沥青路面设计实例

合集下载

沥青路面设计范例

沥青路面设计范例

路基路面课程设计(沥青路面设计)范例1.1道路等级确定根据调查资料,基年交通量组成如下:由于路线为县级公路,因此道路等级为一级公路以下,则由预测年限规定: 具有集散功能的一级公路及二、三级公路的规划交通量应按n-1N d=N(1+8%)其中: N—规划年交通量(辆/日)15年预测,则由公式: 式1-1)0—基年平均日交通量(辆/ 日)Y—年平均增长率(%—预测年限(年)即:规划年交通量为:Nd=[(150+80+100+120) X 1.5+150 X 2.0+ (120+110)=[345+150+300+180+360+330] X (1+8%)15-1X 3.0] X (1+8%)15-1=4890辆/日由《公路工程技术标准》(JTG B01 —2003)(以下简称《标准》),双车道三级公路应能适应将各种车辆折合成小客车的年平均日交通量为2000〜6000 辆,综合考虑选定道路等级为三级。

P —标准轴载,(KN ; P —被换算车辆的各级轴载, K —被换算车型的轴载级别; C —轴载系数,C i =1+1.2 X (m-1) , m 是轴数。

当轴间距大于3m 时,按单独 的一个轴载计算,当轴轴间距小于3m 时,应考虑轴数系数;C 2—轮组系数,单 轮组为6.4,双轮组为1,四轮组为0.38。

1.2结构设计6.2.1轴载分析路面设计以双轮组单轴轴载lOOkN 为标准轴载。

6.2.1.2.1轴载换算(基本参数见表6.1)轴载换算公式如下:f 、4.35P L f 丿式中:N —标准轴载的当量轴次,(次/ 日);k河 CGN i(式 6-1 )N —被换算车辆的各级轴载, (KN ;(KN );6.2.1.2.2 累计当量轴次根据设计“规范”三级沥青混凝土设计年限取 8年,双车道系数为0.6 — 0.7, 本设计取0.7 。

式中:N e —设计年限内一个车道沿一个方向通过的累计标准当量轴次(次);t —设计年限(年);N 1—路面营运第一年双向日平均当量轴次(次 /日); r —设计年限内交通量平均增长率(%);n —与车道有关的车辆横向分布系数,简称车道系数。

我国沥青路面设计方法及典型实例

我国沥青路面设计方法及典型实例

我国沥青路面设计方法及典型实例1、设计理论-层状体系理论2、设计指标和要求; (1)轮隙中间路表面(A点)计算弯沉值小于或等于设计弯沉值(2)轮隙中心下(C点)或单圆荷载中心处(B点)的层底拉应力应小于或等于容许拉应力3、弯沉概念(1)回弹弯沉:路基或路面在规定荷载作用下产生垂直变形,卸载后能恢复的那一部分变形。

(2)残余弯沉:路基或路面在规定荷载作用下产生的卸载后不能恢复的那一部分变形。

(3)总弯沉:路基或路面在规定荷载作用下产生的总垂直变形(回弹弯沉+残余弯沉)。

(4)容许弯沉:路面设计使用期末不利季节,标准轴载作用下双轮轮隙中间容许出现的最大回弹弯沉值。

(5)设计弯沉:是指路面交工验收时、不利季节、在标准轴载作用下,标准轴载双轮轮隙中间的最大弯沉值。

4、弯沉测定;(1)贝克曼法:传统检测方法,速度慢,静态测试,试验方法成熟,目前为规范规定的标准方法。

(2)自动弯沉仪法:利用贝克曼法原理快速连续测定,属于试验范畴,但测定的是总弯沉,因此使用时应用贝克曼进行标定换算。

(3)落锤弯沉仪法:利用重锤自由落下的瞬间产生的冲击载荷测定弯沉,属于动态弯沉,并能反算路面的回弹量,快速连续测定,使用时应用贝克曼进行标定换算。

5、设计弯沉的调查与分析(1)我国把第四外观等级作为路面临界破坏状态,以第四外观等级路面的弯沉值的低限作为临界状态的划界标准,从表中所列的外观特征可知,这样的临界状态相当于路面已疲劳开裂并伴有少量永久变形的情况。

