高三数学二轮复习 专题五 第1讲 直线与圆教案
《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。
2. 引导学生通过观察和思考,探索直线与圆的位置关系。
教学内容:1. 直线与圆的定义。
2. 直线与圆的位置关系的分类。
教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。
2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。
练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。
2. 引导学生通过观察和思考,探索直线与圆相交的性质。
教学内容:1. 直线与圆相交的定义。
2. 直线与圆相交的性质。
教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。
2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。
练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。
2. 引导学生通过观察和思考,探索直线与圆相切的性质。
教学内容:1. 直线与圆相切的定义。
2. 直线与圆相切的性质。
教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。
2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。
练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。
2. 引导学生通过观察和思考,探索直线与圆相离的性质。
2019-2020年高三数学二轮复习 专题五 第1讲 直线与圆教案

2019-2020年高三数学二轮复习 专题五 第1讲 直线与圆教案自主学习导引真题感悟1.(xx ·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析 先求出两条直线平行的充要条件,再判断.若直线l 1与l 2平行,则a (a +1)-2×1=0,即a =-2或a =1,所以a =1是直线l 1与直线l 2平行的充分不必要条件. 答案 A2.(xx·福建)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于 A .2 5B .2 3C. 3D .1解析 利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2, ∴弦长|AB |=2r 2-d 2=222-12=2 3. 答案 B考题分析圆在高考命题中多以直线与圆的位置关系为主,考查直线与圆位置关系的判定、弦长的求法等,题目多以小题为主,难度中等,掌握解此类题目的通性通法是重点.网络构建高频考点突破考点一:直线方程及位置关系问题【例1】(xx·江西八所重点高中联考)“a=0”是“直线l1:(a+1)x+a2y-3=0与直线l2:2x+ay-2a-1=0平行”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件[审题导引] 求出l1∥l2的充要条件,利用定义判定.[规范解答] 当a=0时,l1:x-3=0,l2:2x-1=0,此时l1∥l2,所以“a=0”是“直线l1与l2平行”的充分条件;当l1∥l2时,a(a+1)-2a2=0,解得a=0或a=1.当a=1时,l1:2x+y-3=0,l2:2x+y-3=0,此时l1与l2重合,所以a=1不满足题意,即a=0.所以“a=0”是“直线l1∥l2”的充要条件.[答案] C【规律总结】直线与直线位置关系的判断方法(1)平行:当两条直线l1和l2的斜率存在时,l1∥l2⇔k1=k2;如果直线l1和l2的斜率都不存在,那么它们都与x轴垂直,则l1∥l2.(2)垂直:垂直是两直线相交的特殊情形,当两条直线l1和l2的斜率存在时,l1⊥l2⇔k1·k2=-1;若两条直线l1,l2中的一条斜率不存在,另一条斜率为0时,则它们垂直.(3)相交:两直线相交的交点坐标可由方程组的解求得.[易错提示] 判断两条直线的位置关系时要注意的两个易错点:一是忽视直线的斜率不存在的情况,二是忽视两直线重合的情况.解答这类试题时要根据直线方程中的系数分情况进行讨论,求出结果后再反代到直线方程中进行检验,这样能有效地避免错误. 【变式训练】1.(xx ·泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为 A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0 D .x -2y +5=0解析 由题意可设所求直线方程为:x -2y +m =0,将A (2,3)代入上式得2-2×3+m =0,即m =4,所以所求直线方程为x -2y +4=0. 答案 A2.在平面直角坐标系xOy 中,已知A (0,-1),B (-3,-4)两点,若点C 在∠AOB 的平分线上,且|OC →|=10,则点C 的坐标是________.解析 设C (a ,b )(a <0,b <0).OB 所在直线方程为4x -3y =0,则⎩⎪⎨⎪⎧|4a -3b |5=|a |,a 2+b 2=10,解得⎩⎪⎨⎪⎧a =-1,b =-3.∴C (-1,-3). 答案 (-1,-3) 考点二:圆的方程【例2】(xx·镇江模拟)以双曲线x 29-y 216=1的右焦点为圆心,且与其渐近线相切的圆的方程是________.[审题导引] 求出双曲线的右焦点与渐近线方程,利用圆心到渐近线的距离等于半径求得半径,可得方程.[规范解答] 双曲线的右焦点为(5,0),即为圆心,双曲线的渐近线方程为y =±43x ,即4x ±3y =0,∴r =|4×5±3×0|42+±32=4,∴所求圆的方程为(x -5)2+y 2=16. [答案] (x -5)2+y 2=16 【规律总结】圆的方程的求法(1)几何法,即通过研究圆的性质进而求出圆的基本量;如圆中弦所在的直线与圆心和弦中点的连线相互垂直;设圆的半径为r ,弦长为|AB |,弦心距为d ,则r 2=d 2+⎝⎛⎭⎪⎫|AB |22等.(2)代数法:即设出圆的方程,用待定系数法求解.在求圆的方程时,要根据具体的条件选用合适的方法,但一般情况下,应用几何法运算简捷.【变式训练】3.(xx·徐州模拟)若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.解析 设圆心为(a,0)(a <0),则r =|a +2×0|12+12=2, 解得a =-2, 即(x +2)2+y 2=2. 答案 (x +2)2+y 2=2 考点三:直线与圆的位置关系【例3】(xx·临沂一模)直线l 过点(4,0)且与圆(x -1)2+(y -2)2=25交于A 、B 两点,如果|AB |=8,那么直线l 的方程为________.[审题导引] 讨论直线的斜率是否存在,利用弦长为8求出斜率,可得所求直线的方程.[规范解答] 圆心坐标为M (1,2),半径r =5,因为|AB |=8,所以圆心到直线l 的距离d =r 2-42=52-42=3.当直线斜率不存在时,即直线方程为x =4,圆心到直线的距离为3满足条件,所以x =4成立.若直线斜率存在,不妨设为k ,则直线方程y =k (x -4),即kx-y -4k =0,圆心到直线的距离为d =|k -2-4k |1+k 2=|2+3k |1+k 2=3,解得k =512,所以直线方程为y =512(x -4),即5x -12y -20=0.综上满足条件的直线方程为5x -12y -20=0或x =4.答案 5x -12y -20=0或x =4 【规律总结】求圆的弦长的方法(1)直接求出直线与圆的交点坐标,利用两点间的距离公式求得;(2)不求交点坐标,利用一元二次方程根与系数的关系得出,即设直线的斜率为k ,直线与圆联立消去y 后得到的方程的两根为x 1、x 2,则弦长d =1+k 2|x 1-x 2|;(3)利用半弦长、弦心距及半径构成的直角三角形来求.【变式训练】4.(xx·肇庆二模)从点P (m,3)向圆C :(x +2)2+(y +2)2=1引切线,则切线长的最小值为A .2 6 B.26 C .4+ 2 D .5解析 利用切线长与圆半径的关系加以求解.设切点为M ,则CM ⊥MP , 于是切线MP 的长|MP |=|CP |2-|MC |2=m +22+3+22-1,显然,当m =-2时,|MP |有最小值24=2 6.答案 A名师押题高考【押题1】若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析 当m =-2时,直线AB 与2x +y +2=0不平行; 当m ≠-2时,据题意知,k AB =4-m m +2=-2,得m =-8.答案 -8[押题依据] 本题考查直线的斜率的概念以及直线的位置关系,这类问题在高考中属基础题,常以选择题或填空题的形式出现.考查形式有直接判定位置关系,根据位置关系求参数值等.解答此类题目值得注意的是含参数时,一般要根据直线的斜率是否存在对参数进行讨论,以避免漏解.【押题2】直线y =kx +3与圆(x -1)2+(y +2)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是A.⎝ ⎛⎭⎪⎫-∞,-125B.⎝ ⎛⎦⎥⎤-∞,-125C.⎝ ⎛⎭⎪⎫-∞,125D.⎝⎛⎦⎥⎤-∞,125解析 圆心(1,-2)到直线y =kx +3的距离为d =|k +5|1+k2,圆的半径r =2,∴|MN |=2r 2-d 2=2 4-k +521+k2≥23, 解得k ≤-125.答案 B[押题依据] 高考在考查直线被圆截得的弦长问题时,有两种题型:一是直接求弦长;二是讨论参数的取值范围.本题属第二种题型,难度中等,表达形式新颖有一定的区分度,故押此题.。
高考数学第二轮专题复习直线与圆的方程教案

高考数学第二轮专题复习直线与圆的方程教案一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。
直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。
二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。
三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。
但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。
四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。
既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。
老高考适用2023版高考数学二轮总复习第2篇经典专题突破核心素养提升专题5解析几何第1讲直线与圆课件

F=0,
则16+4D+F=0, 16+4+4D+2E+F=0,
F=0,
解得D=-4, E=-2,
所以圆的方程为 x2+y2-4x-2y=0,
即(x-2)2+(y-1)2=5; 若过(0,0),(4,2),(-1,1),
F=0,
则1+1-D+E+F=0, 16+4+4D+2E+F=0,
F=0Байду номын сангаас 解得D=-83,
因为 OP⊥OQ,故 1+ 2p×(- 2p)=0⇒p=12, 抛物线 C 的方程为:y2=x, 因为⊙M 与 l 相切,故其半径为 1, 故⊙M:(x-2)2+y2=1.
(2)设 A1(x1,y1),A2(x2,y2),A3(x3,y3).
