求曲线的切线方程的几种方法

合集下载

求切线方程的三种方法

求切线方程的三种方法

求切线方程的三种方法宝子们,今天咱们来唠唠求切线方程的那些事儿。

这切线方程啊,就像是给曲线找到一个最亲密接触的直线小伙伴,可有意思啦。

一、利用导数求切线方程。

咱先说说这个用导数的方法。

导数这玩意儿啊,其实就是曲线在某一点的斜率。

比如说有个函数y = f(x),咱们先求出它的导数f'(x)。

那在某一点x = a处的切线斜率k呢,就等于f'(a)。

这时候啊,我们已经知道了斜率,再知道这个点(a, f(a))在切线上,就可以用点斜式y - y₁ = k(x - x₁)来求出切线方程啦。

就像你知道一个朋友的走路速度(斜率),又知道他从哪个地方(点)出发,就能算出他走的路线(切线方程)啦。

二、设切点法。

再来说说设切点法。

有时候啊,题目没有直接告诉你切点是啥。

这时候咱就可以聪明点,设切点为(x₀, y₀)。

那这个点既在曲线上又在切线上哦。

如果曲线方程是y = f(x),那y₀ = f(x₀)。

然后呢,求出函数在x₀处的导数f'(x₀),这就是切线的斜率啦。

再根据点斜式写出切线方程y - y₀ = f'(x₀)(x - x₀)。

这就像是在玩一个猜谜游戏,我们先假设一个神秘的点(切点),然后通过各种线索(曲线方程和导数)来找出这个切线方程这个宝藏呢。

三、利用已知切线方程的形式来求。

还有一种方法呢,就是利用已知切线方程的形式。

比如说对于圆的方程(x - a)²+(y - b)² = r²,在点(x₁, y₁)处的切线方程是(x₁ - a)(x - a)+(y₁ - b)(y - b)= r²。

对于椭圆、双曲线等一些特殊的曲线也有类似的固定形式的切线方程哦。

这就像是有个小秘籍一样,直接套用这个形式就能求出切线方程啦。

就好比你有一把万能钥匙,遇到特定的锁(特殊曲线在某点的切线),直接一插就能打开(求出切线方程)啦。

宝子们,这三种求切线方程的方法是不是很有趣呀?只要多练练,你就能在求切线方程这个小天地里畅游无阻啦。

曲线方程求切

曲线方程求切

曲线方程求切曲线的切线是一条在该曲线上的直线,且该直线在该点处与曲线的切线方向一致。

曲线函数一般是解析式,可以通过求导的方式求出其在某一点的导数,进而求出该点处的切线方程。

关于曲线方程求切线,以下是一些常用的方法:1. 导数法导数法是求解曲线切线的最基础方法。

对于任意曲线函数y=f(x),我们可以通过求导得到该曲线的导函数y'=f'(x)。

在给定的点(x0,y0)处,该点处的切线斜率就是该点处的导数f'(x0)。

因此,该点处的切线方程为:y-y0 = f'(x0)(x-x0)这就提供了一个曲线函数求切线的最基础模板。

我们只需要求出函数的导数,以及给定的点,就可以通过上述公式了解切线的方程。

2. 参数方程法在某些情况下,我们并不知道函数y=f(x)的显式表达式,我们只知道该曲线的参数方程,比如:x = f(t)y = g(t)在这种情况下,我们可以同时求解x和y的导数,即有:dx/dt = f'(t)dy/dt = g'(t)在给定的点(t0,x0),我们可以求出导数dx/dt和dy/dt,并计算切线斜率:k = dy/dx = (dy/dt) / (dx/dt)这个斜率可以计算出切线方程,即:y-y0 = k(x-x0)3. 向量法如果给定某一点处的曲线斜率,我们可以利用该点处的向量方程,构建切线的向量方程。

具体来说,我们可以将切线的方向向量看作曲线在该点处的切线向量,将该向量除以该向量的模长,就可以得到单位向量。

而该向量的起点即为给定点,终点即为下一个点。

因此,切线向量就可以表示为:t = (1/sqrt(1+f'(x0)^2), f'(x0)/sqrt(1+f'(x0)^2))这个向量关于给定点的终点就是切线上的任一点,因此,我们可以取得任意一个上述公式中的点,我们就立即得到了切线方程。

切线的证明方法。-概述说明以及解释

切线的证明方法。-概述说明以及解释

切线的证明方法。

-概述说明以及解释1.引言1.1 概述概述部分的内容:引言部分旨在介绍本文将要探讨的主题——切线的证明方法。

切线作为数学中重要的概念,在几何、微积分等领域中都起着至关重要的作用。

切线的证明方法是指在给定一个曲线时,如何确定该曲线上某点的切线。

本文将会介绍三种常见的切线的证明方法,并对其进行详细的讲解和演示。

这些证明方法包括第一个证明方法、第二个证明方法和第三个证明方法。

第一个证明方法将从基础的几何知识出发,通过利用曲线上两点之间的斜率来确定切线的方程。

我们将详细介绍这个方法的步骤和计算过程,并通过实例来加深理解。

第二个证明方法将引入导数的概念,利用导数来求解切线的斜率。

我们将介绍导数的定义和性质,以及如何利用导数求解切线的斜率,并通过例子来说明这个方法的应用。

第三个证明方法与微积分中的极限概念相关,通过极限的定义来求解切线的斜率。

我们将探讨极限的概念和性质,以及如何运用极限来确定切线的斜率,并通过实例进行演示。

本文的目的是帮助读者更加深入地理解切线的概念和证明方法。

通过学习这些方法,读者将能够独立地解决切线相关的问题,并将这些方法应用到其他数学领域中。

在结论部分,我们将对这三种证明方法进行总结,并探讨它们在实际问题中的应用。

同时,我们也将展望未来,探讨可能的改进和拓展方向,以进一步提升切线的证明方法的应用价值。

接下来,我们将详细介绍第一个证明方法,以便读者能够更好地理解和掌握这个技巧。

1.2文章结构文章结构部分的内容应该是对整篇文章的组织和章节安排进行介绍。

在本篇文章中,我们将讨论切线的证明方法,并按照如下结构进行阐述:第一部分是引言。

在引言中,我们将对切线的概念进行概述,介绍其在数学中的重要性以及与其他几何概念的关系。

同时,我们还会简要介绍本文的结构和目的。

第二部分是正文。

在正文中,我们将详细介绍三种不同的证明方法。

首先,我们将讨论第一个证明方法,详细描述其步骤和推导过程。

然后,我们将进一步介绍第二个证明方法,指出其与第一个证明方法的异同之处。

圆锥曲线切线方程的五种求法

圆锥曲线切线方程的五种求法

圆锥曲线切线方程的五种求法切线对于研究圆锥曲线的性质具有十分重要的作用,中学阶段常用的求圆锥曲线的切线方程的方法主要有以下五种:一、向量法在求圆的切线时,可以利用圆心和切点的连线垂直于切线以及向量的内积运算来求。

例1.已知圆0的方程是(x-a ) 2+ (y-b ) 2=r2,求经过圆上一点M(x0, y0)的圆的切线I的方程.解:设所求切线I上任意一点N的坐标是(x, y)由已知得:点0的坐标是(a,b),且M的坐标是(x0,y0),值得注意的是:此种方法只对于椭圆问题有效.三、判别式法也可以利用一元二次方程根的判别式来求圆锥曲线的切线方程,这种方法也是中学阶段的常用方法之一.例 3. 求经过点M( 2, 1 )的双曲线:x2-2y2=2 的切线I 的方程.将它代入方程x2-2y2=2 中整理得:( 2k2-1 )x2-4k ( 2k-1 )x+( 8k2-8k+4 ) =0,由已知得:△ =[-4k (2k-1 ) ]2-4 (2k2-1 ) (8k2-8k+4 ) =0, 解得:k=1,故所求切线I的方程为:y=x- (2X1 -1 ), 即:x-y-1=0.四、导数法新教材中介绍了微积分的初步知识,我们也可把圆锥曲线的方程看作关于x 的隐函数,利用导数求圆锥曲线的切线方程:例 4. 此处仍以上面的例 3 为例.解:对方程:x2-2y2=2 两边都取关于x 的导数,得:2x-4yy' =0,•••过点M(2, 1)的双曲线x2-2y2=2的切线I的方程为:x-y-1=0.五、几何法通过对椭圆、双曲线以及抛物线的几何性质的研究,我们知道:若焦点为F1、F2的椭圆或双曲线上有一点M则/F1MF2的平分线一定与圆锥曲线相切;又若焦点为F的抛物线上有一点M, 过M作准线的垂线,垂足为N,贝U FN的中点P与M的连线PM必与抛物线相切。

据此,我们也可以将圆锥曲线的切线先用几何方法做出来,然后再求出切线的方程:例 5. 求抛物线C:y2=8x 上经过点M( 8,8)的切线I 的方程.解:由抛物线C的方程可得其焦点F为(2, 0),准线方程为:x=-2 ,过点M(8, 8)作准线的垂线,设垂足为N,贝U N的坐标是( -2 , 8),又设FN的中点为P,则P的坐标为(0, 4),。

