②此时金属棒MN所受的重力和安培力相等,下落的速度达到最大值,有mg=BLI,③联立①②③式得B=(2)设灯泡正常发光时,金属棒的速率为v,由电磁感应定律与闭合电路欧姆定律得E=BLv,⑤E=RI0,⑥联立①②④⑤⑥式得v=.⑦19.【答案】00.02或3.46×10-2【解析】线圈ABCO与x轴正方向的匀强磁场平行,没有一条磁感线穿过平面,所以磁通量等于0.在线圈由图示位置绕z轴向下转过60°时,线圈在中性面上面的投影面积为0.4×sin 60°,磁通量Φ=0.1×0.4×sin 60°=0.02Wb,磁通量变化量ΔΦ=0.1×0.4×sin 60°-0=0.02Wb.20.【答案】(1)BC(2)感应电场的电场力机械能(3)负【解析】(1)将线圈A放在线圈B中,由于磁通量不变化,故不会产生感应电流,也不会引起电流计指针偏转,选项A错误;线圈A插入或拔出线圈B的速度越大,则磁通量的变化率越大,产生的感应电流越大,电流计指针偏转的角度越大,选项B正确;滑动变阻器的滑片P滑动越快,电流的变化率越大,磁通量的变化率越大,则感应电流越大,电流计指针偏转的角度越大,选项C正确;滑动变阻器的滑片P 匀速滑动时,电流发生变化,磁通量变化,也会产生感应电流,故电流计指针也会发生偏转,选项D错误.故选BC.(2)这个“电源”内的非静电力是感应电场的电场力.如果是因为线圈A插入或拔出线圈B,导致电流计指针发生了偏转.这时是机械能转化为电能.(3)根据楞次定律可知,通过电流计的电流从负极流入,故灵敏电流计指针向其负接线柱方向偏转.21.【答案】3Bωr2【解析】ΔΦ=Φ2-Φ1=BS sin 30°-0=Bπr2.又Δt===所以===3Bωr2.22.【答案】【解析】杆切割产生的感应电动势:E=Bdv.两个电阻为R的半金属圆环并联,并联电阻R并=R,电路电流(总电流):I==,杆两端的电压:U=IR并=Bdv.23.【答案】50 V50【解析】由B-t图象可知=5 T/s由E=n S得:E=1 000×5×100×10-4V=50 V.。

(完整版)高考物理必做电磁感应大题

(完整版)高考物理必做电磁感应大题

高考复习物理 电磁感应大题1.(18分)如图所示,两根相同的劲度系数为k 的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R 的电阻相连,弹簧下端连接一质量为m ,长度为L ,电阻为r 的金属棒,金属棒始终处于宽度为d 垂直纸面向里的磁感应强度为B 的匀强磁场中。

开始时弹簧处于原长,金属棒从静止释放,水平下降h 高时达到最大速度。

已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x 的关系为221kx E p ,不计空气阻力及其它电阻。

求:(1)此时金属棒的速度多大?(2)这一过程中,R 所产生焦耳热Q R 多少?2.(17分)如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。

圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。

在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。

设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。

⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。

⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。

3、(16分)t =0时,磁场在xOy 平面内的分布如图所示。

其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反。

每个同向磁场区域的宽度均为l 0。

整个磁场以速度v 沿x 轴正方向匀速运动。

⑴若在磁场所在区间,xOy 平面内放置一由n 匝线圈串联而成的矩形导线框abcd ,线框的bc 边平行于x 轴.bc =l B 、ab =L ,总电阻为R ,线框始终保持静止。

高中物理电磁感应经典练习题(含答案)

高中物理电磁感应经典练习题(含答案)

高中物理电磁感应经典练习题(含答案)问题一在一个磁场强度为 0.5 T 的均匀磁场中,一根长度为 0.3 m 的导线以速率 5 m/s 垂直于磁场的方向进入,而后又以同样的速率垂直于磁场的方向退出。