当 A1,A2,A3 其中某一个为坐标原点时(假设 A1 为坐标原点时),
A2+B2
3.两条平行直线 l1:Ax+By+C1=0,l2:Ax+By+C2=0(A,B 不
同时为零)间的距离
d=
|C1-C2| . A2+B2
典例1 (1)(2022·辽宁高三二模)若两直线l1:(a-1)x-3y-2=0
与l2:x-(a+1)y+2=0平行,则a的值为
(A )
A.±2
B.2
C.-2
y0=-x0+5, 设所求圆的圆心坐标为(x0,y0),则x0+12=y0-x20+12+16. 解得xy00= =32, 或xy00= =1-1,6. 因此所求圆的方程为(x-3)2+(y-2)2=16 或(x-11)2+(y+6)2=144.
6.(2021·全国甲卷)抛物线C的顶点为坐标原点O,焦点在x轴上,直 线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⊙M与l相 切.
直线和圆的位置关系的数学教案

直线和圆的位置关系的数学教案一、教学目标:1. 让学生理解直线和圆的位置关系,并能运用其解决实际问题。
2. 让学生掌握判断直线和圆位置关系的方法,提高空间想象力。
3. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容:1. 直线和圆的位置关系:相离、相切、相交。
2. 判断直线和圆位置关系的方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 教学重点:直线和圆的位置关系,判断方法及实际应用。
2. 教学难点:直线和圆位置关系的判断,空间想象能力的培养。
四、教学方法:1. 采用问题驱动法,引导学生探究直线和圆的位置关系。
2. 利用多媒体辅助教学,直观展示直线和圆的位置关系。
3. 开展小组讨论,培养学生的团队合作精神。
五、教学过程:1. 导入新课:通过生活中的实例,引出直线和圆的位置关系。
2. 知识讲解:讲解直线和圆的相离、相切、相交三种位置关系,及判断方法。
3. 案例分析:分析实际问题,运用直线和圆的位置关系解决问题。
4. 课堂练习:布置练习题,巩固所学知识。
5. 小组讨论:探讨直线和圆位置关系在实际问题中的应用。
7. 课后作业:布置作业,巩固所学知识。
六、教学评估:1. 课堂练习题目的完成情况,以检验学生对直线和圆位置关系的理解和应用能力。
2. 小组讨论的参与度,观察学生是否能够主动思考和解决问题。
3. 课后作业的质量,评估学生对课堂所学知识的掌握程度。
4. 学生对拓展问题的回答,了解学生的思维拓展和创造性解决问题的能力。
七、教学反思:1. 学生是否能够清晰理解直线和圆的位置关系?2. 学生是否能够熟练运用判断方法解决实际问题?3. 教学方法和教学内容的安排是否适合学生的学习水平?4. 如何改进教学策略以提高学生的空间想象力和逻辑思维能力?八、教学资源:1. 多媒体教学课件,用于展示直线和圆的位置关系示意图。
2. 实际问题案例库,用于引导学生将理论知识应用于解决实际问题。
3. 练习题库,包括不同难度的题目,以满足不同学生的学习需求。
高考数学二轮复习第2部分专题5解析几何第1讲直线与圆教案(理科)

第1讲 直线与圆[教师授课资源] [备考指导] 圆的考查有四种趋势①考查圆的选择、填空,重点考查圆的切线,圆的弦长,利用圆的特殊性、利用几何意义处理题目,特别注意数形结合.②与圆锥曲线结合,简单考查,重心不在圆.*③在极坐标系参数方程上,重点考查圆的有关问题,思路,参考方程法⎩⎪⎨⎪⎧x =a +r cos αy =b +r sin α或几何法处理有关最值问题.④与三角形结合,涉及内切圆与外接圆问题.[做小题——激活思维]1.直线(a +2)x +(1-a )y -3=0与直线(a -1)x +(2a +3)y +2=0互相垂直,则a =( )A .-1B .1C .±1D .-32C [由(a +2)(a -1)+(1-a )(2a +3)=0,解得a =±1,故选C.]2.直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0 B .3x -y +4=0 C .3x -y -4=0D .x -3y -4=0C [由题意,设直线l 的方程为y -2=k (x -2),即kx -y +2-2k =0,所以|5k -1+2-2k |k 2+1=10,解得k =3,所以直线l 的方程为3x -y -4=0,故选C.]3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A .内切 B .相交 C .外切D .相离B [∵两圆心距离d =+2+12=17,R +r =2+3=5,r -R =1,∴r -R <d <R+r ,∴两圆相交.]4.直线4x -3y =0与圆(x -1)2+(y -3)2=10相交所得的弦长为________.6 [假设直线4x -3y =0与圆(x -1)2+(y -3)2=10相交所得的弦为AB ,∵圆的半径r =10,圆心到直线的距离d =5-2+42=1,∴弦长|AB |=2×r 2-d 2=210-1=2×3=6.]5.[一题多解]经过三点A (-1,0),B (3,0),C (1,2)的圆的方程为________. (x -1)2+y 2=4 [法一:(待定系数法)设圆的方程为x 2+y 2+Dx +Ey +F =0,将A (-1,0),B (3,0),C (1,2)的坐标代入圆的方程可得⎩⎪⎨⎪⎧1-D +F =0,9+3D +F =0,1+4+D +2E +F =0,解得D =-2,E=0,F =-3,所以圆的方程为(x -1)2+y 2=4.法二:(几何法)根据A ,B 两点的坐标特征可知圆心在直线x =1上,设圆心坐标O (1,a ),则圆的半径r =4+a 2=|a -2|,所以a =0,r =2,所以圆的方程为(x -1)2+y 2=4.]6.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.(-2,-4) 5 [由题意可知a 2=a +2,∴a =-1或2.当a =-1时,方程可化为x 2+y 2+4x +8y -5=0,即(x +2)2+(y +4)2=25,故圆心为(-2,-4),半径为5.当a =2时,方程可化为x 2+y 2+x +2y +52=0,不表示圆.][扣要点——查缺补漏]1.直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0的位置关系 (1)平行⇔A 1B 2-A 2B 1=0(斜率相等)且B 1C 2-B 2C 1≠0(在y 轴上截距不等); (2)直线Ax 1+B 1y +C 1=0与直线Ax 2+B 2y +C 2=0垂直⇔A 1A 2+B 1B 2=0.如T 1. 2.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2;如T 2.(2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.3.圆的方程(1)标准方程:(x -a )2+(y -b )2=r 2;(2)一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0);(方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆⇔A =C ≠0,且B =0,D 2+E 2-4AF >0);如T 5,T 6.(3)参数方程:⎩⎪⎨⎪⎧x =a +r cos θy =b +r sin θ;(4)直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0. 4.点、直线、圆的位置关系(1)研究点、直线、圆的位置关系最常用的解题方法为几何法,将代数问题几何化,利用数形结合思想解题.如T 3.(2)与弦长l 有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d ,及半弦长l2,构成直角三角形的三边,利用其关系r 2=d 2+⎝ ⎛⎭⎪⎫l 22来处理.如T 4.圆的方程及应用(5年4考)[高考解读] 圆的方程求法以待定系数法为主,主要考查方程思想及数学运算的能力,与圆有关的最值问题主要考查等价转化及数形结合的意识,均属于中档题目.1.(2015·全国卷Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43B [设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝ ⎛⎭⎪⎫2332=213.]2.(2018·全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]A [由题意知圆心的坐标为(2,0),半径r =2,圆心到直线x +y +2=0的距离d =|2+2|1+1=22,所以圆上的点到直线的最大距离是d +r =32,最小距离是d -r = 2.易知A (-2,0),B (0,-2),所以|AB |=22,所以2≤S △ABP ≤6.故选A.][教师备选题](2019·北京高考)设抛物线y 2=4x 的焦点为F ,准线为l ,则以F 为圆心,且与l 相切的圆的方程为________.(x -1)2+y 2=4 [如图,抛物线y 2=4x 的焦点为F (1,0),∵所求圆的圆心为F ,且与准线x =-1相切, ∴圆的半径为2,则所求圆的方程为(x -1)2+y 2=4.]解决与圆有关的问题一般有2种方法(1)几何法,通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数.1.(借助几何性质求圆的方程)圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( )A .x 2+y 2-2x -3=0 B .x 2+y 2+4x =0 C .x 2+y 2-4x =0D .x 2+y 2+2x -3=0C [由题意设所求圆的方程为(x -m )2+y 2=4(m >0),则|3m +4|32+42=2,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.故选C.] 2.(借助待定系数法求圆的方程)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成的两段弧长之比为1∶2,则圆C 的方程为________.x 2+⎝⎛⎭⎪⎫y ±332=43 [因为圆C 关于y 轴对称,所以圆心C 在y 轴上, 可设C (0,b ),设圆C 的半径为r ,则圆C 的方程为x 2+(y -b )2=r 2.依题意,得⎩⎪⎨⎪⎧12+-b2=r 2,|b |=12r ,解得⎩⎪⎨⎪⎧r 2=43,b =±33.所以圆C 的方程为x 2+⎝⎛⎭⎪⎫y ±332=43.]3.[一题多解](平面向量与圆的交汇)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.3 [法一:设A (a,2a ),a >0,则C ⎝⎛⎭⎪⎫a +52,a ,∴圆C 的方程为⎝ ⎛⎭⎪⎫x -a +522+(y -a )2=a -24+a 2,由⎩⎨⎧⎝⎛⎭⎪⎫x -a +522+y -a2=a -24+a 2,y =2x ,得⎩⎪⎨⎪⎧x D =1,y D =2,∴AB →·CD →=(5-a ,-2a )·⎝ ⎛⎭⎪⎫-a -32,2-a =a 2-2a -152+2a 2-4a =0,∴a =3或a =-1,又a >0,∴a =3,∴点A 的横坐标为3. 法二:由题意易得∠BAD =45°. 