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型舒云水过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒解:由题设知点P 在曲线上,∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程)(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程)(0x f y -=)(0x f ')(0x x -求出切线方程﹒例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒又知切线过点)1,1(-,把它代入上述方程,得)1)(23()2(100030x x x x --=---﹒解得10=x ,或210-=x ﹒所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)87,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒这种类型的题目的解法同上面第二种类型﹒例 3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )解:由题设知原点O 不在曲线上,设切点坐标为P )63,(20400+-x x x , x x y 643-=',切线斜率为(03064x x -),切线方程为:))(64()63(00302040x x x x x x y --=+--﹒ 又知切线过点)0,0(,把它代入上述方程,得))(64()63(000302040x x x x x --=+--﹒ 整理得:0)2)(1(2020=-+x x ﹒ 解得20-=x ,或20=x ﹒ 所求切线方程为:x y 22-=或x y 22=﹒练习:1.求曲线14)(23+-=x x x f 在点)2,1(-P 处的切线方程﹒2. 求过曲线34313+=x y 上的点)4,2(的切线方程﹒3.过点)2,0(作抛物线12++-=x x y 的切线,求切线方程﹒ 答案:1.035=-+y x ;2.044=--y x 或02=+-y x ;3.023=+-y x 或02=--y x ﹒。

圆锥曲线的切线方程的三种求法

圆锥曲线的切线方程的三种求法

圆锥曲线的切线方程问题侧重于考查圆锥曲线的性质、标准方程以及直线方程的几种形式.此类问题的难度一般不大,对同学们的抽象思维和分析能力的要求较高.下面主要探讨一下求圆锥曲线的切线方程的三种方法.一、向量法在求圆的切线方程时,可巧妙利用圆心和切点的连线垂直于切线的性质来建立关系式.在运用向量法解题时,可先给各条线段赋予方向,求得各条直线的方向向量,然后根据“互相垂直的两个向量的数量积为0”的性质建立圆心、切点、切线之间的关系式,从而求得切线的方向向量以及直线的方程.例1.已知圆O的方程是(x-a)2+(y-b)2=r2,求经过圆上一点M(x0,y0)的圆的切线l的方程.解:设切线l上任意一点N的坐标是(x,y).由(x-a)2+(y-b)2=r2得点O的坐标是(a,b),所以OM=(x0-a,y0-b), MN=(x-x0,y-y0).又因为OM∙MN=0,即[(x-a)-(x0-a)](x0-a)+[(y-b)-(y0-b)](y0-b)=0,所以过圆上的点M(x0,y0)的圆的切线l的方程是:(x0-a)(x-a)+(y0-b)(y-b)=[(x0-a)2+(y0-b)2],所以l的方程:(x0-a)(x-a)+(y0-b)(y-b)=r2.由已知圆的方程与圆上一点的坐标,可得出圆心的坐标,再设出切线上任意一点N的坐标,即可得到与切线垂直的向量,根据向量运算便可求得切线的方程.二、导数法我们知道,导数的几何意义是:该函数曲线在某一点上的切线的斜率,那么在求圆锥曲线的切线方程时,可对曲线的方程进行求导,便可得到曲线在切点处切线的斜率或切点的坐标,根据直线的点斜式方程即可求得切线的方程.例2.设A,B为曲线C:y=x24上两点,A与B的横坐标之和为4.设M为曲线C:y=x24上一点,C在M处的切线与直线AB平行,且AB⊥BM,求直线AB的方程.解:设A(x1,y1),B(x2,y2),则x1≠x2,y1=x124,y2=x224,x1+x2=4,于是直线AB的斜率为k=y1-y2x-x=x1+x24=1.由y=x24,得y,=x2.设M(x3,y3),由题意可知:x32=1,解得x3=2,则M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2-m),||MN=||m+1,将y=x+m代入y=x24得x2-4x-4m=0.当Δ=16()m+1>0,即当m>-1时,x1=2+2m+1或x2=2-2m+1,从而可得||AB=2||x1-x2=42(m+1),由||AB=2||MN得42(m+1)=2(m+1),解得m=7,所以直线AB的方程为y=x+7.在求得直线AB的斜率后,便可运用导数法对抛物线的方程求导,得出M点的坐标,再根据韦达定理和弦长公式求得切线的方程.三、几何性质法在解答圆锥曲线问题时,我们经常要用到椭圆、双曲线以及抛物线的几何性质,并结合几何图形,如三角形、梯形、平行四边形的性质来解题.采用几何性质法,关键要根据题意绘制出几何图形,明确各个点、直线、曲线的位置关系,然后运用几何性质来解题.例3.求抛物线C:y2=8x上经过点M(8,8)的切线l的方程.解:由抛物线C:y2=8x可得其焦点F为(2,0),准线方程为:x=-2,过点M(8,8)作准线的垂线,设垂足为N,则N的坐标为(-2,8),又设FN的中点为P,则P的坐标为(0,4),故直线PM的方程为:y=8-48x+4,即x-2y+8=0,所以切线l的方程是:x-2y+8=0.我们根据抛物线的几何性质作出准线,根据图形明确各点、曲线、切线的位置,根据点、直线之间的位置关系以及中点坐标公式建立关系式,求得切线的斜率与方程.相比较而言,几何性质法和导数法比较常用,运用几何性质法和向量法解题过程中的运算量较小.在求圆锥曲线的切线方程时,同学们要结合图形来解题,这样不仅能降低解题的难度,还能提升解题的效率.(作者单位:江苏省阜宁中学)周红芹解题宝典40。

求曲线在某点的切线方程方法

求曲线在某点的切线方程方法

求曲线在某点的切线方程方法引言在数学和物理学中,研究曲线的切线是很常见的问题。

切线可以帮助我们了解曲线的局部特征和性质,它在微积分、力学和工程学等领域中都有广泛的应用。

本文将介绍一些常见的方法来求解曲线在某点的切线方程。

切线的定义在数学中,曲线上某点的切线可以被定义为通过该点并且与曲线在该点附近重合的直线。

切线的斜率即为曲线在该点的导数。

方法一:求导法一种常见的方法是使用导数来求解曲线在某点的切线方程。

设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。

1.首先求曲线的导数f'(x)。

2.将点(x0,y0)带入导数函数,求出导数的值f'(x0)。

3.使用切线方程的一般形式y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。

方法二:斜率和点法另一种常用的方法是使用斜率和已知点来求解切线方程。

同样假设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。

1.计算曲线在点(x0,y0)处的斜率,即f'(x0)。

2.使用点斜式切线方程y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。

方法三:曲线近似法第三种方法是使用曲线的近似来求解切线方程。

此方法适用于那些难以计算导数的曲线。

1.在点(x0,y0)处取曲线的一个非常小的线段,该线段基本上与切线重合。

2.使用线性函数来拟合这个线段,得到近似切线方程。

方法四:参数法对于参数方程表示的曲线,我们可以使用参数法来求解切线方程。

假设曲线的参数方程为x=f(t),y=g(t),我们要求解曲线在参数值t0处的切线方程。

1.计算参数值t0对应的点的坐标(x0,y0)。

2.求解参数方程的导数dx/d t和dy/dt。

3.使用点斜式切线方程y-y0=(dy/d t)/(dx/d t)(x-x0),将(x0,y0)、dx/d t和d y/dt代入,得到切线方程。

圆锥曲线的切线方程求解方法总结

圆锥曲线的切线方程求解方法总结

圆锥曲线的切线方程求解方法总结圆锥曲线是代数几何中的重要概念,指由一个平面与一个锥体相交而产生的曲线。

圆锥曲线包括椭圆、抛物线和双曲线,它们在数学和物理学等领域中有广泛的应用。

本文将总结圆锥曲线切线方程的求解方法,并以椭圆、抛物线和双曲线为例进行说明。

一、椭圆的切线方程求解方法椭圆是一个平面上的闭合曲线,其形状类似于椭圆形。

对于椭圆上的一点P,我们要求解的是通过该点的切线方程。

方法1:使用微积分方法求解椭圆的切线方程。

设椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1(其中a和b为椭圆的半长轴和半短轴),点P的坐标为(x0, y0)。