(2)对相同路面结构不同外观特征的路段进行测定后发现,外观等级数愈高,弯沉值愈大,并且外观等级同弯沉值大小有着明显的联系。

因此可以在弯沉值与不同时期的累计交通量间建立关系。

6、设计弯沉值; 设计弯沉值是路面峻工验收时、最不利季节、路面在标准轴载作用下测得的最大(代表)回弹弯沉值。

可根椐设计年限内每个车道通过的累计当量轴次、公路等级、面层和基层类型确定的路面弯沉设计值。

7、容许弯拉应力对沥青混凝土的极限劈裂强度,系指15℃时的极限劈裂强度;对水泥稳定类材料龄期为90d 的极限劈裂强度(MPa);对二灰稳定类、石灰稳定类材料系指龄期为180d的极限劈裂强度(MPa),水泥粉煤灰稳定类120d的极限劈裂强度(MPa) 。

一级公路沥青路面结构设计计算实例

一级公路沥青路面结构设计计算实例

一级公路沥青路面结构设计计算实例一级公路是国家重点建设的高速公路,需要经过严格的设计计算才能确保路面的质量和安全。

下面是一级公路沥青路面结构设计的一个实例,包括路基设计、沥青路面厚度计算以及路面结构层的设计。

1.路基设计:路基是公路的基础层,承受着交通荷载的传递和分布。

路基设计主要考虑的因素包括:土质和胀缩性,交通量和荷载频率,基床沉降和变形,以及排水和防渗等。

在这个实例中,我们以典型的路基设计参数为例进行计算。

根据实际情况,我们假设路基的土质为砂土,没有明显的胀缩性。

交通量为每天6000辆,荷载频率为20,基床沉降和变形可容许值为30mm,路基的排水和防渗设计要求满足A2级。

计算方法:首先,计算基床厚度:H_base = 0.05 * N * P * f (单位:m)其中,N为每天通过的车辆数,P为荷载频率,f为修正系数,根据表1查得当P=20时,f=1.0。

带入数据,我们得到基床厚度 H_base = 0.05 * 6000 * 20 * 1.0 = 600mm。

然后,计算沥青路面的修正系数 k :k = H_base / (H_base + H) ,其中,H为沥青路面厚度。

根据实际情况和设计要求,可以选择不同宽度的沥青路面厚度。

2.沥青路面厚度计算:在这个实例中,我们选择沥青路面的宽度为6m,根据设计要求,计算沥青路面的厚度。

计算方法:首先,计算水平交通荷载分布系数:Z=1.28+0.03W+0.003W^2,其中,W为车道的有效宽度。

带入数据,我们得到Z=1.28+0.03*6+0.003*6^2=1.67然后,计算沥青路面最小厚度:H_min = (P * Z) / k ,其中,P为荷载频率。

带入数据,我们得到H_min = (20 * 1.67) / (0.6) ≈ 55.7mm。

最后,根据设计要求,选择适当的沥青路面厚度为70mm。

3.路面结构层设计:路面结构层是由多层不同材料组成的,可以有效地承受交通荷载并分散载荷。

沥青路面结构设计计算案例

沥青路面结构设计计算案例

• ①轴载换算
• 验算半刚性基层层底拉应力的轴载换算公式
为:
N
k i 1
C1C2ni

Pi P
8
• 计算结果如下表所示。
轴载换算结果表(半刚性基层层底拉应力)
车型
Pi
C1′
C2′
前轴 58.6
1
18.5
黄河JN163 后轴 114.0
1
1
江淮HF150 后轴 101.5
• 5)设计指标的确定
• 对于一级公路,规范要求以设计弯沉值作为设 计指标,并进行结构层底拉应力验算。
• (1)设计弯沉值
• 路面设计弯沉值根据公式计算。该公路为一级 公路,公路等级系数取1.0,面层是沥青混凝土, 面层类型系数取1.0,半刚性基层,底基层基层 类型系数取1.0。
• 设计弯沉值为:
F
1.63
Ls
2000
0.38