求导线内的感应电动势大小。

解答:根据法拉第电磁感应定律,感应电动势的大小可以用以下公式表示:E = B * l * v其中,E 为感应电动势的大小,B 为磁场强度,l 为导线长度,v 为导线进出磁场的速率。

代入已知值,可以得到:E = 0.5 T * 0.3 m * 5 m/s = 0.75 V所以,导线内的感应电动势大小为 0.75 V。

问题二一根长度为 0.2 m 的导线以速率 10 m/s 垂直于磁场的方向进入磁感应强度为 0.6 T 的磁场,计算导线内感应电流的大小。

解答:根据法拉第电磁感应定律,感应电流的大小可以用以下公式表示:I = B * l * v其中,I 为感应电流的大小,B 为磁感应强度,l 为导线长度,v 为导线进入磁场的速率。

代入已知值,可以得到:I = 0.6 T * 0.2 m * 10 m/s = 1.2 A所以,导线内感应电流的大小为 1.2 A。

问题三一个直径为 0.4 m 的圆形线圈磁感应强度为 0.8 T 的磁场中转动,每转一圈的时间为 0.5 s。

求圆形线圈内感应电动势的大小。

解答:根据法拉第电磁感应定律,感应电动势的大小可以用以下公式表示:E = B * A * ω * N其中,E 为感应电动势的大小,B 为磁感应强度,A 为线圈面积,ω 为角速度,N 为线圈匝数。

线圈面积可以通过以下公式计算:A = π * r^2其中,r 为线圈半径。

代入已知值,可以得到:A = π * (0.4/2)^2 = 0.04π m^2角速度可以通过以下公式计算:ω = 2π / T其中,T 为每转一圈的时间。

代入已知值,可以得到:ω = 2π / 0.5 s = 4π rad/s代入已知值,可以得到:E = 0.8 T * 0.04π m^2 * 4π rad/s * N感应电动势的大小取决于线圈的匝数,由于未提及线圈匝数,所以无法计算具体的感应电动势大小。

高考物理法拉第电磁感应定律-经典压轴题及答案

高考物理法拉第电磁感应定律-经典压轴题及答案

高考物理法拉第电磁感应定律-经典压轴题及答案一、法拉第电磁感应定律1.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。

【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt ∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.3.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求(1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ; (2) 0~t 1时间内通过电阻R 1的电荷量q .【答案】(1)2020n B r E t π=(2)201203n B t r q Rt π=【解析】 【详解】(1)由法拉第电磁感应定律E n tφ∆=∆有2020n B r B E n S t t π∆==∆ ① (2)由题意可知总电阻 R 总=R +2R =3 R ② 由闭合电路的欧姆定律有电阻R 1中的电流EI R =总③ 0~t 1时间内通过电阻R1的电荷量1q It = ④由①②③④式得201203n B t r q Rt π=4.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。

求导线在时间Δt内所受到的感应电动势。

答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。

当导线完全进入磁场后,突然停止不动。

求此过程中导线两端之间的电势差。

答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。

求导线两端之间产生的感应电动势。

答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。

求转子在额定转速下的转子导线所受的感应电动势大小。

答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。

转速为3000转/分钟,转速ω =2π * 3000 / 60。

由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。

因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。

2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。

求导线两端之间的电势差大小。

答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。

如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。

答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。

高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】

高中物理   第09章  电磁感应  (单双棒问题)典型例题(含答案)【经典】

第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。

(2)安培力的特点:安培力为阻力,并随速度减小而减小。

(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。

高中物理大题(带答案)——电磁感应

高中物理大题(带答案)——电磁感应

电磁感应1.【杭州模拟】如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。

一质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。

初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。

整个运动过程中导体棒始终与导轨垂直并保持良好接触。

已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。

(1)求初始时刻通过电阻R的电流I的大小和方向;(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;(3)导体棒最终静止时弹簧的弹性势能为E p,求导体棒从开始运动直到停止的过程中,电阻R 上产生的焦耳热Q。