首先对椭圆方程两边求导,得到2x/a^2 + 2y/b^2 * y' = 0。

然后将点P的坐标代入,得到x0/a^2 + y0/b^2 * y' = 0。

最后将此式变形为y' = -x0 * a^2 / (y0 * b^2),即为所求的切线方程。

方法2:使用解析几何方法求解椭圆的切线方程。

设椭圆的焦点为F1和F2,点P在椭圆上的轨迹为OP。

设P点的坐标为(x0, y0),则PF1和PF2的距离之和等于2a,即PF1 + PF2 = 2a。

又根据焦点和点到直线的距离公式,可得切线所在直线与轴的交点Q的坐标为(a^2/x0, b^2/y0),进而得到切线方程的解析式。

二、抛物线的切线方程求解方法抛物线是一个平面上的开口曲线,其形状类似于抛物形。

对于抛物线上的一点P,我们要求解的是通过该点的切线方程。

方法1:使用微积分方法求解抛物线的切线方程。

设抛物线的标准方程为y^2 = 2px(其中p为抛物线的焦点到顶点的距离),点P的坐标为(x0, y0)。

首先对抛物线方程两边求导,得到2yy' = 2p。

然后将点P的坐标代入,得到y0 * y' = p。

最后将此式变形为y' = p / y0,即为所求的切线方程。

方法2:使用解析几何方法求解抛物线的切线方程。

曲线相切求解题技巧

曲线相切求解题技巧

曲线相切求解题技巧曲线相切是数学中的重要概念和问题之一,解决此类问题的技巧可以帮助我们更好地理解和研究曲线的性质。

在这里,我将介绍几种常见的曲线相切的求解技巧。

1. 几何解法:利用曲线在相切点处的切线与曲线的几何性质,可以得到曲线相切的条件和方程。

具体步骤如下:(1)确定两曲线相切的点坐标,假设为P(x0,y0)。

(2)求出曲线在该点处的切线方程,设为y=k(x-x0)+y0。

(3)将切线方程与另一曲线的方程相等,得到关于x的方程。

(4)解方程,求出相切点的x坐标。

(5)将求得的x坐标代入切线方程,求出相切点的y坐标。

例如,确定两曲线y = x^2 和 y = 2x + 1 在某点处相切的位置。

解:(1)设两曲线相切点为P(x0,y0)。

(2)则曲线y = x^2在点P处的切线方程为y = 2x0x - x0^2。

(3)令切线方程与曲线y = 2x + 1相等,得到方程4x0^2 + x0 - 1 = 0。

(4)解方程得到x0 = -1/8或x0 = 1/2。

(5)将x0代入切线方程,求得相切的点为(-1/8,-3/8)和(1/2,5/2)。

2. 代数解法:利用曲线的方程进行代数运算,推导出曲线相切的条件和方程。

具体步骤如下:(1)设两曲线的方程为f(x)和g(x)。

(2)曲线相切的条件是f(x0) = g(x0)和f'(x0) = g'(x0),其中x0为相切点的横坐标。

(3)利用f(x)=g(x)得到方程f(x)-f(x0) = g(x)-g(x0)。

(4)利用f'(x)=g'(x)得到方程f'(x)-f'(x0) = g'(x)-g'(x0)。

(5)将得到的方程组进行化简、整理和求解,得到相切点的横坐标。

(6)将求得的横坐标代入任一曲线的方程,求解得到相切点的纵坐标。

例如,确定两曲线y = x^2 和 y = 2x + 1 在某点处相切的位置。

函数图像的切线问题

函数图像的切线问题

函数图像的切线问题要点梳理归纳1.求曲线y =f(x)的切线方程的三种类型及其方法(1)已知切点P(x 0,f(x 0)),求y =f(x)在点P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0). (2)已知切线的斜率为k ,求y =f(x)的切线方程:设切点为P(x 0,y 0),通过方程k =f′(x 0)解得x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求y =f(x)的切线方程:设切点为P(x 0,y 0),利用导数将切线方程表示为y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出x 0.2.两个函数图像的公切线函数y=f(x)与函数y=g(x) 存在公切线,若切点为同一点P(x 0,y 0),则有 ⎩⎪⎨⎪⎧f ′(x 0)=g ′(x 0),f (x 0)=g (x 0).若切点分别为(x 1,f(x 1)),(x 2,g(x 2)),则有212121)()()()(x x x g x f x g x f --='='.题型分类解析题型一 已知切线经过的点求切线方程例1.求过点(2,2)P 与已知曲线3:3S y x x =-相切的切线方程. 解:点P 不在曲线S 上.设切点的坐标()00,x y ,则30003y x x =-,函数的导数为2'33y x =-,切线的斜率为020'33x x k y x ===-,2000(33)()y y x x x ∴-=--切线方程为,点(2,2)P 在切线上,20002(33)(2)y x x ∴-=--,又30003y x x =-,二者联立可得001,1x x ==或相应的斜率为0k =或9k =-±∴切线方程为2y =或(9(2)2y x =-±-+.例 2. 设函数()()2f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为________解析:由切线过()()1,1g 可得:()13g =,所以()()21114f g =+=,另一方面,()'12g =,且()()''2f x g x x =+,所以()()''1124f g =+=,从而切线方程为:()4414y x y x -=-⇒=例3. 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为_________ 解析:代入(1,3)可得:2k =,()'23f x x a =+,所以有()()'113132f a b f a =++=⎧⎪⎨=+=⎪⎩,解得13a b =-⎧⎨=⎩题型二 已知切线方程(或斜率),求切点坐标(或方程、参数)例4.已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行 (2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直 解:设切点坐标为()00,x y ()'0012fx x ∴=+ 由切线与420x y --=平行可得: ()'00011242f x x x =+=⇒= 011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)设切点坐标()00,x y ()'0012fx x ∴=+,直线30x y --=的斜率为1 ()'00011213f x x x ∴=+=-⇒=- 而()00,x ∈+∞ 013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直例5.函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln22y x =-++上,322ln222ln24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b 解:P 在32ln22y x =-++上,()2322ln222ln24f ∴=-⋅++=-()2ln242ln24f a b ∴=-=-又因为P 处的切线斜率为3- ()'2afx bx x=- ()'2432a f b ∴=-=-, ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩例6.设函数()()32910f x x ax x a =---<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为12-,进而可得导函数的最小值为12-,便可求出a 的值解:()2'2222221111329393939333f x x ax x a a a x a a ⎛⎫⎛⎫=--=-+--=--- ⎪ ⎪⎝⎭⎝⎭()'2min 11933f x f a a ⎛⎫∴==-- ⎪⎝⎭直线126x y +=的斜率为12-,依题意可得:2191233a a --=-⇒=± 0a <3a ∴=- 题型三 公切线问题例7.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A.1-或2564-B. 1-或214C. 74-或2564-D. 74-或7 思路:本题两条曲线上的切点均不知道,且曲线21594y ax x =+-含有参数,所以考虑先从常系数的曲线3y x =入手求出切线方程,再考虑在利用切线与曲线21594y ax x =+-求出a 的值.设过()1,0的直线与曲线3y x =切于点()300,x x ,切线方程为()320003y x x x x -=-,即230032y x x x =-,因为()1,0在切线上,所以解得:00x =或032x =,即切点坐标为()0,0或327,28⎛⎫⎪⎝⎭.当切点()0,0时,由0y =与21594y ax x =+-相切可得()21525490464a a ⎛⎫∆=--=⇒=- ⎪⎝⎭,同理,切点为327,28⎛⎫ ⎪⎝⎭解得1a =-答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与21594y ax x =+-求a 的过程中,由于曲线21594y ax x =+-为抛物线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的0∆=来求解,减少了运算量.通过例7,例8可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线)例8.若曲线21x y C =:与曲线xae y C =:2存在公切线,则a 的最值情况为( ) A .最大值为28e B .最大值为24e C .最小值为28e D .最小值为24e 解析:设公切线与曲线1C 切于点()211,x x ,与曲线2C 切于点()22,x x ae ,由''2xy xy ae ⎧=⎪⎨=⎪⎩可得:22211212x x ae x x ae x x -==-,所以有221111221122222x x x x x x x x x ae ⎧-=⇒=-⎪-⎨⎪=⎩,所以2244x ae x =-,即()2241x x a e -=,设()()41xx f x e -=,则()()'42xx fx e -=.可知()f x 在()1,2单调递增,在()2,+∞单调递减,所以()max 242a f e==,例10.曲线xy e =在点()22,e 处的切线与坐标轴所围三角形的面积为( )A.2eB. 22e C. 24eD.22e思路:()'x f x e = 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ()'22f e ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e - 221122e S e ∴=⨯⨯=例11.