E0 p
0.36

1.63
23.47
0.38 40 0.36
200010.65 论弯沉系数αc
ld
1000
2 p
E1
c

F
c

ld E1
• 根据设计规范,一级公路沥青路面的设计年 限取15年,四车道的车道系数是0.4~0.5, 取0.45。
Ne

1


t


1

365
N1


1 0.115 1 365 2092.3 0.45
0.1
10918939.8次 1092万次
(2)验算半刚性基层层底拉应力中的累计当量 轴次

道路沥青路面毕业设计

道路沥青路面毕业设计

湖南某山岭区一级SBS沥青路面北线设计目录1 绪论 (1)1.1拟建项目地区概述 (1)1.2项目建设的重要意义 (1)1.3沿线地形地质及自然环境 (2)2 路线设计 (4)2.1公路技术标准的确定 (4)2.2路线方案设计 (6)2.3路线平面设计 (9)2.4纵断面设计 (18)2.5路线比选 (25)2.6横断面设计..............................................273 路基路面设计 (39)3.1概述 (39)3.2路基设计 (41)3.3路基稳定性分析验算 (44)3.4边坡防护与加固 (45)3.5路面结构设计 (48)4、排水设计 (59)4.1路基地面排水设计 (59)4.2路基地下排水 (59)4.3路面排水 (60)4.4中央分隔带排水 (60)5 桥涵设计 (62)5.1桥涵设计的一般规定 (62)5.2位置及尺寸 (62)6结论 (63)参考文献 (64)致谢 (65)英文翻译 (66)附录.............................................791 绪论1.1拟建项目地区概述湖南省位于长江中游南部。

大部分地区在洞庭湖之南,境内湘江贯穿南北。

湖南东临江西,西接重庆、贵州,南毗广东、广西,北连湖北。

辖13个地级市和1个自治州,共有136个县(县级市、市辖区)以上行政单位,省会为长沙市。

湖南省河网密布,长5公里以上的河流5341条,总长度9万公里,其中流域面积在5000平方公里以上的大河17条。

全省土地总面积约为31774.35万亩,其中51%为山地, 7%为盆地,13%为平原,15.4%为丘陵,全省有水面135.37万公顷,占总面积的6.4%。

海拔高度在50米以下的面积占总面积的9.9%,l000米以上的占总面积的4.3%,大部分地区海拔高度在100米至800米之间。

湖南民族及人口众多,近年经济发展迅速,农业、工业、旅游业收入不断增加,人口流动和经济的快速增长对交通状况提出了更高的要求。

沥青路面设计计算案例

沥青路面设计计算案例

沥青路面设计计算案例一、新建路面结构设计流程(1)根据设计要求,按弯沉或弯拉指标分别计算设计年限内一个车道的累计标准当量轴次,确定设计交通量与交通等级,拟定面层、基层类型,并计算设计弯沉值或容许拉应力。

(2)按路基土类与干湿类型及路基横断面形式,将路基划分为若干路段,确定各个路段土基回弹模量设计值。

(3)参考本地区的经验和规范拟定几种可行的路面结构组合与厚度方案,根据工程选用的材料进行配合比试验,测定各结构层材料的抗压回弹模量、劈裂强度等,确定各结构层的设计参数。