1.【解析】(1)棒产生的感应电动势E1=BLv0通过R的电流大小根据右手定则判断得知:电流方向为b→a(2)棒产生的感应电动势为E2=BLv感应电流棒受到的安培力大小,方向沿斜面向上,如图所示.根据牛顿第二定律有|mgsinθ-F|=ma解得(3)导体棒最终静止,有mgsinθ=kx弹簧的压缩量设整个过程回路产生的焦耳热为Q0,根据能量守恒定律有解得电阻R上产生的焦耳热2.【雄安新区模拟】如图所示,两平行的光滑金属导轨安装在竖直面上,导轨间距为L、足够长,下部条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直,上部条形匀强磁场的宽度为2d,磁感应强度大小为B0,方向平行导轨平面向下,在上部磁场区域的上边缘水平放置导体棒(导体棒与导轨绝缘),导体棒与导轨间存在摩擦,动摩擦因数为μ。

长度为2d的绝缘棒将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上,导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出),线框的边长为d(d<L),下边与磁场区域上边界重合。

将装置由静止释放,导体棒恰好运动到磁场区域的下边界处返回,导体棒在整个运动过程中始终与导轨接触并且相互垂直。

高考物理电磁感应现象习题专项复习及答案解析

高考物理电磁感应现象习题专项复习及答案解析

高考物理电磁感应现象习题专项复习及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小;(2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J .【解析】【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒 012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL x q r r ∆Φ∆== 解得 1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L +∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--= 2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少?(2)金属棒ab 下滑t 秒末的速度是多大?【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E I R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2 mgRsin B L vθ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力.设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 UE BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q 则电路中电流 Q C U CBL v i t t t ∆∆∆===∆∆∆,又v a t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++ 所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+. 考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.3.如图所示,足够长的U 型金属框架放置在绝缘斜面上,斜面倾角30θ=︒,框架的宽度0.8m L =,质量0.2kg M =,框架电阻不计。

高中物理电磁感应经典计算题

高中物理电磁感应经典计算题

电磁感应综合练习1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。

导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。

金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。

若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。

2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。

导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。

磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。

已知cd 边刚进入磁场时线框恰好做匀速运动。

重力加速度为g 。

(1)求cd 边刚进入磁场时导线框的速度大小。

(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。

(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。

3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。

现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。

高中物理必修三第十三章电磁感应与电磁波初步经典知识题库(带答案)

高中物理必修三第十三章电磁感应与电磁波初步经典知识题库(带答案)

高中物理必修三第十三章电磁感应与电磁波初步经典知识题库单选题1、下列关于磁场的说法,正确的是()A.磁场和电场一样,是客观存在的特殊物质B.磁体与磁体之间是直接发生作用的C.磁场是为了解释磁极间相互作用而人为规定的D.磁场只能由磁体产生,电流不能产生磁场答案:AA.磁场和电场一样,是客观存在的特殊物质,选项A正确;B.磁体与磁体之间是通过磁场发生作用的,选项B错误;C.磁场是客观存在的物质,不是为了解释磁极间相互作用而人为规定的,选项C错误;D.磁体和电流都能产生磁场,选项D错误。

故选A。

2、在磁场中某区域的磁感线如图所示,则()A.a、b两处的磁感应强度的大小不等,且B a>B bB.同一电流元放在a处受力一定比放在b处受力大C.电荷有可能仅在磁场作用下由a沿纸面运动到bD.某正电荷在磁场和其他外力作用下从a到b,磁场对电荷做负功答案:AA.磁感线的疏密表示磁场的强弱,故a、b两处的磁感应强度的大小不等,且B a>B b,故A正确;B.电流元的受力与放置夹角有关,故无法比较电流元的受力情况,故B错误;C.a、b不在磁感线上,若沿直线运动,则速度方向与磁场存在夹角,则一定受洛伦兹力,故不可能沿纸面由a到b点,故C错误;D.磁场对电荷永不做功,故D错误。