一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ). A.0,2π⎡⎤⎢⎥⎣⎦ B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ C.3,4ππ⎡⎫⎪⎢⎣⎭ D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来.'231y x =-,对于曲线上任意一点P ,斜率的范围即为导函数的值域:[)'2=311,y x -∈-+∞,所以倾斜角的范围是30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭.答案:B 例12.已知函数()323f x x x =-,若过点()1,P t 存在3条直线与曲线()y f x =相切,求t 的取值范围思路:由于并不知道3条切线中是否存在以P 为切点的切线,所以考虑先设切点()00,x y ,切线斜率为k ,则满足()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩,所以切线方程为()00y y k x x -=-,即()()()3200002363y x x x x x --=--,代入()1,P t 化简可得:3200463t x x =-+-,所以若存在3条切线,则等价于方程3200463t x x =-+-有三个解,即y t =与()32463g x x x =-+-有三个不同交点,数形结合即可解决解:设切点坐标()00,x y ,切线斜率为k ,则有:()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩∴ 切线方程为:()()()3200002363y x x x x x --=-- 因为切线过()1,P t ,所以将()1,P t 代入直线方程可得:()()()32000023631t x x x x --=-- ()()()23000063123t x x x x ⇒=--+-233320000000636323463x x x x x x x =--++-=-+-所以问题等价于方程3200463t x x =-+-,令()32463g x x x =-+-即直线y t =与()32463g x x x =-+-有三个不同交点()()'21212121g x x x x x =-+=--令()'0g x >解得01x << 所以()g x 在()(),0,1,-∞+∞单调递减,在()0,1单调递增()()()()11,03g x g g x g ==-==-极大值极小值所以若有三个交点,则()3,1t ∈--所以当()3,1t ∈--时,过点()1,P t 存在3条直线与曲线()y f x =相切例13. 已知曲线C:x 2=y ,P 为曲线C 上横坐标为1的点,过P 作斜率为k(k ≠0)的直线交C 于另一点Q ,交x 轴于M ,过点Q 且与PQ 垂直的直线与C 交于另一点N ,问是否存在实数k ,使得直线MN 与曲线C 相切?若存在,求出K 的值,若不存在,说明理由.思路:本题描述的过程较多,可以一步步的拆解分析.点()1,1P ,则可求出:1PQ y kx k =-+,从而与抛物线方程联立可解得()()21,1Q k k --,以及M 点坐标,从而可写出QN 的方程,再与抛物线联立得到N 点坐标.如果从,M N 坐标入手得到MN 方程,再根据相切()0∆=求k ,方法可以但计算量较大.此时可以着眼于N 为切点,考虑抛物线2x y =本身也可视为函数2y x =,从而可以N 为入手点先求出切线,再利用切线过M 代入M 点坐标求k ,计算量会相对小些. 解:由P 在抛物线上,且P 的横坐标为1可解得()1,1P∴设():11PQ y k x -=-化简可得:1y kx k =-+ 1,0k M k -⎛⎫∴ ⎪⎝⎭21y x y kx k ⎧=∴⎨=-+⎩ 消去y :210x kx k -+-= 121,1x x k ∴==- ()()21,1Q k k ∴--设直线()()21:11QN y k x k k --=---⎡⎤⎣⎦即()()2111y k x k k =----⎡⎤⎣⎦ ∴ 联立方程:()()22111y x y k x k k ⎧=⎪⎨=----⎡⎤⎪⎣⎦⎩()211110x x k k k k ⎛⎫∴+---+= ⎪⎝⎭ ()11111Q N N x x k k x k k k ⎛⎫⎛⎫∴⋅=---+⇒=--+ ⎪ ⎪⎝⎭⎝⎭2111,1N k k k k ⎛⎫⎛⎫⎛⎫∴--+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2y x =可得:'2y x =∴切线MN 的斜率'1|21N MN x x k y k k =⎛⎫==--+ ⎪⎝⎭2111:1211MN y k k x k k k k ⎡⎤⎛⎫⎛⎫⎛⎫∴--+=--++-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦代入1,0k M k -⎛⎫⎪⎝⎭得: 2111112111k k k k k k k ⎡⎤⎛⎫⎛⎫⎛⎫--+=--+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦211210k k k k k∴-+=⇒+-=,12k -±∴=小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算0∆=简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数f(x)=x 3+2ax 2+bx +a ,g(x)=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线l.(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f(x)+g(x)=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立,求实数m 的取值范围.【解答】 (1)f′(x)=3x 2+4ax +b ,g′(x)=2x -3. 由于曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线, 故有f(2)=g(2)=0,f′(2)=g′(2)=1.由此得⎩⎪⎨⎪⎧8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得f(x)=x 3-4x 2+5x -2, 所以f(x)+g(x)=x 3-3x 2+2x.依题意,方程x(x 2-3x +2-m)=0有三个互不相同的实根0、x 1、x 2, 故x 1、x 2是方程x 2-3x +2-m =0的两相异的实根. 所以Δ=9-4(2-m)>0,即m>-14.又对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 特别地,取x =x 1时,f(x 1)+g(x 1)-mx 1<-m 成立,得m<0. 由韦达定理,可得x 1+x 2=3>0,x 1x 2=2-m>0,故0<x 1<x 2. 对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x>0,则f(x)+g(x)-mx =x(x -x 1)(x -x 2)≤0,又f(x 1)+g(x 1)-mx 1=0,所以函数f(x)+g(x)-mx 在x ∈[x 1,x 2]的最大值为0. 于是当-14<m<0时,对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 综上,m 的取值范围是⎝ ⎛⎭⎪⎫-14,0. 例15.如图3-1,有一正方形钢板AB CD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF ,可使剩余的直角梯形的面积最大?并求其最大值.解法一:以O 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧OC 的方程为y =ax 2(0≤x ≤2),∵点C 的坐标为(2,1),∴22a =1,a =14, 故边缘线OC 的方程为y =14x 2(0≤x ≤2), 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2=t 2(x -t ), 即y =12tx -14t 2.由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2,F ⎝⎛⎭⎪⎫0,-14t 2.∴|AF |=⎪⎪⎪⎪⎪⎪-14t 2--1=1-14t 2, |BE |=⎪⎪⎪⎪⎪⎪t -14t 2--1=-14t 2+t +1. 设梯形ABEF 的面积为S (t ),则S (t )=-12(t -1)2+52≤52,∴当t =1时,S (t )=52, 故S (t )的最大值为2.5,此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.解法二:以A 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y =ax 2+1(0≤x ≤2).∵点C 的坐标为(2,2),∴22a +1=2,a =14, 故边缘线OC 的方程为y =14x 2+1(0≤x ≤2). 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2+1(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2-1=12t (x -t ), 即y =12tx -14t 2+1,由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2+1,F ⎝ ⎛⎭⎪⎫0,-14t 2+1. ∴|AF |=1-14t 2,|BE |=-14t 2+t +1, 设梯形ABEF 的面积为S (t ),则S (t )=12|AB |·(|AF |+|BE |) =1-14t 2+⎝ ⎛⎭⎪⎫-14t 2+t +1=-12t 2+t +2 =-12(t -1)2+52≤52. ∴当t =1时,S (t )=52, 故S (t )的最大值为2.5.此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.【点评】 与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究.。

高数求曲线在某点的切线方程

高数求曲线在某点的切线方程

高数求曲线在某点的切线方程
高数中,如果要求曲线在某点的切线方程,可以使用以下步骤:
1. 求曲线的导函数。

导函数描述了曲线在每个点的切线的斜率。

如果曲线已经给出了方程,直接对方程求导即可得到导函数。

如果曲线只给出了数据,可以使用差商来估计导函数。

2. 求出该点在曲线上的坐标。

将该点的坐标代入曲线的方程中,求出曲线在该点的坐标。

3. 利用导函数和该点的坐标来确定切线的斜率。

将该点的坐标代入导函数中,求出曲线在该点的切线的斜率。

4. 使用点斜式或一般式来写出切线方程。

取切线经过该点的坐标和切线的斜率,将其代入点斜式或一般式中,得到切线方程。

需要注意的是,有些曲线在某些点可能不存在切线,或者存在多条切线。

此外,有些曲线的导函数比较复杂,求导过程需要使用高等数学的知识。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,, 则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