(4)根据设计指标采用多层弹性体系理论设计程序计算或验算路面厚度。

如不满足要求,应调整路面结构层厚度,或变更路面结构组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。

(5)对于季节性冰冻地区应验算防冻厚度是否符合要求。

(6)进行技术经济比较,确定路面结构方案。

需要注意的是,完成结构组合设计后进行厚度计算,厚度计算应采用专业设计程序。

有关公路新建及改建路面设计方法、程序及相关要求详见《沥青路面设计规范》。

二、计算示例(一)基本资料1.自然地理条件新建双向四车道高速公路地处Ⅱ2区,拟采用沥青路面结构进行施工图设计,填方路基高1.8m,路基土为中液限黏性土,地下水位距路床表面2.4m,一般路基处于中湿状态。

2.土基回弹模量的确定该设计路段路基处于中湿状态,路基土为中液限黏性土,根据室内试验法确定土基回弹模量设计值为40MPa。

3.预测交通量预测竣工年初交通组成与交通量,见表9-11.预测交通量的年平均增长率为5.0%.(二)根据交通量计算累计标准轴次Ne ,根据公路等级、面层、基层类型及Ne 计算设计弯沉值。

解:1.计算累计标准当量轴次 标准轴载及轴载换算。

路面设计采用双轮组单轴载100KN 为标准轴载,以BZZ-100表示,根据《沥青路面设计规范》规定,新建公路根据交通调查资料,主要以中客车、大客车、轻型货车、中型货车、大型货车、铰链挂车等的数量与轴重进行预测设计交通量,即除桑塔纳2000外均应进行换算。

沥青混凝土路面设计程序第3版-计算实例

沥青混凝土路面设计程序第3版-计算实例

算例一:无机结合料基层沥青路面结构1.环境参数某高速公路,设计车速100km/小时,设计使用年限15年。

所在地区自然区划属Ⅱ-2区,沥青路面气候分区属2-2区,年均降雨量607毫米,年平均气温11.6℃,月平均气温最低为-3.2℃,月平均气温最高为24.8℃,多年最低气温为-20℃。

2.交通参数对应于无机结合料层层底拉应力的当量设计轴载累计作用次数为 1.51×109次,对应于沥青混合料层永久变形量的当量设计轴载累计作用次数为 2.15×107次。

3.初拟路面结构表1.1 初拟水泥稳定碎石基层沥青路面结构结构层材料类型厚度(mm)面层AC13 (SBS改性沥青) 40 AC20(90号道路石油沥青) 60 AC25(90号道路石油沥青) 80基层水泥稳定碎石380底基层级配碎石1804.材料参数⑴路基顶面回弹模量路基为受气候影响的干燥类,土质为低液限黏土。

参考《公路路基设计规范》(JTG D30-2015),低液限黏土路基标准状态下回弹模量取70MPa,回弹模量湿度调整系数k s取0.95,干湿与冻融循环作用折减系数kη取0.80,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为53MPa,满足规范规定。

⑵级配碎石底基层模量根据试验测定结果,经湿度调整后,级配碎石底基层模量为300MPa。

⑶水泥稳定碎石基层模量和弯拉强度根据试验测定结果,水泥稳定碎石材料弹性模量为24000MPa,乘以结构层模量调整系数0.5,水泥稳定碎石基层模量为12000MPa,弯拉强度为1.8MPa。

⑷沥青面层模量根据试验测定结果,20℃、10Hz时,SBS改性沥青AC13表面层模量为11000MPa,90号道路石油沥青AC20中面层和AC25下面层模量为10000MPa。

⑸泊松比根据规范表5.6.1,路基泊松比取0.40,级配碎石底基层取0.35,沥青混合料面层和水泥稳定碎石基层取0.25。

沥青路面设计(终极版)

沥青路面设计(终极版)

课程设计学院:土木与交通学院姓名:999学号:*********1 基本设计资料拟设计路线位于微邱区,该路段设计年限15年,交通量年平均增长8.9%,车道系数η=0.45,该路段处于中国公路自然区划II 1区,行车道为四车道,此公路所经地区多处为粉性土,季节性冰冻地区,冻结深度为1.2m 路基中湿,回弹模量E=35Mp 。