设直线DB 的倾斜角为θ,则tan θ=-12,∴tan∠ABO =-tan(θ-45°)=3, ∴k AB =-tan∠ABO =-3. ∴AB 的方程为y =-3(x -5),由⎩⎪⎨⎪⎧y =-x -,y =2x ,得x A =3.]直线与圆、圆与圆的位置关系[高考解读] 以直线与圆相交、相切为载体,考查数形结合的能力,圆的几何性质及勾股定理的有关知识,知识相对综合,有一定的区分度.1.(2016·全国卷Ⅲ)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.4 [由直线l :mx +y +3m -3=0知其过定点(-3,3),圆心O 到直线l 的距离为d =|3m -3|m 2+1.由|AB |=23得⎝ ⎛⎭⎪⎫3m -3m 2+12+(3)2=12,解得m =-33.又直线l 的斜率为-m =33, 所以直线l 的倾斜角α=π6.画出符合题意的图形如图所示,过点C 作CE ⊥BD ,则∠DCE =π6.在Rt△CDE 中,可得|CD |=|AB |cos α=23×23=4.] 2.(2015·全国卷Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. [解](1)由题设,可知直线l 的方程为y =kx +1. 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1, 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入圆的方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以l 的方程为y =x +1.故圆C 的圆心(2,3)在直线l 上,所以|MN |=2.1.求解圆的弦长的3种方法(1)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式;(2)切线长的计算:过点P 向圆引切线PA ,则|PA |=|PC |2-r 2(其中C 为圆心). 提醒:过圆外一点引圆的切线定有两条,注意切线斜率不存在的情形.1.(已知弦长求方程)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点,若|MN |=255,则直线l 的方程为________.y =2x +1或y =12x +1 [直线l 的方程为y =kx +1,圆心C (2,3)到直线l 的距离d =|2k -3+1|k 2+1=|2k -2|k 2+1, 由R 2=d 2+⎝ ⎛⎭⎪⎫|MN |22,得1=k -2k 2+1+15,解得k =2或12, 故所求直线l 的方程为y =2x +1或y =12x +1.]2.(与不等式交汇)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33 B .-33C .±33D .- 3B [曲线y =1-x 2的图象如图所示:若直线l 与曲线相交于A ,B 两点,则直线l 的斜率k <0,设l :y =k (x -2),则点O 到l 的距离d =-2kk 2+1.又S △AOB =12|AB |·d =12×21-d 2·d =-d2d 2≤1-d 2+d 22=12,当且仅当1-d2=d 2,即d 2=12时,S △AOB 取得最大值,所以2k 2k 2+1=12,∴k 2=13,∴k =-33.故选B.]3.(与物理学科交汇)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34D [由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k ,则反射光线所在直线方程为y +3=k (x -2),即kx -y -2k -3=0.又因为光线与圆(x +3)2+(y -2)2=1相切, 所以|-3k -2-2k -3|k 2+1=1,整理得12k 2+25k +12=0,解得k =-43或k =-34.]4.(综合应用)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.[解] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以 |PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP ||QM |=R r 1,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M 相切得|3k |1+k2=1,解得k =±24. 当k =24时, 将y =24x +2代入x 24+y23=1,并整理得7x 2+8x -8=0,解得x 1,2=-4±627.所以|AB |=1+k 2|x 2-x 1|=187.当k =-24时, 由图形的对称性可知|AB |=187. 综上,|AB |=23或|AB |=187.。
2020届高考数学大二轮复习层级二专题五解析几何第1讲直线与圆教学案

第1讲 直线与圆[考情考向·高考导航]对于直线的考查,主要是求直线的方程;两条直线平行与垂直的判定;两条直线的交点和距离等问题.一般以选择题、填空题的形式考查.对于圆的考查,主要是结合直线的方程,用几何法或待定系数法确定圆的标准方程;对于直线与圆、圆与圆的位置关系等问题,含参数问题为命题热点,一般以选择题、填空题的形式考查,难度不大,涉及圆的解答题有逐渐强化的趋势.[真题体验]1.(2018·全国Ⅲ卷)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:A [由已知A (-2,0),B (0,-2).圆心(2,0)到直线x +y +2=0的距离为d =|2+0+2|2=22,又圆的半径为 2.∴点P 到直线x +y +2=0的距离的最小值为2,最大值为32,又|AB |=2 2.∴△ABP 面积的最小值为S min =12×22×2=2,最大值为S max =12×22×32=6.]2.(2018·北京卷)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .4 解析:C [本题考查直线与圆的位置关系.点P (cos θ,sin θ)是单位圆x 2+y 2=1上的点,直线x -my -2=0过定点(2,0),当直线与圆相离时,d 可取到最大值,设圆心到直线的距离为d 0,d 0=21+m2,d =d 0+1=21+m2+1,可知,当m =0时,d max =3,故选C.]3.(2018·天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________. 解析:设圆的方程为x 2+y 2+Dx +Ey +F =0, 圆经过三点(0,0),(1,1),(2,0),则:⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,4+0+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0,则圆的方程为x 2+y 2-2x =0. 答案:x 2+y 2-2x =04.(2018·全国Ⅰ卷)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 解析:圆方程可化为x 2+(y +1)2=4,∴圆心为(0,-1),半径r =2,圆心到直线x -y +1=0的距离d =22=2,∴|AB |=222-d 2=24-2=2 2.答案:2 2[主干整合]1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2.(2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r .(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径为r =D 2+E 2-4F2.4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d 和半径r 的大小加以比较:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.热点一 直线的方程及其应用[例1] (1)(2020·大连模拟)“a =2”是“直线ax +y -2=0与直线2x +(a -1)y +4=0平行”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解析] A [由ax +y -2=0与直线2x +(a -1)y +4=0平行,得a (a -1)=2,∴a =-1,a =2.经检验当a =-1时,两直线重合(舍去).∴“a =2”是“直线ax +y -2=0与直线2x +(a -1)y +4=0平行”的充要条件.](2)(2020·厦门模拟)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)的距离为2的直线方程为________________.[解析] 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),当所求直线的斜率不存在时,所求直线为x =1,显然不符合题意.故设所求直线的方程为y -2=k (x -1), 即kx -y +2-k =0,因为P (0,4)到所求直线的距离为2,所以2=|-2-k |1+k 2,所以k =0或k =43. 所以所求直线的方程为y =2或4x -3y +2=0. [答案] y =2或4x -3y +2=0(3)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.①记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________. ②记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.[解析] 设,线段A 1B 1的中点为E 1(x 1,y 1),则Q 1==2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图(图略)比较知Q 1最大.又p 1==2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.[答案] ①Q 1 ②p 2求解直线方程应注意的问题(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的情况.(2)要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线.(3)求直线方程要考虑直线的斜率是否存在.(2020·宁德模拟)过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为____________.解析:过点M 且与x 轴垂直的直线是x =0,它和直线l 1,l 2的交点分别为⎝⎛⎭⎪⎫0,103,(0,8),显然不符合题意,故可设所求直线方程为y =kx +1,其图象与直线l 1,l 2分别交于A ,B 两点,则有①⎩⎪⎨⎪⎧y A =kx A +1,x A -3y A +10=0,②⎩⎪⎨⎪⎧y B =kx B +1,2x B +y B -8=0.由①解得x A =73k -1,由②解得x B =7k +2.因为点M 平分线段AB ,所以x A +x B =2x M , 即73k -1+7k +2=0,解得k =-14. 故所求的直线方程为y =-14x +1,即x +4y -4=0.