曲线切线求法

曲线切线求法

曲线切线求法1. 引言在数学中,曲线切线是指曲线上一点处的切线,它是曲线在该点处的局部近似。

求解曲线切线是解析几何中常见的问题之一,对于理解曲线的性质和研究其变化趋势具有重要意义。

本文将介绍常见的曲线切线求法,包括直角坐标系下的求法和参数方程下的求法。

2. 直角坐标系下的曲线切线求法2.1 曲线方程与斜率首先,我们需要确定曲线的方程,并计算出该点处的斜率。

以一元函数为例,在直角坐标系下,函数可以表示为y=f(x),其中f(x)为给定函数。

对于给定点P(x0,y0),我们可以通过计算导数f’(x)来得到该点处的斜率k。

2.2 切点坐标确定接下来,我们需要确定切点坐标。

由于切点在曲线上,所以它满足曲线方程y=f(x)。

将x0代入方程中可以得到相应的y值。

2.3 构建切线方程已知切点坐标和斜率,我们可以使用直线的点斜式来构建切线方程。

切线方程可以表示为y-y0=k(x-x0),其中(x0,y0)为切点坐标,k为斜率。

2.4 示例假设我们要求解曲线y=x2在点P(2,4)处的切线。

首先,我们计算出函数f(x)=x2的导数f’(x)=2x。

然后,将x=2代入函数得到y=4。

接下来,我们使用切线方程的点斜式构建切线方程y-4=4(x-2)。

3. 参数方程下的曲线切线求法3.1 曲线参数化对于参数方程表示的曲线,我们需要将其参数化,以便计算切线。

假设曲线由参数方程x=f(t),y=g(t)给出。

3.2 切点坐标确定与直角坐标系下类似,我们需要确定切点坐标。

将给定参数t代入参数方程中得到相应的x和y值。

3.3 斜率计算在参数化后的表达中,我们可以通过计算导数dy/dx来得到斜率k。

3.4 构建切线方程已知切点坐标和斜率,我们可以使用直线的点斜式来构建切线方程。

与直角坐标系下类似,切线方程可以表示为y-y0=k(x-x0),其中(x0,y0)为切点坐标,k为斜率。

3.5 示例假设我们要求解参数方程x=cos(t),y=sin(t)表示的单位圆在点P(√3/2, 1/2)处的切线。

切线方程的求法

切线方程的求法

切线方程的求法例1、己知曲线)=丄X(1)求曲线在点p(l,l)处的切线方程(2)求曲线过点0(1,0)处的切线方程(3)求满足斜率为-扌的曲线的切线方程答案:(1)x+y-2=0(2)4x+y-4=0(3)x + 3y-2的=0或x + 3),+ 2VJ = 0解析:(1)・・°y,= -^rx~又P(l,l)是曲线上的点,・・・戶是切点,所求切线的斜率为R=f(l) = -1所以曲线在尸点处的切线方程为=即x+y-2=0⑵显然0(1,0)不在曲线上,则可设过该点的切线的切点为彳“寸则该切线斜率为/=广(町=_丄则切线方程为y-丄=(x-a).①a a~将0(1,0)代入方程①得0 —丄=—丄(1 —町,a cr解得“丄,2故所求切线方程为4x + y-4 = 0.(3)设切点坐标为彳仏丄],则切线的斜率为匕=_丄=_丄,解得a =土忑,a)~ a 3・・・A0月或彳代入点斜式方程得即切线方程为•: x + 3y-2>/3 =0 或x + 3y+ 2>/J = 0注:(1)在一点,则该点即为切点(2)过一点,该点不一定是切点,需要设岀切点后,在进行计算!(3)高考中,直线的表达形式一般为一般式表达,即A¥+ Bv + C = o的形式!1、曲线y = sinx + e x在点(0,1)处的切线方程是?2、曲线y = ?+A-2在点P处的切线平行于直线y = 4A-l,则点P的坐标为?3、若曲线y = 在坐标原点处的切线方程是2x-.y = 0,则实数“?4、曲线y = 21nA-在点(1,0)处的切线方程为?5、设函数f(x) = x3+(a-\)x2+ax.若于⑴为奇函数,则曲线y = /(x)在点(0,0)处的切线方程为?6、曲线严(血+ 10在点(0,1)处的切线的斜率为-2,则“= __________7、若函数/(x) = -在处的导数值与函数值互为相反数,求"的值.答案1、2兀一y +1 = 02、(-1,7)或(1,0)3、24、y = 2x - 25> y = x6、一32。