交通组成及交通量表车型 双向交通量 小客车 2700 风潮HDF650 800 三菱PV413530 黄河JN162A1700 江淮HFF3150C07 610 雷诺JN75 850 山西SX341 850 东风YCY--90 600 龙尼克276658一、沥青路面设计2、轴载分析我国沥青路面设计以双轮组单轴载100kN 为标准轴载,表示为BZZ-100。

标准轴载的计算参数按表3-1确定。

载大于40kN 的各级轴载i P 的作用次数i n 均换算成标准轴载P 的当量作用次数N 。

35.4211)(pp n C C N ii Ki ∑==式中:N — 以设计弯沉值和沥青层层底拉应力为指标时的标准轴载的当量次数; i n — 被换算车型的各级轴载换算次数(次/日); P — 标准轴载(kN );i P — 各种被换算车型的轴载(kN );C 1— 轮组系数,单轮组为6.4,双轮组为1.0,四轴组为0.38;C2— 轴数系数。

当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,双轴或多轴的轴数系数按下面公式计算()11 1.21C m =+-则其设计年限内一个车道上的累计量轴次e N :1[(1)1]365t e N N γηγ+-⨯=式中 e N — 设计年限内一个车道的累计当量次数; t — 设计年限,由材料知,t=20年;1N — 设计端竣工后一年双向日平均当量轴次;γ— 设计年限内的交通量平均增长率,由材料知,γ=0.089; η— 车道系数,由材料知η=0.45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例11.1】新建路面设计实例本例为安徽境内某条高速公路,整体式路基宽度为28.0m ,设计车速120km 。

⑴设计交通量:设计使用年限15年,根据交通量预测资料,考虑车型发展趋势及经济发展对交通量增长的影响,交通量平均年增长率预测结果如表1-1。

表(1-1) 设计年限内交通量平均年增长率表如下表(1-2)所示。

表(1-2) 代表车型及预测交通量表根据预测交通量资料及代表车型,根据4.351121()Ki i i p N C C n p ==∑=7068Ne=[(1+r )t-1]×365×N1×η/r=2.827166×107将各级轴载换算为标准轴载100KN ,15年内一个车道上的累计当量轴次为2494万次。

设计弯沉:Ld=600×Ne-0.2×Ac ×As ×Ab=19.4 (0.01mm )根据累计当量轴次,本项目设计交通等级为特重交通等级,路面设计弯沉19.4(0.01mm )。

若以半刚性层底拉应力为验算指标时'''8121()Ki i i p N C C n p ==∑1=2494Ne=[(1+r )t-1]×365×N1×η/r = 997587 ⑶路基土干湿类型:根据项目所处地区已有的设计经验及查表综合考虑得出路基临界高度,参考外业中调查的地下水位,确定了路基的最小填土高度来保证路基在不利季节处于干燥或中湿状态。

⑷土基回弹模量:根据规范,全线属于Ⅳ5自然区划,结合沿线地质情况确定土基回弹模量E0。

经过清表回填、碾压,并根据《公路沥青路面设计规范》JTG D50-2006要求,保证上路床30cm,填料CBR值不小于8,下路床50cm填料CBR值不小于5,上路床压实度不小于96%;交通量等级为重型时应保证土基回弹模量>40MPa,故本条道路土基回弹模量取41.0MPa。

施工过程中,应根据不同路段对路床土进行试验,若土基抗压回弹模量不符合设计要求时,可局部采用补压、固化处理、换填等措施,或调整底基层结构或厚度,以保证路基路面的强度和稳定性。