答案:x +4y -4=0热点二 圆的方程及应用[例2] (1)(山东高考题)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.[解析] 设圆C 的圆心为(a ,b )(b >0),由题意得a =2b >0,且a 2=(3)2+b 2,解得a =2,b =1. ∴所求圆的标准方程为(x -2)2+(y -1)2=4. [答案] (x -2)2+(y -1)2=4(2)(2019·唐山三模)已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是____________.[解析] 依题意得圆x 2+y 2+kx =0的圆心⎝ ⎛⎭⎪⎫-k2,0位于直线x -y -1=0上,于是有-k2-1=0,即k =-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB |=22,直线AB 的方程是x -2+y2=1,即x -y +2=0,圆心(1,0)到直线AB 的距离等于|1-0+2|2=322,点P 到直线AB 的距离的最大值是322+1,△PAB 面积的最大值为12×22×32+22=3+ 2.[答案] 3+ 2求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆和圆的位置关系,求出圆的基本量:圆心坐标和半径.如圆中弦所在的直线与圆心和弦中点的连线相互垂直,设圆的半径为r ,弦长为|AB |,弦心距为d ,则r 2=d 2+⎝⎛⎭⎪⎫|AB |22等.(2)代数法:设出圆的方程,用待定系数法求解.在求圆的方程时,要根据具体的条件选用合适的方法,但一般情况下,应用几何法运算较简捷.(1)(2019·临沂三模)已知圆M 的圆心在x 轴上,且圆心在直线l 1:x =-2的右侧,若圆M 截直线l 1所得的弦长为23,且与直线l 2:2x -5y -4=0相切,则圆M 的标准方程为________________.解析:由已知,可设圆M 的圆心坐标为(a,0),a >-2,半径为r ,得⎩⎪⎨⎪⎧a +22+32=r 2,|2a -4|4+5=r ,解得满足条件的一组解为⎩⎪⎨⎪⎧a =-1,r =2,所以圆M 的方程为(x +1)2+y 2=4. 答案:(x +1)2+y 2=4(2)(2020·马鞍山模拟)圆心在曲线y =2x(x >0)上,且与直线2x +y +1=0相切的面积最小的圆的标准方程为________________.解析:由条件设圆心坐标为⎝⎛⎭⎪⎫a ,2a (a >0),又因为圆与直线2x +y +1=0相切,所以圆心到直线的距离d =r =2a +2a +15≥4+15=5,当且仅当2a =2a ,即a =1时取等号,所以圆心坐标为(1,2),圆的半径的最小值为5,则所求圆的方程为(x -1)2+(y -2)2=5.答案:(x -1)2+(y -1)2=5热点三 直线(圆)与圆的位置关系直观 想象 素养直观想象——圆的方程应用中的核心素养以学过的圆的相关知识为基础,借助曲线的方程感知一类问题共同特征的“直观想象”,然后利用“直观想象”解决问题.[例3] (1)(2020·湖北八校联考)过点(2,0)作直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.[解析]令P (2,0),如图,易知|OA |=|OB |=1,所以S △AOB =12|OA |·|OB |·sin∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时,△AOB 的面积取得最大值,此时过点O 作OH ⊥AB 于点H ,则|OH |=22, 于是sin ∠OPH =|OH ||OP |=222=12,易知∠OPH 为锐角,所以∠OPH =30°,则直线AB 的倾斜角为150°,故直线AB 的斜率为tan 150°=-33. [答案] -33(2)如图所示,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .①当|MN |=219时,则直线l 的方程为____________. ②若BQ →·BP →为定值,则这个定值为________. [解析] ①设圆A 的半径为R . ∵圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.a .当直线l 与x 轴垂直时,易知x =-2符合题意;b .当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.连接AQ ,则AQ ⊥MN .∵|MN |=219,∴|AQ |=20-19=1. 由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l 的方程为3x -4y +6=0.∴所求直线l 的方程为x =-2或3x -4y +6=0. ②∵AQ ⊥BP ,∴AQ →·BP →=0. ∵BQ →·BP →=(BA →+AQ →)·BP → =BA →·BP →+AQ →·BP →=BA →·BP →.当直线l 与x 轴垂直时,得P ⎝ ⎛⎭⎪⎫-2,-25. 则BP →=⎝ ⎛⎭⎪⎫0,-52,又BA →=(1,2),∴BQ →·BP →=BA →·BP →=-5.当直线l 的斜率存在时,设直线l 的方程为y =k (x +2).由⎩⎪⎨⎪⎧y =k x +2,x +2y +7=0,解得P ⎝⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k .∴BP →=⎝ ⎛⎭⎪⎫-51+2k ,-5k 1+2k . ∴BQ →·BP →=BA →·BP →=-51+2k -10k 1+2k =-5.综上所述:BQ →·BP →为定值,其定值为-5. [答案] ①x =-2或3x -4y +6=0 ②-5直线(圆)与圆的位置关系的解题思路(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为两圆心之间的距离问题.(1)(2020·银川调研)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是____________.解析:由题意知圆M 的圆心为(0,a ),半径R =a ,因为圆M 截直线x +y =0所得线段的长度为22,所以圆心M 到直线x +y =0的距离d =|a |2=a 2-2(a >0),解得a =2,又知圆N 的圆心为(1,1),半径r=1,所以|MN |=2,则R -r <2<R +r ,所以两圆的位置关系为相交.答案:相交(2)(2020·江西七校联考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:圆C :(x -4)2+y 2=1,如图,直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需保证圆心C 到y =kx -2的距离小于等于2即可,∴|4k -2|1+k2≤2⇒0≤k ≤43. ∴k max =43.答案:43限时40分钟 满分80分一、选择题(本大题共11小题,每小题5分,共55分)1.(2020·成都二诊)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:C [由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin Aa,bx -sin B ·y +sin C =0的斜率k 2=b sin B ,故k 1k 2=-sin A a ·b sin B =-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y +sinC =0垂直,故选C.]2.(2020·杭州质检)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解析:D [点(-2,-3)关于y 轴的对称点为(2,-3),故可设反射光线所在直线的方程为y +3=k (x -2),∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或-34.]3.(2020·广州模拟)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上运动,则AB 的中点M 到原点的距离的最小值为( )A. 2 B .2 2 C .3 2D .4 2解析:C [由题意知AB 的中点M 的集合为到直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则点M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据两平行线间的距离公式得,|m +7|2=|m +5|2,即|m +7|=|m +5|,所以m =-6,即l :x +y -6=0,根据点到直线的距离公式,得点M 到原点的距离的最小值为|-6|2=3 2.]4.(2020·河南六校联考)已知直线x +y =a 与圆x 2+y 2=1交于A ,B 两点,O 是坐标原点,向量OA →,OB →满足|OA →+OB →|=|OA →-OB →|,则实数a 的值为( )A .1B .2C .±1D .±2解析:C [由OA →,OB →满足|OA →+OB →|=|OA →-OB →|,得OA →⊥OB →, 因为直线x +y =a 的斜率是-1, 所以A ,B 两点在坐标轴上并且在圆上;所以(0,1)和(0,-1)两点都适合直线的方程,故a =±1.]5.(2020·怀柔调研)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:B [圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=1-12+-2-02=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.] 6.(2020·温州模拟)已知圆C :(x -2)2+y 2=2,直线l :y =kx ,其中k 为[-3,3]上的任意一个实数,则事件“直线l 与圆C 相离”发生的概率为( )A.33 B.34 C.14D.3-33解析:D [当直线l 与圆C 相离时,圆心C 到直线l 的距离d =|2k |k 2+1>2,解得k >1或k <-1,又k ∈[-3,3],所以-3≤k <-1或1<k ≤3,故事件“直线l 与圆C 相离”发生的概率P =3-1+-1+323=3-33,故选D.] 7.(2019·潍坊三模)已知O 为坐标原点,A ,B 是圆C :x 2+y 2-6y +5=0上两个动点,且|AB |=2,则|OA →+OB →|的取值范围是( )A .[6-23,6+23]B .[3-3,3+3]C .[3,9]D .[3,6]解析:A [圆C :x 2+(y -3)2=4,取弦AB 的中点M ,连接CM ,CA ,在直角三角形CMA 中,|CA |=2,|MA |=1,则|CM |=|CA |2-|MA |2=3,则点M 的轨迹方程为x 2+(y -3)2=3,则|OA →+OB →|=2|OM →|∈[6-23,6+23].]8.(多选题)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点的一个充分不必要条件是( )A .0<m <1B .m <1C .-2<m <1D .-3<m <1解析:AC [本题主要考查直线与圆的位置关系的判断.圆x 2+y 2-2x -1=0的圆心为(1,0),半径为 2.