函数图像的切线问题

函数图像的切线问题

函数图像的切线问题要点梳理归纳1.求曲线y =f(x)的切线方程的三种类型及其方法(1)已知切点P(x 0,f(x 0)),求y =f(x)在点P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0). (2)已知切线的斜率为k ,求y =f(x)的切线方程:设切点为P(x 0,y 0),通过方程k =f′(x 0)解得x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求y =f(x)的切线方程:设切点为P(x 0,y 0),利用导数将切线方程表示为y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出x 0.2.两个函数图像的公切线 [函数y=f(x)与函数y=g(x) 存在公切线,若切点为同一点P(x 0,y 0),则有 ⎩⎪⎨⎪⎧f ′x 0=g ′x 0,f x 0=g x 0.若切点分别为(x 1,f(x 1)),(x 2,g(x 2)),则有212121)()()()(x x x g x f x g x f --='='.题型分类解析题型一 已知切线经过的点求切线方程例1.求过点(2,2)P 与已知曲线3:3S y x x =-相切的切线方程. 解:点P 不在曲线S 上.设切点的坐标()00,x y ,则30003y x x =-,函数的导数为2'33y x =-,切线的斜率为020'33x x k y x ===-,2000(33)()y y x x x ∴-=--切线方程为,点(2,2)P 在切线上,20002(33)(2)y x x ∴-=--,又30003y x x =-,二者联立可得001,1x x ==或相应的斜率为0k =或9k =-±(∴切线方程为2y =或(9(2)2y x =-±-+.例 2. 设函数()()2f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为________解析:由切线过()()1,1g 可得:()13g =,所以()()21114f g =+=,另一方面,()'12g =,且()()''2f x g x x =+,所以()()''1124f g =+=,从而切线方程为:()4414y x y x -=-⇒=例3. 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为_________ 解析:代入(1,3)可得:2k =,()'23f x x a =+,所以有()()'113132f a b f a =++=⎧⎪⎨=+=⎪⎩,解得13a b =-⎧⎨=⎩题型二 已知切线方程(或斜率),求切点坐标(或方程、参数)例4.已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行~(2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直 解:设切点坐标为()00,x y ()'0012fx x ∴=+ 由切线与420x y --=平行可得: ()'00011242f x x x =+=⇒= 011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)设切点坐标()00,x y ()'0012fx x ∴=+,直线30x y --=的斜率为1 ()'00011213f x x x ∴=+=-⇒=- 而()00,x ∈+∞ 013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直例5.函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln22y x =-++上,322ln222ln24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b~解:P 在32ln22y x =-++上,()2322ln222ln24f ∴=-⋅++=-()2ln242ln24f a b ∴=-=-又因为P 处的切线斜率为3- ()'2afx bx x=- ()'2432a f b ∴=-=-, ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩例6.设函数()()32910f x x ax x a =---<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为12-,进而可得导函数的最小值为12-,便可求出a 的值解:()2'2222221111329393939333f x x ax x a a a x a a ⎛⎫⎛⎫=--=-+--=--- ⎪ ⎪⎝⎭⎝⎭()'2min 11933f x f a a ⎛⎫∴==-- ⎪⎝⎭直线126x y +=的斜率为12-,依题意可得:2191233a a --=-⇒=± 0a <3a ∴=- 题型三 公切线问题;例7.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A.1-或2564-B. 1-或214C. 74-或2564-D. 74-或7 思路:本题两条曲线上的切点均不知道,且曲线21594y ax x =+-含有参数,所以考虑先从常系数的曲线3y x =入手求出切线方程,再考虑在利用切线与曲线21594y ax x =+-求出a 的值.设过()1,0的直线与曲线3y x =切于点()300,x x ,切线方程为()320003y x x x x -=-,即230032y x x x =-,因为()1,0在切线上,所以解得:00x =或032x =,即切点坐标为()0,0或327,28⎛⎫ ⎪⎝⎭.当切点()0,0时,由0y =与21594y ax x =+-相切可得()21525490464a a ⎛⎫∆=--=⇒=- ⎪⎝⎭,同理,切点为327,28⎛⎫ ⎪⎝⎭解得1a =-答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与21594y ax x =+-求a 的过程中,由于曲线21594y ax x =+-为抛物线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的0∆=来求解,减少了运算量.通过例7,例8可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线) 例8.若曲线21x y C =:与曲线xae y C =:2存在公切线,则a 的最值情况为( ) A .最大值为28e B .最大值为24e C .最小值为28e D .最小值为24e 解析:设公切线与曲线1C 切于点()211,x x ,与曲线2C 切于点()22,x x ae ,由''2xy xy ae ⎧=⎪⎨=⎪⎩可得:22211212x x ae x x ae x x -==-,所以有221111221122222x x x x x x x x x ae ⎧-=⇒=-⎪-⎨⎪=⎩,所以2244x ae x =-,即()2241x x a e -=,设()()41xx f x e -=,则()()'42xx fx e -=.可知()f x 在()1,2单调递增,在()2,+∞单调递减,所以()max 242a f e==*,原点在切线上,例10.曲线xy e =在点()22,e 处的切线与坐标轴所围三角形的面积为( )A.2eB. 22e C. 24eD.22e思路:()'x f x e = 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ()'22f e ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e - 221122e S e ∴=⨯⨯=,例11.一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ).A.0,2π⎡⎤⎢⎥⎣⎦ B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ C.3,4ππ⎡⎫⎪⎢⎣⎭ D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来.'231y x =-,对于曲线上任意一点P ,斜率的范围即为导函数的值域:[)'2=311,y x -∈-+∞,所以倾斜角的范围是30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭.答案:B 例12.已知函数()323f x x x =-,若过点()1,P t 存在3条直线与曲线()y f x =相切,求t 的取值范围思路:由于并不知道3条切线中是否存在以P 为切点的切线,所以考虑先设切点()00,x y ,切线斜率为k ,则满足()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩ ,所以切线方程为()00y y k x x -=-,即()()()3200002363y x x x x x --=--,代入()1,P t 化简可得:3200463t x x =-+-,所以若存在3条切线,则等价于方程3200463t x x =-+-有三个解,即y t =与()32463g x x x =-+-有三个不同交点,数形结合即可解决解:设切点坐标()00,x y ,切线斜率为k ,则有:()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩ ∴ 切线方程为:()()()3200002363y x x x x x --=-- 因为切线过()1,P t ,所以将()1,P t 代入直线方程可得:()()()32000023631t x x x x --=--…()()()23000063123t x x x x ⇒=--+-233320000000636323463x x x x x x x =--++-=-+-所以问题等价于方程3200463t x x =-+-,令()32463g x x x =-+-即直线y t =与()32463g x x x =-+-有三个不同交点()()'21212121g x x x x x =-+=--令()'0g x >解得01x << 所以()g x 在()(),0,1,-∞+∞单调递减,在()0,1单调递增()()()()11,03g x g g x g ==-==-极大值极小值所以若有三个交点,则()3,1t ∈--所以当()3,1t ∈--时,过点()1,P t 存在3条直线与曲线()y f x =相切例13. 已知曲线C:x 2=y ,P 为曲线C 上横坐标为1的点,过P 作斜率为k(k ≠0)的直线交C 于另一点Q ,交x 轴于M ,过点Q 且与PQ 垂直的直线与C 交于另一点N ,问是否存在实数k ,使得直线MN 与曲线C 相切若存在,求出K 的值,若不存在,说明理由.]思路:本题描述的过程较多,可以一步步的拆解分析.点()1,1P ,则可求出:1PQ y kx k =-+,从而与抛物线方程联立可解得()()21,1Q k k --,以及M 点坐标,从而可写出QN 的方程,再与抛物线联立得到N 点坐标.如果从,M N 坐标入手得到MN 方程,再根据相切()0∆=求k ,方法可以但计算量较大.此时可以着眼于N 为切点,考虑抛物线2x y =本身也可视为函数2y x =,从而可以N 为入手点先求出切线,再利用切线过M 代入M 点坐标求k ,计算量会相对小些.解:由P 在抛物线上,且P 的横坐标为1可解得()1,1P∴设():11PQ y k x -=-化简可得:1y kx k =-+ 1,0k M k -⎛⎫∴ ⎪⎝⎭21y x y kx k ⎧=∴⎨=-+⎩ 消去y :210x kx k -+-= 121,1x x k ∴==- ()()21,1Q k k ∴--设直线()()21:11QN y k x k k --=---⎡⎤⎣⎦即()()2111y k x k k=----⎡⎤⎣⎦ ∴ 联立方程:()()22111y x y k x k k ⎧=⎪⎨=----⎡⎤⎪⎣⎦⎩()211110x x k k k k ⎛⎫∴+---+= ⎪⎝⎭ ()11111Q N N x x k k x k k k ⎛⎫⎛⎫∴⋅=---+⇒=--+ ⎪ ⎪⎝⎭⎝⎭2111,1N k k k k ⎛⎫⎛⎫⎛⎫∴--+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭&由2y x =可得:'2y x =∴切线MN 的斜率'1|21N MN x x k y k k =⎛⎫==--+ ⎪⎝⎭2111:1211MN y k k x k k k k ⎡⎤⎛⎫⎛⎫⎛⎫∴--+=--++-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦代入1,0k M k -⎛⎫⎪⎝⎭得: 2111112111k k k k k k k ⎡⎤⎛⎫⎛⎫⎛⎫--+=--+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦211210k k k k k∴-+=⇒+-=,12k -±∴=小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算0∆=简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数f(x)=x 3+2ax 2+bx +a ,g(x)=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线l.(1)求a 、b 的值,并写出切线l 的方程;,(2)若方程f(x)+g(x)=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立,求实数m 的取值范围.【解答】 (1)f′(x)=3x 2+4ax +b ,g′(x)=2x -3. 由于曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线, 故有f(2)=g(2)=0,f′(2)=g′(2)=1.由此得⎩⎪⎨⎪⎧ 8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得f(x)=x 3-4x 2+5x -2, 所以f(x)+g(x)=x 3-3x 2+2x.依题意,方程x(x 2-3x +2-m)=0有三个互不相同的实根0、x 1、x 2, 故x 1、x 2是方程x 2-3x +2-m =0的两相异的实根.%所以Δ=9-4(2-m)>0,即m>-14.又对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立.特别地,取x =x 1时,f(x 1)+g(x 1)-mx 1<-m 成立,得m<0.由韦达定理,可得x 1+x 2=3>0,x 1x 2=2-m>0,故0<x 1<x 2.对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x>0,则f(x)+g(x)-mx =x(x -x 1)(x -x 2)≤0,又f(x 1)+g(x 1)-mx 1=0,所以函数f(x)+g(x)-mx 在x ∈[x 1,x 2]的最大值为0.于是当-14<m<0时,对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立.综上,m 的取值范围是⎝⎛⎭⎫-14,0. …例15.如图3-1,有一正方形钢板AB CD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF ,可使剩余的直角梯形的面积最大并求其最大值.解法一:以O 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧OC 的方程为y =ax 2(0≤x ≤2),∵点C 的坐标为(2,1),∴22a =1,a =14,故边缘线OC 的方程为y =14x 2(0≤x ≤2),(要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝⎛⎭⎫t ,14t 2(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2=t 2(x -t ),即y =12tx -14t 2.由此可求得E ⎝⎛⎭⎫2,t -14t 2,F ⎝⎛⎭⎫0,-14t 2.∴|AF |=⎪⎪⎪⎪-14t 2--1=1-14t 2, |BE |=⎪⎪⎪⎪t -14t 2--1=-14t 2+t +1. 设梯形ABEF 的面积为S (t ),则S (t )=-12(t -1)2+52≤52,∴当t =1时,S (t )=52,故S (t )的最大值为,此时|AF |=,|BE |=.答:当AF = m ,BE = m 时,可使剩余的直角梯形的面积最大,其最大值为 m 2. 解法二:以A 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y =ax 2+1(0≤x ≤2).∵点C 的坐标为(2,2),∴22a +1=2,a =14,@ 故边缘线OC 的方程为y =14x 2+1(0≤x ≤2).要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝⎛⎭⎫t ,14t 2+1(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2-1=12t (x -t ),即y =12tx -14t 2+1,由此可求得E ⎝⎛⎭⎫2,t -14t 2+1,F ⎝⎛⎭⎫0,-14t 2+1. ∴|AF |=1-14t 2,|BE |=-14t 2+t +1,设梯形ABEF 的面积为S (t ),则S (t )=12|AB |·(|AF |+|BE |)=1-14t 2+⎝⎛⎭⎫-14t 2+t +1=-12t 2+t +2 =-12(t -1)2+52≤52.∴当t =1时,S (t )=52,故S (t )的最大值为.此时|AF |=,|BE |=.答:当AF = m ,BE = m 时,可使剩余的直角梯形的面积最大,其最大值为 m 2.【点评】 与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究.。