故选A。

小提示:磁感线的疏密表示磁场的强弱;根据安培力的性质可明确安培力的大小情况;明确电荷在磁场中的受力情况,从而明确运动和做功情况。

3、关于产生感应电流的条件,以下说法中正确的是()A.闭合电路在磁场中运动,闭合电路中就一定会有感应电流B.闭合电路在磁场中作切割磁感线运动,闭合电路中一定会有感应电流C.穿过闭合电路的磁通量不为零,闭合电路中一定会产生感应电流D.无论用什么方法,只要穿过闭合电路的磁感线条数发生了变化,闭合电路中一定会有感应电流答案:DA.闭合电路在磁场中运动,磁通量可能不变,没有感应电流产生,A错误;B.闭合电路在磁场中做切割磁感线运动时,若有多个边切割磁感线,产生几个感应电动势,总的感应电动势可能为零,没有感应电流,B错误;C.产生感应电流的条件是闭合回路的磁通量发生变化,与磁通量是否是0无关,C错误;D.只要穿过闭合电路的磁感应条数发生了变化,即穿过闭合电路的磁通量发生变化,闭合电路中一定会有感应电流,D正确。

电磁感应典型题目(含答案)

电磁感应典型题目(含答案)

电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。

高考物理电磁感应练习题及答案

高考物理电磁感应练习题及答案

高考物理电磁感应练习题及答案1. 单选题:(1) 当穿过一根金属导线的电流方向改变时,导线中的电磁场磁感应强度的变化过程是:A. 逐渐增大,然后逐渐减小B. 逐渐减小C. 总是不变D. 逐渐增大答案:D(2) 一个圆形回路平面内以T/秒的速度向外运动,一匀强磁场的磁感应强度大小为B,方向垂直于回路平面。

圆形回路中的恒定磁通量的大小等于:A. BTB. BπT^2C. B/TD. B/T^2答案:B(3) 一根长度为l的匀强磁场中有一导线,导线以v的速度作匀速运动。

如果导线与磁感线的夹角为α,则磁感应强度大小的变化率为:A. l/vcosαB. vcosα/lC. v/lcosαD. v/(lcosα)答案:A2. 多选题:(1) 关于法拉第电磁感应定律的描述,下列说法中正确的是:A. 在一个闭合电路中,当磁通量发生变化时,电路中会产生感应电流B. 直流电流产生的磁感应强度可以通过法拉第电磁感应定律计算C. 在一个闭合电路中,当磁感应强度发生变化时,电路中会产生感应电流D. 电流在导体中流动会产生磁场,这是法拉第电磁感应定律的基础答案:A、B(2) 以下哪些现象可以用电磁感应来解释?A. 电动机的工作原理B. 发电机的工作原理C. 变压器的工作原理D. 电磁铁的吸铁石的原理答案:A、B、C3. 计算题:(1) 一根直导线的长度为0.2m,电流强度为2A。

将这根导线竖直放置在一个垂直于地面的匀强磁场中,磁感应强度为0.5T。

求导线上电流产生的磁场的磁感应强度大小。

解答:根据安培定律,导线产生的磁场的磁感应强度大小与电流强度和导线与磁感应强度之间的夹角有关。

在这个问题中,导线与磁场方向垂直,所以夹角为90°。

由于导线长度为0.2m,电流强度为2A,根据毕奥-萨伐尔定律,我们可以使用以下公式来计算导线上电流产生的磁场的磁感应强度大小:磁感应强度大小= (μ0/4π) * (I/l)其中,μ0是真空中的磁导率,其数值为4π * 10^-7 T·m/A,I是电流强度,l是导线长度。