因为直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同的交点,所以直线与圆相交,因此圆心到直线的距离d =|1+m |1+1<2,所以|1+m |<2,解得-3<m <1,求其充分条件,即求其子集,故由选项易得AC 符合.故选AC.]9.(2020·合肥质检)已知圆C 1:(x +2)2+(y -3)2=5与圆C 2相交于A (0,2),B (-1,1)两点,且四边形C 1AC 2B 为平行四边形,则圆C 2的方程为( )A .(x -1)2+y 2=5 B .(x -1)2+y 2=92C.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=5 D.⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=92解析:A [通解 (常规求解法)设圆C 2的圆心坐标为(a ,b ),连接AB ,C 1C 2.因为C 1(-2,3),A (0,2),B (-1,1),所以|AC 1|=|BC 1|=5,所以平行四边形C 1AC 2B 为菱形,所以C 1C 2⊥AB 且|AC 2|= 5.可得⎩⎪⎨⎪⎧3-b -2-a ×1-2-1-0=-1,a 2+b -22=5,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-2,b =3,则圆心C 2的坐标为(1,0)或(-2,3)(舍去).因为圆C 2的半径为5,所以圆C 2的方程为(x -1)2+y 2=5.故选A.优解 (特值验证法)由题意可知,平行四边形C 1AC 2B 为菱形,则|C 2A |=|C 1A |=22+2-32=5,即圆C 2的半径为5,排除B ,D ;将点A (0,2)代入选项A ,C ,显然选项A 符合.故选A.]10.(2020·惠州二测)已知圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)的圆心在直线3x -y +3=0上,且圆C 上的点到直线3x +y =0的距离的最大值为1+3,则a 2+b 2的值为( )A .1B .2C .3D .4解析:C [化圆C :x 2+y 2-2ax -2by +a 2+b 2-1=0(a <0)为标准方程得C :(x -a )2+(y -b )2=1,其圆心为(a ,b ),故3a -b +3=0,即b =3a +3,(a ,b )到直线3x +y =0的距离d =|3a +b |3+1=|3a +b |2=|3a +3a +3|2,因为圆C 上的点到直线3x +y =0的距离的最大值为1+3,故d +1=32|2a +1|+1=1+3,得到|2a +1|=2,解得a =-32或a =12(舍去),故b =3×⎝ ⎛⎭⎪⎫-32+3=-32,故a 2+b 2=⎝ ⎛⎭⎪⎫-322+⎝ ⎛⎭⎪⎫-322=3.选C.]11.(2019·烟台三模)已知圆C :(x -1)2+(y -4)2=10和点M (5,t ),若圆C 上存在两点A ,B 使得MA ⊥MB ,则实数t 的取值范围是( )A .[-2,6]B .[-3,5]C .[2,6]D .[3,5]解析:C [当MA ,MB 是圆C 的切线时,∠AMB 取得最大值,若圆C 上存在两点A ,B 使得MA ⊥MB ,则MA ,MB 是圆C 的切线时,∠AMB ≥90°,∠AMC ≥45°,且∠AMC <90°,如图,所以|MC |=5-12+t -42≤10sin 45°=20,所以16+(t -4)2≤20,所以2≤t ≤6,故选C.]二、填空题(本大题共5小题,每小题5分,共25分)12.(双空填空题)在平面直角坐标系xOy 中,已知圆C 过点A (0,-8),且与圆x 2+y 2-6x -6y =0相切于原点,则圆C 的方程为___________________________________________,圆C 被x 轴截得的弦长为________.解析:本题考查圆与圆的位置关系.将已知圆化为标准式得(x -3)2+(y -3)2=18,圆心为(3,3),半径为3 2.由于两个圆相切于原点,连心线过切点,故圆C 的圆心在直线y =x 上.由于圆C 过点(0,0),(0,-8),所以圆心又在直线y =-4上.联立y =x 和y =-4,得圆心C 的坐标(-4,-4).又因为点(-4,-4)到原点的距离为42,所以圆C 的方程为(x +4)2+(y +4)2=32,即x 2+y 2+8x +8y =0.圆心C 到x 轴距离为4,则圆C 被x 轴截得的弦长为2×422-42=8.答案:x 2+y 2+8x +8y =0 813.(2019·哈尔滨二模)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为________________.解析:当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0.得⎩⎨⎧x =0,y =1-3或⎩⎨⎧x =0,y =1+3,∴|AB |=23,符合题意.当直线l 的斜率存在时,设直线l的方程为y =kx +3,∵圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,∵d 2+⎝ ⎛⎭⎪⎫|AB |22=r 2,∴k +22k 2+1+3=4,解得k =-34,∴直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.答案:x =0或3x +4y -12=014.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为|-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22, 解得a 2=52,因为a >0,所以a =102. 答案:10215.(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.解析:∵AB 为直径 ∴AD ⊥BD∴BD 即B 到直线l 的距离|BD |=|0-2×5|12+22=2 5. ∵|CD |=|AC |=|BC |=r ,又CD ⊥AB . ∴|AB |=2|BC |=210 设A (a,2a ) |AB |=a -52+4a 2=210⇒a =-1或3(-1舍去)答案:316.(2020·厦门模拟)为保护环境,建设美丽乡村,镇政府决定为A ,B ,C 三个自然村建造一座垃圾处理站,集中处理A ,B ,C 三个自然村的垃圾,受当地条件限制,垃圾处理站M 只能建在与A 村相距5 km ,且与C 村相距31 km 的地方.已知B 村在A 村的正东方向,相距3 km ,C 村在B 村的正北方向,相距3 3 km ,则垃圾处理站M 与B 村相距________km.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系(图略),则A (0,0),B (3,0),C (3,33). 由题意得垃圾处理站M 在以A (0,0)为圆心,5为半径的圆A 上,同时又在以C (3,33)为圆心,31为半径的圆C 上,两圆的方程分别为x 2+y 2=25和(x -3)2+(y -33)2=31.由⎩⎨⎧x 2+y 2=25,x -32+y -332=31,解得⎩⎪⎨⎪⎧x =5,y =0或⎩⎪⎨⎪⎧x =-52,y =532,∴垃圾处理站M 的坐标为(5,0)或⎝ ⎛⎭⎪⎫-52,532,∴|MB |=2或|MB |=⎝ ⎛⎭⎪⎫-52-32+⎝ ⎛⎭⎪⎫5322=7, 即垃圾处理站M 与B 村相距2 km 或7 km. 答案:2或7。
直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1. 理解直线与圆的位置关系,掌握相关概念。
2. 学会利用直线与圆的位置关系解决实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
教学重点:1. 直线与圆的位置关系的判定。
2. 直线与圆的位置关系的应用。
教学难点:1. 理解并掌握直线与圆的位置关系的判定条件。
2. 解决实际问题时,如何正确运用直线与圆的位置关系。
教学准备:1. 教学课件或黑板。
2. 直线与圆的位置关系的相关例题和练习题。
教学过程:第一章:直线与圆的基本概念1.1 直线的定义及性质1.2 圆的定义及性质1.3 直线与圆的位置关系的基本概念第二章:直线与圆的位置关系的判定2.1 直线与圆相交的判定条件2.2 直线与圆相切的判定条件2.3 直线与圆相离的判定条件第三章:直线与圆的位置关系的应用3.1 求圆的方程3.2 求直线的方程3.3 求直线与圆的位置关系第四章:实际问题中的应用4.1 求点到直线的距离4.2 求点到圆心的距离4.3 求直线与圆的交点坐标第五章:综合练习5.1 判断直线与圆的位置关系5.2 求直线与圆的位置关系5.3 解决实际问题教学反思:通过本章的学习,学生应能掌握直线与圆的位置关系的基本概念,判定条件以及应用。
在教学过程中,应注意引导学生运用数学知识解决实际问题,培养学生的空间想象能力和逻辑思维能力。
通过练习题的训练,使学生巩固所学知识,提高解题能力。
第六章:直线与圆的位置关系的性质6.1 直线与圆相交的性质6.2 直线与圆相切的性质6.3 直线与圆相离的性质本章主要学习直线与圆的位置关系的性质。
学生将学习到在直线与圆相交、相切、相离的情况下,直线和圆的特定性质。
这些性质包括交点的数量、切点的位置、距离的关系等。
教学活动:通过图形和实例,让学生观察和总结直线与圆相交、相切、相离时的性质。
引导学生通过几何推理证明这些性质。
提供练习题,让学生应用这些性质解决具体问题。
教学评估:通过课堂讨论和练习题,评估学生对直线与圆位置关系性质的理解程度。
直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1. 学习直线与圆的位置关系的概念;2. 掌握直线与圆外切、内切以及相交的判定方法;3. 能够解决与直线与圆的位置关系相关的问题。
教学准备:1. 教师准备:黑板、彩色粉笔、PPT等教具;2. 学生准备:课本、笔记本、铅笔等。
教学过程:Step 1: 引入1. 教师在黑板上画两条直线和一个圆,让学生观察并描述直线与圆的位置关系;2. 引导学生思考直线与圆的位置关系是否有规律可循。
Step 2: 外切关系1. 教师引导学生观察直线与圆相切的情况,并让学生描述相切的特征;2. 教师讲解外切的定义:当且仅当直线离圆的距离等于圆的半径时,直线与圆相外切;3. 教师给出一些例题,让学生判断直线与圆是否为外切关系,并解释判断过程。
Step 3: 内切关系1. 教师引导学生观察直线与圆相切的情况,并让学生描述相切的特征;2. 教师讲解内切的定义:当且仅当直线离圆的距离等于圆的半径,且直线通过圆心时,直线与圆相内切;3. 教师给出一些例题,让学生判断直线与圆是否为内切关系,并解释判断过程。
Step 4: 相交关系1. 教师引导学生观察直线与圆相交的情况,并让学生描述相交的特征;2. 教师讲解相交的定义:当直线与圆有公共点时,直线与圆相交;3. 教师给出一些例题,让学生判断直线与圆是否相交,并解释判断过程。
Step 5: 总结归纳1. 教师带领学生总结直线与圆的外切、内切和相交的判定方法;2. 教师提问,让学生复述直线与圆的位置关系。
Step 6: 练习巩固1. 教师提供一些练习题,让学生独立尝试解决;2. 学生互相交流解题思路,并互相讨论答案;3. 对答案并讲解解题思路。
Step 7: 拓展延伸1. 教师提出一些拓展问题,让学生尝试解决;2. 学生通过思考和讨论,寻找解题思路;3. 教师给予适当提示或解答。