专题一用导数求切线方程四种类

专题一用导数求切线方程四种类

用导数求切线方程的四种种类求曲线的切线方程是导数的重要应用之一,用导数求切线方程的要点在于求出切点P(x,y)及斜率,其求法为:设P(x,y)是曲线yf(x)上的一点,则以P的切点的切线方程为:yy0f(x)(x x).若曲线f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为xx.下边例析四种常有的种类及解法.种类一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数f(x),并代入点斜式方程即可.例1曲线yx33x21在点(1,1)处的切线方程为()A.y3x 4B.y3x 2C.y4x3D.y4x51解:由f(x)3x26x则在点(1,1)处斜率k f(1)3,故所求的切线方程为y(1)3(x1),即y3x2,因此选B.练习:1.设f′(x0)=0,则曲线A.不存在C.与x轴垂直y=f(x)在点(x0,f(x0))处的切线(B.与x轴平行或重合D.与x轴斜交)答案B2.已知函数y=f(x)的图像如右图所示,则f′(xA )与f′(xB)的大小关系是()A.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不可以确立答案B2.曲线y=-2x2+1在点(0,1)处的切线的斜率是()A.-4B.0C.4D.不存在答案B10.已知曲线y=2x3上一点A(1,2),则A处的切线斜率等于()A.2B.42D.6C.6+6·Δx+2·(Δx)答案D4.函数y=sin2x的图像在π1处的切线的斜率是() 6,4答案D剖析将函数y=sin2x看作是由函数y=u2,u=sinx复合而成的.分析∵y′=2sinxcosx,πππ3∴y′|x =6=2sincos=2661在点7)处切线的倾斜角为()2.曲线y=x3-2(-1,-33A.30°B.45°C.135°D.60°答案B6.y=x3的切线倾斜角的范围为________.π答案[0,2)分析k=y′=3x2≥0.8.设点P是曲线y=x3- 3x+23上的随意一点,点P处切线倾斜角为α,则角α的取值范围是()∪5π,π26∪π,π3π答案D分析由y′=3x2-3,易知y′≥-3,即tanα≥-3.20≤α<2或3π≤α<π.14.已知曲线C:y=x3,求在曲线C上横坐标为1的点处的切线方程.分析将x=1代入曲线C的方程得y=1,∴切点P(1,1).Δy x+Δx3-x3∵y′=lim=limΔxΔxΔx→0Δx→0πlim3x2Δx+3xΔx2+Δx3ΔxΔx→0lim[3x2+3xΔx+(Δx)2]=3x2,Δx→0y′|x=1=3.∴过P点的切线方程为y-1=3(x-1),即3x-y-2=0.114.求曲线y=sinx在点A(6,2)处的切线方程.分析∵y=sinx,∴y′=cosx.ππ331y′|x=6=cos6=2,k=2.3π∴切线方程为y-2=2(x-6).化简得6 3x-12y+6-3π=0.x6.曲线y=x-2在点(1,-1)处的切线方程为()A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1答案D例3求曲线y=1在点(4,1)处的切线方程.x2-3x2【思路剖析】将函数变形为y=(x2-3x)-12,将其看做是由函数y=u-12、u=x2-3x复合而成.【分析】∵y=1=(x2-3x)-1,x2-3x2∴y′=-1(x2-3x)-3·(x2-3x)′22=-1(x2-3x)-3·(2x-3).2211∴曲线y=在点(4,)处的切线斜率为x2-3x21 (4235k=y′|x=4=--3×4)-·(2×4-3)=-.22161∴曲线在点(4,2)处的切线方程为15y-2=-16(x-4),即5x+16y-28=0.研究3本题不要将函数y=1看做是由y=1,u=v,vx2-3xu=x2-3x三个函数复合而成的,这样求导就麻烦了.思虑题3(1)曲线y=3x2+1在点(1,2)处的切线方程为__________________.【答案】3x-2y+1=01的水平切线方程是________.(2)y=1-x2【分析】令y′=0,得x=0,∴y=1.12.求曲线y=2x-x3在点(-1,-1)处的切线的方程及此切线与x轴、y轴所围成的平面图形的面积.答案x+y+2=0;21x8.曲线y=e2在点(4,e2)处的切线与坐标轴所围三角形的面积为()e2B.4e2C.2e2D.e2答案D11x分析∵y′=·e2,2∴切线的斜率k=y′|x=4=12e2.1∴切线方程为y-e2=2e2(x-4).∴横纵截距分别为2,-e2,∴S=e2,应选D.111.已知函数y=f(x)的图像在点M(1,f(1))处的切线方程是y=2x+2,则f(1)+f′(1)=________.答案3分析f′(1)=1,f(1)=1×1+2=5,∴f(1)+f′(1)=3.2225.如图是函数f(x)及f(x)在点P处切线的图像,则f(2)+f′(2)=________.9 答案 28分析由题图知,切线方程为4x +错误!=1,9f(2)=·(1-4)=4,f′(2)=-错误!=-错误!.9 9 9∴f(2)+f′(2)=4-8=8.种类二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2与直线2x y40的平行的抛物线y x 2的切线方程是() A.2xy30B.2xy30C.2xy10D.2xy1 02解:设P(x0,y0)为切点,则切点的斜率为y|xx 0 2x 0 2.∴x 0 1.由此获得切点(11),.故切线方程为y12(x 1),即2x y1 0,应选D. 评注:本题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y2x b,代入y x2,得x22xb0,又因为0,得b1,应选D.练习:3.曲线y=x3在点P处的切线斜率为3,则点P的坐标为() A.(-2,-8)B.(1,1),(-1,-1)C.(2,8)11 D.(-,-)28答案B13.若曲线y=2x3上某点切线的斜率等于6,求此点的坐标.2x0+Δx3-2x30分析∵y′|x=x0=lim=6x 20,Δx→06x20=6.∴x0=±1故.(1,2),(-1,-2)为所求.3.已知曲线y=x2-3lnx的一条切线的斜率为1,则切点的横坐42标为()A.3B.2C.1答案A分析1x-31131 y′=x,由x-=.22x2得x=3或x=-2.因为x>0,因此x=3.3.已知曲线y=f(x)在点P(x0,f(x0))处的切线方程为2x+y+1=0,那么() A.f′(x0)=0B.f′(x0)<0C.f′(x0)>0D.f′(x0)不可以确立答案B5.假如曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么()A.f′(x0)>0B.f′(x0)<0C.f′(x0)=0D.f′(x0)不存在答案B7.在曲线y=x2π上切线的倾斜角为的点是()4A.(0,0)B.(2,4)11)11)C.(,16D.(,424答案D2.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0答案A分析∵l与直线x+4y-8=0垂直,∴l的斜率为4.∵y′=4x3,∴由切线l的斜率是4,得4x3=4,∴x=1.∴切点坐标为(1,1).∴切线方程为y-1=4(x-1),即4x-y-3=0.应选A.11.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,则与直线PQ平行的曲线y=x2的切线方程是________.答案4x-4y-1=04-1分析k=2--1=1,又y′=2x,令2x=1,得1x=2,从而1y=4,∴切线方程为y-14=1·(x-12),即4x-4y-1=0.13.假如曲线y=x2+x-3的某一条切线与直线y=3x+4平行,求切点坐标与切线方程.答案切点坐标为(1,-1),切线方程为3x-y-4=013.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为______________.答案3x-y-11=0分析y′=3x2+6x+6=3(x+1)2+3≥3,当且仅当x=-1时取等号,当x=-1,时y=-14.∴切线方程为y+14=3(x+1),即3x -y-11=0.19.设直线y=2x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为________.答案ln2-14.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a等于()A.11C.-2D.-1答案A14.设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=________.答案2分析由题意得y′=ae ax,y′|x ==ae a×0=2,a=2.10.函数f(x)=asinax(a∈R)的图像过点P(2π,0),而且在点P处的切线斜率为4,则f(x)的最小正周期为()A.2πB.π答案B分析22πa. f′(x)=acosax,∴f′(2=π)acos2又asin2πa=0,∴2πa=kπ,k∈Z.f′(2=π)a2coskπ=4,∴a=±2.2π∴T=|a|=π.6.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是() B.25C.3 5D.0答案A2分析y′=2x-1=2,∴x=1.∴切点坐标为(1,0).由点到直线的距离公式,得d=|2×1-0+3|=5.22+1219.曲线y=x(x+1)(2-x)有两条平行于y=x的切线,则两切线之间的距离为________.16答案272分析y=x(x+1)(2-x)=-x3+x2+2x,y′=-3x2+2x+2,令-3x2+2x+2=1,得1x1=1或x2=-3.114∴两个切点分别为(1,2)和(-3,-27).切线方程为x-y+1=0和x-y-275=0.5|1+|2d=2=27.27种类三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.6.以下说法正确的选项是()A.曲线的切线和曲线有交点,这点必定是切点B.过曲线上一点作曲线的切线,这点必定是切点C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线D.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)不必定存在答案D例3求过曲线yx32x上的点(1,1)的切线方程.3解:假想P(x0,y0)为切点,则切线的斜率为y|x x03x022.∴切线方程为yy0(3x22)(x x).y(x32x)(3x22)(xx0).又知切线过点(1,1),把它代入上述方程,得1(x032x)(3x22)(1x).解得1.x1,或x02故所求切线方程为y (12)(32)(x1),或y1132x1,842即xy20,或5x4y10.评注:能够发现直线 5x 4y 10其实不以(1,1)为切点,其实是经过了点(1,1)且以 1 7为切点的直线.这说明过曲线上一点的切线,, 2 8该点未必是切点,解决此类问题可用待定切点法. 练习:种类四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4求过点(2,0)且与曲线y1相切的直线方程. x4解:设P(x0,y0)为切点,则切线的斜率为 y|xx 0 1.x 20 ∴切线方程为yy 0 1(x x 0) ,即 y 1 1(xx 0) .x 0 2 x 0 x0 2又已知切线过点(2,0),把它代入上述方程,得 1 1x0 2(2x 0).x0 解得x 01,y 0 1 1,即xy20.x 0评注:点(2,0)其实是曲线外的一点,但在解答过程中却无需判 断它确实切地点,充足反应出待定切点法的高效性例5 已知函数yx 33x ,过点A(016), 作曲线yf(x)的切线,求此切线方程.5解:曲线方程为yx 33x ,点A(016),不在曲线上.设切点为M(x 0,y 0),则点M 的坐标知足y 0x033x 0.因f(x 0)3(x2 1),故切线的方程为yy 03(x21)(x x0).点A(016),在切线上,则有16(x 0 3 3x 0) 3(x0 2 1)(0x 0).化简得x 038,解得x0 2.因此,切点为M(2,2),切线方程为9x y 160.评注:此类题的解题思路是,先判断点A能否在曲线上,若点A在曲线上,化为种类一或种类三;若点A不在曲线上,应先设出切点并求出切点.练习:17.已知曲线方程为y=x2,求过A(3,5)点且与曲线相切的直线方程.分析解法一设过A(3,5)与曲线y=x2相切的直线方程为y-5k(x-3),即y=kx+5-3k.y=kx+5-3k由y=x2,得x2-kx+3k-5=0.k2-4(3k-5)=0,整理得(k-2)(k-10)=0.k=2或k =10.所求的直线方程为2x-y-1=0,10x-y-25=0.解法二设切点P的坐标为(x0,y0),由y=x2,得y′=2x.y′|x=x0=2x0.5-y0=2x0.又y0=2x0,代入上式整理,得x0=1或x0=由已知kPA=2x0,即3-x05.18.已知曲线S:y=3x-x3及点P(2,2),则过点P可向S引切线,其切线条数为()A.0B.1 C.2D.3答案D分析明显P不在S上,设切点为(x0,y0),由y′=3-3x2,得y′|x=x0=3-3x20.切线方程为y-(3x0-x30)=(3-3x20)(x-x0).P(2,2)在切线上,2-(3x0-x30)=(3-3x20)(2-x0),即x30-3x20+2=0.(x0-1)(x20-2x0-2)=0.由x0-1=0,得x0=1.由x20-2x0-2=0,得x0=1±3.∵有三个切点,∴由P向S作切线能够作3条.综合练习:10.已知f(x)=x2+2xf′(1),则f′(0)等于()A.0B.-4C.-2D.2答案B分析f′(x)=2x+2f′(1),令x=1,得f′(1)=2+2f′(1),∴f′(1)=-2.f′(0)=2f′(1)=-4.12.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为()1A.4B.-41C.2D.-2答案A分析依题意得f′(x)=g′(x)+2x,f′(1)=g′(1)+2=4,选A.15.(1)求过曲线y=e x上点P(1,e)且与曲线在该点处的切线垂直的直线方程;(2)曲线y=15x5上一点M处的切线与直线y=-x+3垂直,求此切线方程.分析(1)∵y′=e x,∴曲线在点P(1,e)处的切线斜率是y′|x=1=e.1∴过点P且与切线垂直的直线的斜率为k=-e.1∴所求直线方程为y-e=-e(x-1),即x+ey-e2-1=0.(2)∵切线与y=-x+3垂直,∴切线斜率为 1.又y′=x4,令x4=1,∴x=±1.∴切线方程为5x-5y-4=0或5x-5y+4=0.4.y=ax2+1的图像与直线y=x相切,则a=()D.1答案B分析由已知{y =ax 2+1,y =x 有独一解,即x =ax 2+1,ax 2-x +1=0有独一解,1∴Δ=1-4a =0,∴a =4.15.点P 在曲线y =f(x)=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.分析 设P(x 00 2 +1. 00,y),则y =x0 x 0+Δx 2+1- x 02+1 =2x 0. f′(x)=lim ΔxΔx→0因此过点P 的切线方程为y -y0=2x0(x -x0),即y =2xx +1-x 2.00而此直线与曲线y =-2x 2-1相切,因此切线与曲线y =-2x 2-1只有一个公共点.由{ y =2x 02 2 0 y =-2x -1, 得x +1-x ,2 22x +2x0x +2-x0=0.2 2即=4x 0-8(2-x)=0.±23 7解得x 0= 3 ,y0=.3因此点P 的坐标为(23,7 )或(- 2 3 3,7 ).3 3 3 17.若直线y =kx 与曲线y =x 3-3x 2+2x 相切,求k 的值.分析 设切点坐标为(x 0 0 0 20 0,y),y′|x=x =3x -6x +2=k.若x 0 0 0 0y0 .=0,则k =2.若x ≠0,由y =kx ,得k = x ∴3x 02-6x 0+2=y,x0即3x0203203x-3x+2x000-6x+2=x0.解之,得x=2.3231∴k=3×(-6×+2=-4.2)2综上,k=2或k=-1.416.已知函数f(x)=2x3+ax与g(x)=bx2+c的图像都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式.分析∵f(x)=2x3+ax的图像过点P(2,0),a=-8.∴f(x)=2x3-8x.∴f′(x)=6x2-8.关于g(x)=bx2+c的图像过点P(2,0),则4b+c =0.又g′(x)=2bx,∴g′(2)=4b=f′(2)=16.b=4.∴c=-16.∴g(x)=4x2-16.综上可知,f(x)=2x3-8x,g(x)=4x2-16.1.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.(1)求直线l1,l2的方程;(2)求由直线l1,l2和x轴所围成的三角形的面积.剖析(1)求曲线在某点处的切线方程的步骤:先求曲线在这点处的导数,这点对应的导数值即为过此点切线的斜率,再用点斜式写出1直线方程;(2)求面积用S=2a·h即可达成.分析(1)因为y′=2x+1,则直线l1的斜率k1=2×1+1=3,则直线l1的方程为y=3x-3,设直线l2过曲线y=x2+x-2上的点B(x0,y0),因为l1⊥l2。