高考复习超经典电磁感应计算难题-含答案

高考复习超经典电磁感应计算难题-含答案

高考复习超经典电磁感应计算难题-含答案(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1、如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω.一金属棒MN与金属环接触良好,棒与环的电阻均不计.(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时,MN中的感应电动势和流过灯L1的电流;(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场强度随时间均匀变化,其变化率为=T/s,求L1的功率.2、如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为,下落距离为0.8R时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是A、>,a端为正B、>,b端为正C、<,a端为正D、<,b端为正3、如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。

长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。

导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。

线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。

将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。

高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】

高中物理   第09章  电磁感应  (单双棒问题)典型例题(含答案)【经典】

第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。

(2)安培力的特点:安培力为阻力,并随速度减小而减小。

(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。

(完整版)高中物理电磁感应经典例题总结

(完整版)高中物理电磁感应经典例题总结

1.如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。

当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。

答案:收缩,变小解析:由于金属棒ab 在恒力F 的作用下向右运动,则abcd 回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。

2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。

一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。

现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。

则此过程 ( BD )A.杆的速度最大值为B.流过电阻R 的电量为C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量解析:当杆达到最大速度v m 时,022=+--r R v d B mg F m μ得()()22d B r R mg F v m +-=μ,A 错;由公式()()rR BdLr R S B r R q +=+=+=∆∆Φ,B 对;在棒从开始到达到最大速度的过程中由动能定理有:K f F E W W W ∆=++安,其中mg W f μ-=,Q W -=安,恒力F 做的功与摩擦力做的功之和等于杆动能的变化量与回路产生的焦耳热之和,C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D 对。

高中物理题型分类汇总含详细答案-电磁感应

高中物理题型分类汇总含详细答案-电磁感应

高中物理题型分类汇总含详细答案-电磁感应共:15题共:48分钟一、单选题1.在如图所示的条件下,线圈中能产生感应电流的是()A. B. C. D.2.如图甲所示,在MN、QP间存在一匀强磁场,t=0时,一正方形光滑金属线框在水平向右的外力F作用下紧贴MN从静止开始做匀加速运动,外力F随时间t变化的图线如图乙所示,已知线框质量m=1kg、电阻R=2Ω,则()A.线框的加速度为1m/s2B.磁场宽度为6mC.匀强磁场的磁感应强度为2TD.线框进入磁场过程中,通过线框横截面的电荷量为C3.如图甲,在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧。

导线PQ中通有正弦交流电i,i的变化如图乙所示,规定从Q到P为电流正方向。

导线框R中的感应电流()A.在时为最大B.在时改变方向C.在时最大,且沿顺时针方向D.在时最大,且沿顺时针方向4.麦克斯韦的电磁场理论提出:变化的电场产生磁场。

以平行板电容器为例:圆形平行板电容器在充、放电的过程中,板间电场发生变化,产生的磁场相当于一连接两板的板间直导线通以充、放电电流时所产生的磁场。

如图所示,若某时刻连接电容器的导线具有向上的电流,则下列说法中正确的是()A.电容器正在放电B.两平行板间的电场强度E在减小C.该变化电场产生顺时针方向(俯视)的磁场D.两极板间电场最强时,板间电场产生的磁场却为零5.如甲所示。

蹄形磁铁和铁芯间的磁场是均匀地辐向分布的。

当线圈通以如图乙所示的稳恒电流(b端电流流向垂直纸面向内),下列说法正确的是()A.当线圈在如图乙所示的位置时,b端受到的安培力方向向上B.当线圈在如图乙所示的位置时,该线圈的磁通量一定为0C.线圈通过的电流越大,指针偏转角度越小D.线圈转动的方向,由螺旋弹簧的形变决定6.如图所示,两个线圈a、b的半径分别为r和2r,匝数分别为N1和N2,圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b两线圈的磁通量之比为()A.N1:N2B.N1:4N2C.1:2D.1:17.如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场。