Step 8: 总结反思1. 教师带领学生总结本节课的重点内容;2. 学生回顾所学,思考自己的不足之处,并提出问题;3. 教师提供帮助和解答,并鼓励学生在课后继续巩固和拓展相关知识。
高三数学二轮复习专题五第1讲直线与圆教案

专题五 解析几何第1讲 直线与圆自主学习导引真题感悟1.(2012·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析 先求出两条直线平行的充要条件,再判断.若直线l 1与l 2平行,则a (a +1)-2×1=0,即a =-2或a =1,所以a =1是直线l 1与直线l 2平行的充分不必要条件. 答案 A2.(2012·福建)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于A .2 5B .2 3C. 3D .1解析 利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2, ∴弦长|AB |=2r 2-d 2=222-12=2 3. 答案 B考题分析圆在高考命题中多以直线与圆的位置关系为主,考查直线与圆位置关系的判定、弦长的求法等,题目多以小题为主,难度中等,掌握解此类题目的通性通法是重点.网络构建高频考点突破考点一:直线方程及位置关系问题【例1】(2012·江西八所重点高中联考)“a=0”是“直线l1:(a+1)x+a2y-3=0与直线l2:2x+ay-2a-1=0平行”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件[审题导引] 求出l1∥l2的充要条件,利用定义判定.[规范解答] 当a=0时,l1:x-3=0,l2:2x-1=0,此时l1∥l2,所以“a=0”是“直线l1与l2平行”的充分条件;当l1∥l2时,a(a+1)-2a2=0,解得a=0或a=1.当a=1时,l1:2x+y-3=0,l2:2x+y-3=0,此时l1与l2重合,所以a=1不满足题意,即a=0.所以“a=0”是“直线l1∥l2”的充要条件.[答案] C【规律总结】直线与直线位置关系的判断方法(1)平行:当两条直线l1和l2的斜率存在时,l1∥l2⇔k1=k2;如果直线l1和l2的斜率都不存在,那么它们都与x轴垂直,则l1∥l2.(2)垂直:垂直是两直线相交的特殊情形,当两条直线l1和l2的斜率存在时,l1⊥l2⇔k1·k2=-1;若两条直线l 1,l 2中的一条斜率不存在,另一条斜率为0时,则它们垂直. (3)相交:两直线相交的交点坐标可由方程组的解求得.[易错提示] 判断两条直线的位置关系时要注意的两个易错点:一是忽视直线的斜率不存在的情况,二是忽视两直线重合的情况.解答这类试题时要根据直线方程中的系数分情况进行讨论,求出结果后再反代到直线方程中进行检验,这样能有效地避免错误. 【变式训练】1.(2012·泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为 A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0 D .x -2y +5=0解析 由题意可设所求直线方程为:x -2y +m =0,将A (2,3)代入上式得2-2×3+m =0,即m =4,所以所求直线方程为x -2y +4=0. 答案 A2.在平面直角坐标系xOy 中,已知A (0,-1),B (-3,-4)两点,若点C 在∠AOB 的平分线上,且|OC →|=10,则点C 的坐标是________.解析 设C (a ,b )(a <0,b <0).OB 所在直线方程为4x -3y =0,则⎩⎪⎨⎪⎧|4a -3b |5=|a |,a 2+b 2=10,解得⎩⎪⎨⎪⎧a =-1,b =-3.∴C (-1,-3). 答案 (-1,-3) 考点二:圆的方程【例2】(2012·镇江模拟)以双曲线x 29-y 216=1的右焦点为圆心,且与其渐近线相切的圆的方程是________.[审题导引] 求出双曲线的右焦点与渐近线方程,利用圆心到渐近线的距离等于半径求得半径,可得方程.[规范解答] 双曲线的右焦点为(5,0),即为圆心,双曲线的渐近线方程为y =±43x ,即4x ±3y =0,∴r =|4×5±3×0|42+±32=4,∴所求圆的方程为(x -5)2+y 2=16. [答案] (x -5)2+y 2=16 【规律总结】圆的方程的求法(1)几何法,即通过研究圆的性质进而求出圆的基本量;如圆中弦所在的直线与圆心和弦中点的连线相互垂直;设圆的半径为r ,弦长为|AB |,弦心距为d ,则r 2=d 2+⎝⎛⎭⎪⎫|AB |22等.(2)代数法:即设出圆的方程,用待定系数法求解.在求圆的方程时,要根据具体的条件选用合适的方法,但一般情况下,应用几何法运算简捷. 【变式训练】3.(2012·徐州模拟)若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.解析 设圆心为(a,0)(a <0),则r =|a +2×0|12+12=2, 解得a =-2, 即(x +2)2+y 2=2. 答案 (x +2)2+y 2=2 考点三:直线与圆的位置关系【例3】(2012·临沂一模)直线l 过点(4,0)且与圆(x -1)2+(y -2)2=25交于A 、B 两点,如果|AB |=8,那么直线l 的方程为________.[审题导引] 讨论直线的斜率是否存在,利用弦长为8求出斜率,可得所求直线的方程.[规范解答] 圆心坐标为M (1,2),半径r =5,因为|AB |=8,所以圆心到直线l 的距离d =r 2-42=52-42=3.当直线斜率不存在时,即直线方程为x =4,圆心到直线的距离为3满足条件,所以x =4成立.若直线斜率存在,不妨设为k ,则直线方程y =k (x -4),即kx-y -4k =0,圆心到直线的距离为d =|k -2-4k |1+k 2=|2+3k |1+k 2=3,解得k =512,所以直线方程为y =512(x -4),即5x -12y -20=0.综上满足条件的直线方程为5x -12y -20=0或x =4.答案 5x -12y -20=0或x =4 【规律总结】求圆的弦长的方法(1)直接求出直线与圆的交点坐标,利用两点间的距离公式求得;(2)不求交点坐标,利用一元二次方程根与系数的关系得出,即设直线的斜率为k ,直线与圆联立消去y 后得到的方程的两根为x 1、x 2,则弦长d =1+k 2|x 1-x 2|;(3)利用半弦长、弦心距及半径构成的直角三角形来求.【变式训练】4.(2012·肇庆二模)从点P (m,3)向圆C :(x +2)2+(y +2)2=1引切线,则切线长的最小值为A .2 6 B.26 C .4+ 2 D .5解析 利用切线长与圆半径的关系加以求解.设切点为M ,则CM ⊥MP , 于是切线MP 的长|MP |=|CP |2-|MC |2=m +22+3+22-1,显然,当m =-2时,|MP |有最小值24=2 6.答案 A名师押题高考【押题1】若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析 当m =-2时,直线AB 与2x +y +2=0不平行; 当m ≠-2时,据题意知, k AB =4-m m +2=-2,得m =-8.答案 -8[押题依据] 本题考查直线的斜率的概念以及直线的位置关系,这类问题在高考中属基础题,常以选择题或填空题的形式出现.考查形式有直接判定位置关系,根据位置关系求参数值等.解答此类题目值得注意的是含参数时,一般要根据直线的斜率是否存在对参数进行讨论,以避免漏解.【押题2】直线y =kx +3与圆(x -1)2+(y +2)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是A.⎝ ⎛⎭⎪⎫-∞,-125B.⎝ ⎛⎦⎥⎤-∞,-125C.⎝ ⎛⎭⎪⎫-∞,125D.⎝⎛⎦⎥⎤-∞,125解析 圆心(1,-2)到直线y =kx +3的距离为d =|k +5|1+k2,圆的半径r =2,∴|MN |=2r 2-d 2=2 4-k +521+k2≥23, 解得k ≤-125.答案 B[押题依据] 高考在考查直线被圆截得的弦长问题时,有两种题型:一是直接求弦长;二是讨论参数的取值范围.本题属第二种题型,难度中等,表达形式新颖有一定的区分度,故押此题.。
高三数学直线与圆的位置关系教学设计教案

直线与圆的位置关系教学设计一、课程分析:(1)教材的地位和作用:在近十年的高考中,对选择题题型考查本章的基本概念和性质,此类题难度不大,但每年必考。
以解答题考查直线与圆的位置关系,可能性不大。
所以考试这类题难度为中档题。
但是圆这一章性质比较多,特别是直线与圆这一知识非常重要,对后面学习直线与圆锥曲线起着抛砖引玉的作用,要重点研究。
解决直线与圆的位置关系的问题,要熟练运用数形结合的思想,既要充分运用平面几何中有关圆的性质,又要结合代定系数法运用直线方程中的基本度量关系,养成勤画图的良好习惯。
(2)重点:1能用直线和圆的方程解决一些简单的问题.2掌握两种方法解决几何问题:代数方法和几何方法难点:1.根据不同的几何条件,求圆的方程2解决有关圆与直线的位置关系的综合问题3了解解析几何中多种数学方法的应用二、学情分析学生在前面已经学习了直线与圆的知识,还有圆锥曲线的知识。
能够解决一些基本题型,掌握了解析几何的一些常用的数学思想方法。
但是因为间隔时间比较长,所以有些知识有些淡忘,特别对某些题型该注意的问题比较模糊。
另外对知识的掌握上还是不够熟练,规律方法的总结上缺乏系统性。
所以这节课主要是通过典型题目起到复习基本知识总结规律的作用,其实解析几何中圆与圆锥曲线的解题方法有很多共性,在后面设置一个难度稍大,比较综合的题目,起到深化知识,统一方法的作用。
三、设计理念:课堂教学的中心是学生的学习活动,教学的根本任务是教学生学。
本设计努力挖掘内容的本质和联系,充分考虑学生的学习基础和思维发展方向,力求教学过程的自然流畅。
在教学方法上,以“问题引导,探究交流”为主,兼容讲解、演示、合作等多种方式,力求灵活运用。
在教学目标上,因为这是第一轮复习,所以注重基础和方法规律的总结。
以突出解析思想为主,容知识与技能、过程与方法、情感与体验为一体,力求多元价值取向。
四、教学目标:知识目标:①巩固高一高二的成果,并在此基础上有所提高,对知识方法的掌握达到熟练程度。
高考数学统考二轮复习 第二部分 专题5 解析几何 第1讲 直线与圆(教师用书)教案 理

学习资料解析几何专题5第1讲直线与圆直线的方程授课提示:对应学生用书第44页考情调研考向分析以考查直线方程的求法、两条直线的位置关系、两点间的距离、点到直线的距离、两条直线的交点坐标为主,有时也会与圆、椭圆、双曲线、抛物线交汇考查.题型主要以选择题,填空题为主,要求相对较低,但内容很重要,特别是距离公式,是高考考查的重点。
1。
求直线的方程.2。
判断两直线的位置关系.3.直线恒过定点问题。
[题组练透]1.过点(2,1)且与直线3x-2y=0垂直的直线方程为()A.2x-3y-1=0B.2x+3y-7=0C.3x-2y-4=0 D.3x+2y-8=0解析:设要求的直线方程为2x+3y+m=0,,把点(2,1)代入可得4+3+m=0,解得m =-7。
故所求直线方程为:2x+3y-7=0,故选B.答案:B2.(2020·淮南模拟)设λ∈R,则“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:当λ=-3时,两条直线的方程分别为6x+4y+1=0,3x+2y-2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的充分不必要条件,故选A。