用导数求切线方程的四种类型[精选.]

用导数求切线方程的四种类型[精选.]

用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,, 则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017届高三数学二轮复习——求曲线)(x f y =的切线方程的
几种方法
课前预习
1、已知函数()ln (,)f x m x nx m n =+∈R ,曲线()y f x =在点(1,(1))f 处的切线方程为220x y --=,则m n +=
2、若x 轴是曲线
3ln )(+-=kx x x f 的一条切线,则=k 3、已知曲线x y =与x
y 8=的交点为P ,两曲线在点P 处的切线分别为21,l l ,则切线21,l l 与y 轴所围成的三角形的面积为
4、已知函数x x f =)(,x a x ln )(g =,R a ∈.若曲线)(x f y =与曲线)(x g y =相交,且在交点处有相同的切线,则切线方程为
5、在平面直角坐标系xOy 中,直线l 与曲线)0(2>=x x y
和)0(3>=x x y 均相切,切点分别为),(11y x A 和),(22y x B ,则=2
1x x 典型例题
例1、已知函数
x x x f 32)(3-=. (1)求)(x f 在点)1,1(-处的切线方程;
(2)若过点)1(t P ,存在3条直线与曲线)(x f y
=相切,求t 的取值范围.
例2、已知函数为常数)b a b ax x x x f ,(2
5)(23+++=,其图象是曲线C . (1)当2-=a 时,求函数
)(x f 的单调递减区间; (2)已知点A 为曲线C 上的动点,在点A 处作曲线C 的切线1l 与曲线C 交于另一个点B ,在点B 处作曲线C 的切线2l ,设切线21l l ,的斜率分别为21,k k .问:是否存在常数λ,使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由.
例3、对于函数
)(x f ,)(g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数)(x f 和)(g x 在点P 处相切,称点P 为这两个函数的切点.设函数)0()(2≠-=a bx ax x f ,()x x ln g =.
(1)当0,1=-=b a 时,判断函数)(x f 和)(g x 是否相切,并说明理由;
(2)已知0>=a b a
,,且函数)(x f 和)(g x 相切,求切点P 的坐标.
求曲线)(x f y =的切线方程的几种方法 巩固训练
1、已知)(x f 为偶函数,
当0<x 时,x x x f 3)ln()(+-=,则曲线)(x f y =在点)3,1(-处的切线方程是 .
2、已知函数x x f e )(=,()n mx x g +=,设)()()(x g x f x h -=,若曲线)(x h y =在0=x 处的切线过点)0,1(,则=+n m .
3、过曲线1(0)y x x x
=-
>上一点00(,)P x y 处的切线分别与x 轴,y 轴交于点A 、B ,O 是坐标原点,若OAB ∆的面积为13,则0x = . 4、设函数
x x ax x f cos sin )(++=.若函数)(x f 的图象上存在不同的两点A ,B ,使得曲线)(x f y =在点A ,B 处的切线互相垂直,则实数a 的取值范围为 .
5、曲线)0(1<-=x x
y 与曲线y =ln x 公切线(切线相同)的条数为 . 6、在平面直角坐标系xOy 中,直线b x y
+=是曲线x a y ln =的切线,则当0>a 时,实数b 的最小值是 .
7、在平面直角坐标系xOy 中,设A 是曲线C 1:y =ax 3+1(a >0)与曲线C 2:x 2+y 2=52
的一个公共点,若C 1在A 处的切线与C 2在A 处的切线互相垂直,则实数a 的值是________.
8、设函数⎩⎨⎧≤-->=0
.120,ln )(x x x x x f D 是由x 轴和曲线)(x f y =及该曲线在点)0,1(处的切线所围成的封闭区域,则y x z
2-=的最大值为________. 9、已知函数x x f e )(=,),(1)(2R b a bx ax x g ∈++=.
(1)若0≠a ,则b a ,满足什么条件时,曲线)(x f y
=与)(x g y =在0=x 处总有相同的切线?
(2)当1=a 时,求函数)
()()(x f x g x h =的单调递减区间.
10、已知函数)(3ln )(R a ax x a x f ∈--=.
(1) 求函数)(x f 的单调区间;
(2) 若函数)(x f y =的图象在点))2(,2(f 处的切线的倾斜角为
45,且对于任意的[]2,1∈t ,函数)2
)()(g 23m x f x x x +⋅+=(在区间)3,(t 上总不是单调函数,求实数m 的取值范围.。

相关文档
最新文档