【单元练】(必考题)高中物理选修2第二章【电磁感应】经典练习题(含答案解析)

【单元练】(必考题)高中物理选修2第二章【电磁感应】经典练习题(含答案解析)

一、选择题1.如图所示,两根足够长且平行的金属导轨置于磁感应强度为 B = 3 T 的匀强磁场中,磁场的方向垂直于导轨平面,两导轨间距 L =0.1m ,导轨左端连接一个电阻 R =0.5Ω,其余电阻不计,导轨右端连一个电容器C = 2.5 ⨯1010 pF ,有一根长度为 0.2m 的导体棒 ab ,a 端与导轨下端接 触良好,从图中实线位置开始,绕 a 点以角速度ω = 4 rad/s 顺时针匀速 转动 75°,此过程通过电阻 R 的电荷量为( )A .3 ⨯10-2 CB .23⨯10-3C C .(30 + 23) ⨯10-3 CD .(30 - 23) ⨯10-3 C C解析:C 在导体棒ab 绕a 点以角速度ω = 4 rad/s 顺时针匀速转动75°的过程中,由电磁感应所产生的电荷量Q 1=232BL R RΦ==-2310⨯C 同时还会给电容器C 充电,充电后C 对R 放电的电荷量Q 2=2BL 2Cω=-32310⨯C最终通过电阻R 的电荷量为Q =Q 1+Q 2=3(3023)10-+⨯ C故选C 。

2.如图所示,垂直纸面向里的匀强磁场的区域宽度为2a ,磁感应强度的大小为B 。

一边长为a 、电阻为4R 的正方形均匀导线框ABCD 从图示位置沿水平向右方向以速度v 匀速穿过磁场区域,下列图中线框A 、B 两端电压U AB 与线框移动距离x 的关系图象正确的是( )A .B .C .D . D解析:D由楞次定律判断可知,在线框穿过磁场的过程中,A 点的电势始终高于B 的电势,则U AB 始终为正值。

AB 、DC 两边切割磁感线时产生的感应电动势为E Bav =在0−a 内,AB 切割磁感线,AB 两端的电压是路端电压,则AB 3344U E Bav == 在a −2a 内,线框完全在磁场中运动,穿过线框的磁通量没有变化,不产生感应电流,则AB U E Bav ==在2a −3a 内,A 、B 两端的电压等于路端电压的13,则 AB 1144U E Bav == 故D 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应经典计算题1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。

导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。

金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。

若金属棒以v=4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字)(1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。

2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。

导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。

磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。

已知cd 边刚进入磁场时线框恰好做匀速运动。

重力加速度为g 。

(1)求cd 边刚进入磁场时导线框的速度大小。

(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。

(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。

3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。

现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。

设cd 边刚进入磁场时,线框恰好开始做匀速运动。

(g 取10m /s 2) 求:(1)线框进入磁场前距磁场下边界的距离H 。

(2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F 做的功是多少?线框内产生的热量又是多少?4.如图所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP '是磁场的上边界,磁感应强度为B,方向是水平的,垂直于纸面向里。

在磁场的正上方,有一个位于竖直平面内的a b d cll闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R 。

使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP '为止。

从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q 。

求:(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电量是多少? (2)线框是从cd 边距边界PP'多高处开始下落的? (3)线框的cd 边到达地面时线框的速度大小是多少?6.如图所示,竖直平面内有一半径为r 、内阻为R 1、粗细均匀的光滑半圆形金属环,在M 、 N 处与相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R 2,已知 R 1=12R ,R 2=4R 。

在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小 均为B 。

现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道中够长。

已知导体棒ab 下落r /2时的速度大小为v 1,下落到MN 处的速度大小为v 2。

(1)求导体棒ab 从A 下落r /2时的加速度大小;(2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R 2上的电功率P 2;(3)若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时速度大小为v 3,要使其在外力F 作用下做匀加速直线运动,加速度大小为a ,求所加外力F 随时间变化的关系式。