答案:A3.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是()A.1 B.-1C.2或1 D.-2或1解析:当a=0时,直线方程为y=2,显然不符合题意,当a≠0时,令y=0时,得到直线在x轴上的截距是错误!,令x=0时,得到直线在y轴上的截距为2+a,根据题意得错误!=2+a,解得a=-2或a=1,故选D。
答案:D4.(2020·保定模拟)设点P为直线l:x+y-4=0上的动点,点A(-2,0),B(2,0),则|P A|+|PB|的最小值为()A.210 B.26C.2错误! D.错误!解析:依据题意作出图象如下:设点B(2,0)关于直线l的对称点为B1(a,b),则它们的中点坐标为错误!,且|PB|=|PB1|.由对称性可得错误!,解得a=4,b=2.所以B1(4,2).因为|P A|+|PB|=|P A|+|PB1|,所以当A,P,B1三点共线时,|P A|+|PB|最小.此时最小值为|AB1|=(4+2)2+(2-0)2=2错误!.故选A.答案:A[题后悟通]1.两直线的位置关系问题的解题策略求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即斜率相等且纵截距不相等或斜率互为负倒数.若出现斜率不存在的情况,可考虑用数形结合的方法去研究或直接用直线的一般式方程判断.2.轴对称问题的两种类型及求解方法点关于直线的对称若两点P1(x1,y1)与P2(x2,y2)关于直线l:Ax+By+C=0对称,则线段P1P2的中点在对称轴l上,而且连接P1,P2的直线垂直于对称轴l.由方程组错误!,可得到点P1关于l对称的点P2的坐标(x2,y2)(其中B≠0,x1≠x2)直线关于直线的对称有两种情况,一是已知直线与对称轴相交;二是已知直线与对称轴平行.一般转化为点关于直线的对称来解决圆的方程授课提示:对应学生用书第45页考情调研考向分析考查圆的方程,与圆有关的轨迹问题、最值问题是考查的热点,属中档题.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现.1。
人教版高中数学《直线和圆的方程》教案全套

人教版高中数学《直线和圆的方程》教案全套题目:人教版高中数学《直线和圆的方程》教案全套导语:数学是一门精密细致的学科,它以其独特的思维方式和精确的推理方法在人类文明发展中起到了重要的作用。
而高中数学作为数学学科中的一部分,是培养学生分析和解决问题的能力的重要途径之一。
其中《直线和圆的方程》这一部分,是高中数学中的一个重要内容。
本文将为大家介绍人教版高中数学《直线和圆的方程》教案全套。
一、教学目标:1. 了解直线和圆的基本概念;2. 掌握直线和圆的方程的求解方法;3. 能够应用所学的知识解决实际问题。
二、教学重点:1. 直线和圆的方程的推导和求解;2. 直线和圆的方程在实际问题中的应用。
三、教学难点:直线和圆的方程的综合应用。
四、教学准备:1. 教材:人教版高中数学教材《直线和圆的方程》;2. 视频教学资料:相关的教学视频;3. 课件:用于辅助教学的课件。
五、教学过程:本套教案共分为两个单元:直线的方程和圆的方程。
1. 直线的方程第一课时:(1)引入问题:通过观察直线和平面上的点,让学生自己总结直线的特点;(2)介绍直线的斜率和截距的概念,让学生理解斜率和截距的含义;(3)讲解直线的一般式方程和斜截式方程,通过具体的例子进行解析;(4)让学生完成练习,巩固所学的内容。
第二课时:(1)复习上一节课所学的内容,回答学生提出的问题;(2)通过实例讲解直线的点斜式方程和两点式方程;(3)让学生进行练习,巩固所学的内容。
第三课时:(1)通过总结前面所学的内容,让学生分析直线的方程和直线的性质之间的关系;(2)通过实例引导学生理解直线的方向角和倾斜角的概念;(3)讲解直线的参数方程,通过具体的例子进行解析;(4)通过练习检查学生对直线方程的掌握程度。
2. 圆的方程第四课时:(1)引入问题:通过观察圆和平面上的点,让学生自己总结圆的特点;(2)介绍圆的标准方程和一般方程的概念,让学生理解圆的方程的推导过程;(3)通过具体的例子进行解析,讲解如何求解圆的方程;(4)让学生进行练习,巩固所学的内容。
直线和圆的位置关系教案

直线和圆的位置关系教案教学目标:1. 了解直线和圆的位置关系,掌握判断方法。
2. 能够运用直线和圆的位置关系解决实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
教学内容:一、直线和圆的位置关系概述1. 直线和圆的定义2. 直线和圆的位置关系的分类二、直线和圆的位置关系的判断方法1. 直线与圆相交的判断2. 直线与圆相切的判断3. 直线与圆相离的判断三、直线和圆的位置关系在实际问题中的应用1. 求圆的方程2. 求圆的切线方程3. 求直线与圆的交点坐标四、直线和圆的位置关系的证明1. 直线与圆相交的证明2. 直线与圆相切的证明3. 直线与圆相离的证明五、综合练习1. 判断直线和圆的位置关系2. 求直线和圆的交点坐标3. 求圆的方程和切线方程教学方法:1. 采用讲授法,讲解直线和圆的位置关系的定义、判断方法、应用和证明。
2. 利用图形展示,帮助学生直观理解直线和圆的位置关系。
3. 运用例题,引导学生学会运用直线和圆的位置关系解决实际问题。
4. 进行课堂练习和课后作业,巩固所学知识。
教学评价:1. 课堂问答,检查学生对直线和圆的位置关系的理解和掌握程度。
2. 课后作业,评估学生运用直线和圆的位置关系解决实际问题的能力。
3. 进行阶段性测试,全面了解学生对直线和圆的位置关系的掌握情况。
教学资源:1. 教学PPT,展示直线和圆的位置关系的图形和例题。
2. 练习题,供学生课堂练习和课后作业。
3. 教学视频,讲解直线和圆的位置关系的证明。
教学步骤:一、导入新课1. 引入直线和圆的概念。
2. 提问:直线和圆有什么关系?二、讲解直线和圆的位置关系概述1. 讲解直线和圆的定义。
2. 讲解直线和圆的位置关系的分类。
三、讲解直线和圆的位置关系的判断方法1. 讲解直线与圆相交的判断方法。
2. 讲解直线与圆相切的判断方法。
3. 讲解直线与圆相离的判断方法。
四、讲解直线和圆的位置关系在实际问题中的应用1. 讲解求圆的方程的方法。
高三数学二轮复习直线及圆PPT学习教案

(4)掌握确定直线位置的几何要 素,掌握直线方程的几种形式 (点斜式、两点式及一般式), 了解斜截式与一次函数的关 系.
(5)能用解方程组的方法求两直 线的交点坐标.
(6)掌握两点间的距离公式、点 到直线的距离第4页公/共52式页 ,会求两条 平行直线间的距离.
2.圆与方程
(1)掌握确定圆的几何要素,掌 握圆的标准方程与一般方程.
高三数学二轮复习直线及圆
会计学
1
第1页/共52页
第2页/共52页
1.直线与方程
(1)在平面直角坐标系中,结合 具体图形,确定直线位置的几 何要素.
(2)理解直线的倾斜角和斜率的 概念,掌握过两点的直线斜率 的计算公式.
(3)能根据两条直线的斜率判定 这两条直线平第3页行/共52或页 垂直.
第23页/共52页
在方程y-2=k(x-3)中, 令y=0,得点R的坐标为3k-k 2,0, ∴△QOR的面积S=12·3k-k 2·6kk--24=3k2k--22k2, 变形得(S-9)k2+(12-2S)k-4=0,
第24页/共52页
因为S≠9,所以判别式Δ≥0,
即(12-2S)2+16(S-9)≥0,
第29页/共52页
[例2] 过点A(4,1)的圆C与直线 x-y-1=0相切于点B(2,1),则 圆C的方程为 ________________.
[分析] 因题中涉及圆心及切 线,故可设标准形式较简单(只 需求出圆心和半径).
[答案] (x-第330)页2/+共52页y2=2
[解析] 法一:设圆的标准方程为(x-a)2+(y-b)2= r2,由题意知:
②代数法:将点的坐标代入圆 的标准(或一般)方程的左边, 将所得值与r第21(6或页/共502页)作比较,大 于r2(或0)时,点在圆外;等于
高三数学二轮复习直线与圆学案

高三数学二轮复习 ——直线、圆及其交汇问题一、高考定位:本问题是整个解析几何的基础,在解析几何的知识体系中占有重要位置,但解析几何的主要内容是圆锥曲线与方程,故在该部分高考考查的分值不多,在高考试卷中一般就是一个选择或填空题考查直线与方程、圆与方程的基本问题,偏向于考查直线与圆的综合,试题难度不大,对直线方程、圆的方程的深入考查则与圆锥曲线结合进行.二、必备知识1. 两直线平行、垂直的判定(1)①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.②若两直线的斜率都不存在,并且两直线不重合,则两直线平行;③若两直线中一条直线的斜率为0,另一条直线斜率不存在,则两直线垂直. (2)l 1:A 1x +B 1y +C 1=0, l 2:A 2x +B 2y +C 2=0, 则有l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0,通常写成111222A B C A B C =≠(分母不为0) 便于记忆。
l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.圆的方程:(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r . (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝⎛⎭⎫-D 2,-E2,半径为r =D 2+E 2-4F2;(3)直线被圆所截得的弦长等于三、必备方法1.由于直线方程有多种形式,各种形式适用的条件、范围不同,在具体求直线方程时,由所给的条件和采用的直线方程形式所限,可能会产生遗漏的情况,尤其在选择点斜式、斜截式时要注意斜率不存在的情况.2.处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如弦心距、半径、弦长的一半构成直角三角形经常用到,利用圆的一些特殊几何性质解题,往往使问题简化.3.直线与圆中常见的最值问题(1)圆外一点与圆上任一点的距离的最值.(2)直线与圆相离,圆上任一点到直线的距离的最值. (3)过圆内一定点的直线被圆截得弦长的最值.(4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值问题. (5)两圆相离,两圆上点的距离的最值.4.两圆相交,将两圆方程联立消去二次项,得到一个二元一次方程即为两圆公共弦所在的直线方程.四、典型例题解析:【例1】►待定系数法求圆的方程已知圆C与圆x2+y2-2x=0外切,并与直线x+3y=0相切于点Q(3,-3),求圆C方程.[审题] 先确定采用标准方程还是一般方程,然后求出相应的参数,即采用待定系数法.解:设圆C的圆心为(a,b),半径为r,由题设得13rrba⎧==+⎪=-⎪⎪⎩解得:42abr=⎧⎪=⎨⎪=⎩或6abr=⎧⎪=-⎨⎪=⎩.所以圆C的方程为(x-4)2+y2=4或x2+(y+43)2=36.【考题演练】(2010山东文数)已知圆C过点(1,0)且圆心在x轴的正半轴上,直线l:x-yC的标准方程为_____________________.解析:【例题2】►如图所示,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.(1)求圆A的方程;(2)当|MN|=219时,求直线l的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自主学习导引
真题感悟
1.(2012·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
解析 先求出两条直线平行的充要条件,再判断.