⑸路面设计的结构参数:统一采用圆柱体试件测定抗压回弹模量和劈裂强度。

沥青混凝土在弯沉指标计算中用20℃抗压模量,底层拉应力计算时采用15℃抗压模量,允许拉应力计算时采用15℃劈裂强度。

半刚性材料的设计龄期:水泥稳定类为3个月。

参照室内混合料实验结果,结合国内已建成路面调查情况,确定各层材料设计参数见表(1-3)。

表(1-3)结构设计参数⑹按设计弯沉计算路面厚度初步结合以往施工及设计经验,拟定结构厚度:表(1-4)主线路面结构由式(1-10)初步计算F 可取设计弯沉值代入计算:0.380.3601.63()()2000d l EF pδ==1.63*((19.4/(2000*10.65))^0.38)*((41/0.70)^0.36)=0.493②计算理论弯沉系数由式(1-6),以设计弯沉值代替理论弯沉值反算可得:11000*2d L lE pF αδ==(19.4*1400)/(1000*2*0.7*10.65*0.493)=3.695③计算基层厚度这是一个六层体系,求算基层厚度时,须先把所拟定的结构换算成当量三层体系,求出其中层厚度H(图1-1),然后再按当量厚度换算公式求出h4求H:由已知参数求得:h/δ=4/10.65=0.376;E2/E1=1200/1400=0.857,查图(1-1)得α=6.6h/δ=4/10.65=0.376,E0/E2=41/1200=0.034,查图(1-1)得k1= 1.5; 由αL=αk1k2,所以k2=αL/(αk1)=3.695/(6.6*1.5)=0.373由K2=0.373;E0/E2=41/1200=0.034;h/δ=4/10.65=0.376,查图(1-1)得H/δ=5.8 故H=5.8*10.65=61.77 (cm) 求h3:根据公式(1-4):123n i i H h h -==+∑=2345h h h h +h4=235(/H h h h --=(61.7768*20*/--取h4=35(cm)。

⑺验算上面层沥青混凝土底面的层底拉应力 ①先把六层体系换算成当量三层体系。

将h1,作为当量三层体系的上层厚度h ,其模量采用15℃抗压回弹模量,其余各层仍用20℃抗压回弹模量或抗压回弹模量(弯沉计算用),按公式(1-16~1-18)换算成当量层,组成当量的三层体系,见图(1-7)。

11122n x x i x H h h=-++=+=+∑68*35*20*+②计算当量三层体系上层底面最大拉应力。

根据最新规范,本次设计,各结构层层间结合均为连续状态,查诺莫图(1-3)。

由h/δ=4/10.65=0.376,E2/E1=1200/2000=0.6查图(1-3)得_σ<0,表示该层底为压应力。

由h/δ=4/10.65=0.376, E2/E1=1200/2000=0.6, E0/E2=41/1200=0.034,查图(1-3)得m1<0.8,查不出具体数值,表示m1非常小。

由H/δ=68.4/10.65=6.423,E0/E2=41/1200=0.034, E2/E1=1200/2000=0.6,查图(1-3)得m2<0.9,查不出具体数值,表示m2非常小。

③计算沥青混凝土面层底面的容许拉应力。

由式(1-7)SR S K σσ=0.220.09/S e cK N A =, AC=1.00.220.09/S e c K N A ==0.20.09(24940000)/1⨯=2.714SR S K σσ==1.4/2.714=0.516(MPa )>m σ(m σ<0(MPa ))可见,沥青混凝土上面层的强度能满足要求。

⑻验算中面层沥青混凝土底面的层底拉应力 ①先把六层体系换算成当量三层体系。

将h1,h2作为当量三层体系的上层厚度h ,其模量采用15℃抗压回弹模量,其余各层仍用20℃抗压回弹模量或抗压回弹模量(弯沉计算用),按公式(1-16~1-18)换算成当量层,组成当量的三层体系,见图(1-7)。

11x x i h h h -==+∑6+=10.111122n x x i x H h h =-++=+=+∑835*20*+②计算当量三层体系上层底面最大拉应力。