7. 如图所示,空间存在垂直纸面向里的两个匀强磁场区域,磁感应强度大小均为B ,磁场 Ⅰ宽为L ,两磁场间的无场区域为Ⅱ,宽也为L ,磁场Ⅲ宽度足够大。

区域中两条平行直光 滑金属导轨间距为l ,不计导轨电阻,两导体棒ab 、cd 的质量均为m ,电阻均为r 。

ab 棒静 止在磁场Ⅰ中的左边界处,cd 棒静止在磁场Ⅲ中的左边界处,对ab 棒施加一个瞬时冲量, ab 棒以速度v 1开始向右运动。

(1)求ab 棒开始运动时的加速度大小;(2)ab 棒在区域Ⅰ运动过程中,cd 棒获得的最大速度为v 2,求ab 棒通过区域Ⅱ的时间;Hh l 2l 1a b c dP P ′ B(3)若ab 棒在尚未离开区域Ⅱ之前,cd 棒已停止运动,求:ab 棒在区域Ⅱ运动过程中产生的焦耳热。

12.磁悬浮列车运行的原理是利用超导体的抗磁作用使列车向上浮起,同时通过周期性变换磁极方向而获得推进动力,其推进原理可简化为如图所示的模型,在水平面上相距L 的两根平行导轨间,有竖直方向且等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动,这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动,设直导轨间距L = 0.4m ,B = 1T ,磁场运动速度为v = 5 m/s ,金属框的电阻R = 2Ω。

试问:(1)金属框为何会运动,若金属框不受阻力时金属框将如何运动?(2)当金属框始终受到f = 1N 阻力时,金属框最大速度是多少? (3)当金属框始终受到1N 阻力时,要使金属框维持最大速度,每秒钟需消耗多少能量?这些能量是谁提供的?13.图中虚线为相邻两个匀强磁场区域1和2的边界,两个区域的磁场方向相反且都垂直于纸面,磁感应强度大小都为B ,两个区域的高度都为l 。

一质量为m 、电阻为R 、边长也为l 的单匝矩形导线框abcd ,从磁场区上方某处竖直自由下落,ab 边保持水平且线框不发生转动。

当ab 边刚进入区域1时,线框恰开始做匀速运动;当线框的ab 边下落到区域2的中间位置时,线框恰又开始做匀速运动。

求:(1)当ab 边刚进入区域1时做匀速运动的速度v 1;(2)当ab 边刚进入磁场区域2时,线框的加速度的大小与方向; (3)线框从开始运动到ab 边刚要离开磁场区域2时的下落过程中产生的热量Q 。

17.在图甲中,直角坐标系0xy 的1、3象限内有匀强磁场,第1象限内的磁感应强度大小为2B ,第3象限内的磁感应强度大小为B ,磁感应强度的方向均垂直于纸面向里.现将半径为l ,圆心角为900的扇形导线框OPQ 以角速度ω绕O 点在纸面内沿逆时针匀速转动,导线框回路vl a bc d电阻为R .(1)求导线框中感应电流最大值.(2)在图乙中画出导线框匀速转动一周的时间内感应电流I 随时间t 变化的图象.(规定与图甲中线框的位置相对应的时刻为t =0).18.如图甲所示是某同学设计的一种振动发电装置的示意图,它的结构是一个套在辐向形永久磁铁槽中的半径为r=0.10m 、匝数n=20的线圈,磁场的磁感线均沿半径方向均匀分布(其右视图如图乙所示)。