若直线l 1与l 2平行,则a (a +1)-2×1=0,即a =-2或a =1,所以a =1是直线l 1与直线l 2平行的充分不必要条件. 答案 A
2.(2012·福建)直线x +3y -2=0与圆x 2
+y 2
=4相交于A 、B 两点,则弦AB 的长度等于
A .25
B .23C.3D .1
解析 利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2|
12+3
2
=1,半径r =2, ∴弦长|AB |=2r 2
-d 2
=222
-12
=2 3. 答案 B
考题分析
圆在高考命题中多以直线与圆的位置关系为主,考查直线与圆位置关系的判定、弦长的求法等,题目多以小题为主,难度中等,掌握解此类题目的通性通法是重点.
网络构建
高频考点突破
考点一:直线方程及位置关系问题 【例1】(2012·江西八所重点高中
联考)“a =0”是“直线l 1:(a +1)x +a 2y -3=0与直线l 2:2x +ay -2a -1=0平行”的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
[审题导引] 求出l 1∥l 2的充要条件,利用定义判定.
[规范解答] 当a =0时,l 1:x -3=0,l 2:2x -1=0,此时l 1∥l 2, 所以“a =0”是“直线l 1与l 2平行”的充分条件; 当l 1∥l 2时,a (a +1)-2a 2=0,解得a =0或a =1.
当a =1时,l 1:2x +y -3=0,l 2:2x +y -3=0,此时l 1与l 2重合, 所以a =1不满足题意,即a =0.
所以“a =0”是“直线l 1∥l 2”的充要条件. [答案]C
【规律总结】
直线与直线位置关系的判断方法
(1)平行:当两条直线l 1和l 2的斜率存在时,l 1∥l 2⇔k 1=k 2;如果直线l 1和l 2的斜率都不存在,那么它们都与x 轴垂直,则l 1∥l 2.
(2)垂直:垂直是两直线相交的特殊情形,当两条直线l 1和l 2的斜率存在时,l 1⊥l 2⇔k 1·k 2=-1;若两条直线l 1,l 2中的一条斜率不存在,另一条斜率为0时,则它们垂直. (3)相交:两直线相交的交点坐标可由方程组的解求得.
[易错提示] 判断两条直线的位置关系时要注意的两个易错点:一是忽视直线的斜率不存在的情况,二是忽视两直线重合的情况.解答这类试题时要根据直线方程中的系数分情况进行讨论,求出结果后再反代到直线方程中进行检验,这样能有效地避免错误. 【变式训练】
1.(2012·泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为 A .x -2y +4=0 B .2x +y -7=0
C .x -2y +3=0
D .x -2y +5=0
解析 由题意可设所求直线方程为:x -2y +m =0,将A (2,3)代入上式得2-2×3+m =0,即m =4,所以所求直线方程为x -2y +4=0. 答案 A
2.在平面直角坐标系xOy 中,已知A (0,-1),B (-3,-4)两点,若点C 在∠AOB 的平分线上,且|OC →
|=10,则点C 的坐标是________.
解析 设C (a ,b )(a <0,b <0).
OB 所在直线方程为4x -3y =0,
则⎩⎪⎨⎪
⎧
|4a -3b |5=|a |,a 2+b 2=10,解得⎩⎪⎨
⎪
⎧
a =-1,
b =-3.
∴C (-1,-3). 答案 (-1,-3)
考点二:圆的方程
【例2】(2012·镇江模拟)以双曲线x 29-y 2
16=1的右焦点为圆心,且与其渐近线相切的圆
的方程是________.
[审题导引] 求出双曲线的右焦点与渐近线方程,利用圆心到渐近线的距离等于半径求得半径,可得方程.
[规范解答] 双曲线的右焦点为(5,0),
即为圆心,双曲线的渐近线方程为y =±4
3x ,
即4x ±3y =0,∴r =
|4×5±3×0|42
+±3
2
=4,
∴所求圆的方程为(x -5)2
+y 2
=16. [答案](x -5)2+y 2=16 【规律总结】
圆的方程的求法
(1)几何法,即通过研究圆的性质进而求出圆的基本量;如圆中弦所在的直线与圆心和弦中点的连线相互垂直;设圆的半径为r ,弦长为|AB |,弦心距为d ,则r 2
=d 2
+⎝
⎛⎭
⎪⎫|AB |22等.
(2)代数法:即设出圆的方程,用待定系数法求解.在求圆的方程时,要根据具体的条件选用合适的方法,但一般情况下,应用几何法运算简捷. 【变式训练】
3.(2012·徐州模拟)若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.
解析 设圆心为(a,0)(a <0),则r =|a +2×0|
12+12
=2, 解得a =-2, 即(x +2)2
+y 2
=2. 答案 (x +2)2+y 2=2 考点三:直线与圆的位置关系
【例3】(2012·临沂一模)直线l 过点(4,0)且与圆(x -1)2+(y -2)2=25交于A 、B 两点,如果|AB |=8,那么直线l 的方程为________.
[审题导引] 讨论直线的斜率是否存在,利用弦长为8求出斜率,可得所求直线的方程.
[规范解答] 圆心坐标为M (1,2),半径r =5,因为|AB |=8,所以圆心到直线l 的距离d =r 2-42=52-42
=3.当直线斜率不存在时,即直线方程为x =4,圆心到直线的距离为3满足条件,所以x =4成立.若直线斜率存在,不妨设为k ,则直线方程y =k (x -4),即kx
-y -4k =0,圆心到直线的距离为d =|k -2-4k |1+k 2=|2+3k |1+k 2
=3,解得k =5
12,所以直线方程为y =5
12
(x -4),即5x -12y -20=0.综上满足条件的直线方程为5x -12y -20=0或x =4.
答案 5x -12y -20=0或x =4 【规律总结】
求圆的弦长的方法
(1)直接求出直线与圆的交点坐标,利用两点间的距离公式求得;
(2)不求交点坐标,利用一元二次方程根与系数的关系得出,即设直线的斜率为k ,直线与圆联立消去y 后得到的方程的两根为x 1、x 2,则弦长d =1+k 2
|x 1-x 2|;
(3)利用半弦长、弦心距及半径构成的直角三角形来求.
【变式训练】
4.(2012·肇庆二模)从点P (m,3)向圆C :(x +2)2+(y +2)2
=1引切线,则切线长的最小值为
A .2 6 B.26 C .4+ 2 D .5
解析 利用切线长与圆半径的关系加以求解.设切点为M ,则CM ⊥MP , 于是切线MP 的长|MP |=|CP |2
-|MC |2
=
m +2
2
+3+2
2
-1,
显然,当m =-2时,|MP |有最小值24=2 6.
答案 A
名师押题高考
【押题1】若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.
解析 当m =-2时,
直线AB 与2x +y +2=0不平行; 当m ≠-2时,据题意知, k AB =4-m m +2
=-2,得m =-8.
答案 -8
[押题依据] 本题考查直线的斜率的概念以及直线的位置关系,这类问题在高考中属基础题,常以选择题或填空题的形式出现.考查形式有直接判定位置关系,根据位置关系求参数值等.解答此类题目值得注意的是含参数时,一般要根据直线的斜率是否存在对参数进行讨论,以避免漏解.
【押题2】直线y =kx +3与圆(x -1)2
+(y +2)2
=4相交于M 、N 两点,若|MN |≥23,则
k 的取值范围是
A.⎝
⎛⎭⎪⎫-∞,-125 B.⎝ ⎛⎦⎥⎤-∞,-125 C.⎝ ⎛⎭⎪⎫-∞,125 D.⎝ ⎛⎦⎥⎤-∞,125 解析 圆心(1,-2)到直线y =kx +3的距离为
d =|k +5|1+k
2
,圆的半径r =2,
∴|MN |=2r 2
-d 2
=2 4-k +52
1+k
2
≥23, 解得k ≤-12
5.
答案 B
[押题依据] 高考在考查直线被圆截得的弦长问题时,有两种题型:一是直接求弦长;二是讨论参数的取值范围.本题属第二种题型,难度中等,表达形式新颖有一定的区分度,故押此题.。