根据最新规范,本次设计,各结构层层间结合均为连续状态,查诺莫图(1-3)。

由h/δ=10.1/10.65=0.948,E2/E1=1000/1800=0.556查图(1-2)得_σ=0.07 由h/δ=10.1/10.65=0.948,E2/E1=1000/1800=0.556, E0/E2=41/1000=0.041,查图(1-3)得m1<0.8,查不出具体数值,表示m1非常小。

由H/δ=76.4/10.65=7.174,E0/E2=41/1000=0.041,E2/E1=1000/1800=0.556,查图(1-3)得m2<0.30,查不出具体数值,表示m2非常小。

_m σ=0.07*0.8*0.31=0.017(MPa )_=m p σσ⨯=0.7*0.017=0.012(MPa )③计算沥青混凝土面层底面的容许拉应力。

由式(1-7)SR S K σσ=0.220.09/Se cK N A , AC=1.00.220.09/S e c K N A ==0.20.09(24940000)/1⨯=2.714SR S K σσ==1.0/2.714=0.368(MPa )>m σ(0.012MPa)可见,沥青混凝土中面层的强度能满足要求。

⑼验算下面层沥青混凝土底面的层底拉应力 ①先把六层体系换算成当量三层体系。

此时AC-25沥青混凝土底下面层及其上各层,作为当量三层体系的上层厚度h ,其模量采用15℃抗压回弹模量,其余各层仍用抗压回弹模量(弯沉计算用),按公式(1-16~1-18)换算成当量层,组成当量的三层体系,见图(1-7)。

-11x x i h h h ==+∑8=18.8(cm)1-1122n x x i x H h h =++=+=+∑3520*+②计算当量三层体系上层底面最大拉应力。

根据最新规范,本次设计,各结构层层间结合均为连续状态,查诺莫图(1-3)。

由h/δ=18.8/10.65=1.765,E2/E1=1500/1400=1.071查图(1-2)得_σ<0,表示该层底为压应力。

由h/δ=18.8/10.65=1.765,E2/E1=1500/1400=1.071, E0/E2=41/1500=0.027,查图(1-3)得m1<0.8,查不出具体数值,表示m1非常小。

由H/δ=43.6/10.65=4.094 ,E0/E2=41/1500=0.027,E2/E1=1500/1400=1.071,查图(1-3)得m2<0.3,查不出具体数值,表示m2非常小。

③计算沥青混凝土面层底面的容许拉应力。

由式(1-7)SR S K σσ=0.220.09/S e cK N A , AC=1.00.220.09/Se c K N A =0.20.09(24940000)/1⨯=2.714SR S K σσ==1.0/2.714=0.368(MPa )>m σ(m σ<0(MPa ))可见,沥青混凝土下面层的强度能满足要求。

(10)验算水泥稳定碎石基层的层底拉应力 ①先把六层体系换算成当量三层体系。

此时水泥稳定碎石基层及其上各层,作为当量三层体系的上层厚度h ,其模量采用15℃抗压回弹模量或抗压模量(拉应力计算用),其余各层仍用抗压回弹模量(弯沉计算用),按公式(1-16~1-18)换算成当量层,组成当量的三层体系,见图(1-7)。

11x x i h h h -==+∑35=50.5(cm)11122n x x i x H h h =-++=+=+∑②计算当量三层体系上层底面最大拉应力。

根据最新规范,本次设计,各结构层层间结合均为连续状态,查诺莫图(1-3)。

由h/δ=50.5/10.65=4.742,E2/E1=700/3000=0.233,查图(1-2)得_σ=0.15。

由h/δ=50.5/10.65=4.742,E2/E1=700/3000=0.233,E0/E2=41/700=0.059,查图(1-3)得m1=1.32。

由H/δ=20/10.65=1.878,E0/E2=41/700=0.059,E2/E1=700/3000=0.233,查图(1-3)得m2=1.01。

_m σ=0.15*1.32*1.01=0.200(MPa )_=m p σσ⨯=0.70*0.017=0.140(MPa )③计算水泥稳定碎石基层底面的容许拉应力。

相关文档
最新文档