在线圈所在位置磁感应强度B 的大小均为B =0.20T ,线圈的电阻为R 1=0.50Ω,它的引出线接有R 2=9.5Ω的小电珠L 。

外力推动线圈框架的P 端,使线圈沿轴线做往复运动,便有电流通过电珠。

当线圈向右的位移x 随时间t 变化的规律如图丙所示时(x 取向右为正)。

求:⑴线圈运动时产生的感应电动势E 的大小;⑵线圈运动时产生的感应电流I 的大小,并在图丁中画出感应电流随时间变化的图象,至少画出0~0.3s 的图象(在图甲中取电流由C 向上通过电珠L 到D 为正);⑶每一次推动线圈运动过程中作用力F 的大小;⑷该发动机的输出功率P (摩擦等损耗不计)。

/s 0.1 0.2 0.3 0.4 0.5 0.6 丙 /s 乙 甲19.平行轨道PQ 、MN 两端各接一个阻值R 1=R 2=8Ω的电热丝,轨道间距L =1m ,轨道很长,本身电阻不计. 轨道间磁场按如图所示的规律分布,其中每段垂直纸面向里和向外的磁场区域宽度为2cm ,磁感应强度的大小均为B =1T ,每段无磁场的区域宽度为1cm.导体棒ab 本身电阻r =1Ω,与轨道接触良好. 现让ab 以v =10m/s 的速度向右匀速运动. 求:(1)当ab 处在磁场区域时,ab 中的电流为多大?ab 两端的电压为多大?ab 所受磁场力为多大?(2)整个过程中,通过ab 的电流是否是交变电流?若是,则其有效值为多大?并画出通过ab 的电流随时间的变化图象.20.如图所示,一个被x 轴与曲线方程y =0.2 sin10 x /3(m )所围的空间中存在着匀强磁场.磁场方向垂直纸面向里,磁感应强度B =0.2 T .正方形金属线框的边长是0.40 m ,电阻是0.1 ,它的一条边与x 轴重合.在拉力F 的作用下,线框以10.0 m/s 的速度水平向右匀速运动.试求:(1)拉力F 的最大功率是多少? (2)拉力F 要做多少功才能把线框拉过磁场区?22.用密度为d 、电阻率为ρ、横截面积为A 的薄金属条制成边长为L 的闭合正方形框abb a ''。

如图所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行。

设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计。

可认为方框的aa '边和bb '边都处在磁极之间,极间磁感应强度大小为B 。

方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力)。

⑴求方框下落的最大速度v m (设磁场区域在数值方向足够长);⑵当方框下落的加速度为g /2时,求方框的发热功率P ;⑶已知方框下落时间为t 时,下落高度为h ,其速度为v t (v t <v m )。

若在同一时间t 内,方框内产生的热与一恒定电流I 0在该框内产生的热相同,求恒定电流I 0的表达式。

23.如图所示,将边长为a 、质量为m 、电阻为R 的正方形导线框竖直向上抛出,穿过宽度为b 、磁感应强度为B 的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚无 无 无 1cm R 2cm 2cmR 2 P Q M N v a b …… x y/m O 0.3F 金属方框磁极图2 装置俯视示意图 L a a / b b /S好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f 且线框不发生转动.求: (1)线框在下落阶段匀速进人磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1;(3)线框在上升阶段通过磁场过程中产生的焦耳热Q .参考答案1. (1)金属棒产生的电动势大小为E=B2Lv =0.42V=0.56V(2)金属棒运动到AC 位置时,导线框左、右两侧电阻并联,其并联电阻大小为 R 并=1.0,根据闭合电路欧姆定律I=rR E +并=0.47A 根据右手定则,电流方向从N 到M(3)导线框消耗的功率为:P 框=I 2R 并=0.22W2.(1)设导线框cd 边刚进入磁场时的速度为v ,则在cd 边进入磁场过程时产生的感应电动势为E =Blv ,根据闭合电路欧姆定律,导线框的感应电流为I=RBlv导线框受到的安培力为F 安= BIl =Rv l B 22,因cd 刚进入磁场时导线框做匀速运动,所以有F 安=mg ,以上各式联立,得:22lB mgRv =。

相关文档
最新文档