10静电场中的导体和电介质习题解答课件

合集下载

第十章 静电场中的导体和电介质习题解讲解

第十章 静电场中的导体和电介质习题解讲解

第十章静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S,两板分别带正电Qa和Qb,每板表面电荷面密度σ1σ2,σ3= σ4解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。

由电荷守恒定律得σ1Qa Qbσ2 σ3 σ4σ1S+σ2S=Qa (1)σ3S+σ4S=Qb (2)设P,Q是分别位于二导体板内的两点,如图10-2所示,由于P,Q位于导板内,由静电平衡条件知,其场强为零,即图10-1QQσσσσEP=---=0 (3)2ε02ε02ε02ε0EQ=σ1σ2σ3σ4++-=0 (4)2ε02ε02ε02ε0σ2 σ4Q由方程(1)~(4)式得Q+Qb(5)σ1=σ4=a2SQ-Q (6)σ2=-σ3=2S1,4),带等量同号电荷。

图10-2由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面10–2 如图10-3所示,在半径为R的金属球外距球心为a的D处放置点电荷+Q,球内一点P到球心的距离为r,OP与OD夹角为θ,感应电荷在P点产生的场强大小为,方向;P点的电势为。

图10-3图10–4解:(1)由于点电荷+Q的存在,在金属球外表面将感应出等量的正负电荷,距+Q的近端金属球外表面带负电,远端带正电,如图10-4所示。

P点的场强是点电荷+Q 在P点产生的场强E1,与感应电荷在P点产生的场强E2的叠加,即EP=E1+E2,当静电平衡时,EP=E1+E2=0,由此可得E2=-E1=-Q4πε0(a+r-2arcosθ)22er其中er是由D指向P点。

因此,感应电荷在P点产生的场强E2的大小为101E2=Q4πε0(a+r-2arcosθ)22方向是从P点指向D点。

(2)静电平衡时,导体是等势体。

P点的电势VP等于球心O点的电势VO。

而由电势叠加原理,球心O点的电势VO是由点电荷+Q在该点的电势V1和感应电荷在该点的电势V2的叠加,即VP=VO=V1+V2其中,点电荷+Q在O点的电势V1为V1=Q 4πε0a由于感应电荷是非均匀地分布在导体球外表面,设球面上面积元dS处的面电荷密度为σ,则它在球心的电势为O点产生的电势为σdS,考虑球的半径是一常量,故整个球面上的感应电荷在球心4πε0RV2= ⎰⎰σdS1=S4πε0R4πε0R ⎰⎰SσdS由电荷守恒可知,感应电荷的代数和V2= ⎰⎰SσdS=0。

第九章3静电场中的导体与电介质习题课PPT课件

第九章3静电场中的导体与电介质习题课PPT课件

1 CU 2 1 E 2V
2
2
we
W V
1E2 2
高斯面取法
高斯面的对称性与
场源的对称性相同
4
S
p
o
e E
r
P
S side
S top
l
Sbottom
5
9-2、 解:假设内球带电q,内球电场和电势分布如下:
E(q/40r2) rR1
0
rR1
V((q q//4 40 0rR)1)
rR1 rR1
(Q/40R2)(q/40R1) rR1
其中q由以下方程求出。
V 0 (Q /40 R 2 ) (q /40 R 1 )
9-5、解: 静电平衡条件
A C DB q qq -q -q -q
d dd 3 33
E
0
A C DB qq -q -q
d dd 3 33
(1) UACUCDUDB13U
q 0SU
三、理解电容的定义,能计算几何形状简单的电容器的电容。
四、了解静电场是电场能量的携带者,了解电场密度的概念,能 用能量密度计算电场能量。
线索与联系
描述电场的物理量:电场强度、电势 真空中——导体或电介质——影响静电场的场强和电势分布 ——基本原理的应用和推广——电容器——能量
例:E的高斯定理——D的高斯定理
静 电 场 中 的 导 体 与 电 介 质 习 题 课
基本要求
一、理解静电场中导体处于静电平衡时的条件,能从静电平衡条 件分析带电导体在静电场中的电荷分布。
二、了解电介质的极化及其微观机理,了解电位移矢量D的概念, 以及在各项同性介质中D和E的关系。理解电介质中的高斯定 理,并会用它来计算对称电场的电场强度。

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21s s。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。

上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

电介质-PPT课件

电介质-PPT课件

导体的静电感应过程


E0

加外电场---电子在电场力作用下运动
导体的 ' 外场 E 0
导体的静电感应过程


E0

感应 E ' 外场 E 0
导体的静电感应过程

q2
+ q1
q1 + q1
q 1+ q 2
三、静电平衡导体的表面场强
. dS = E s
=
. + S d E 内
0 +
. + S d E 表
E表 S +
. S d E 侧
0
E
1
0
q
i i
1
0
S
σ
E 0
S
有导体时静电场的分析方法
导体放入静电场中:
导体的电荷 重新分布
导体上的电荷分 布影响电场分布
b a
a、b在导体内部:
b
a
U0 E 0
a、b在导体表面:
Ed l 0 即 U 0 E d l
----静电平衡的导体是等势体
静电平衡条件:
用场强来描写: 1、导体内部场强处处为零; 2、表面场强垂直于导体表面。 用电势来描写: 1、导体为一等势体; 2、导体表面是一个等势面。
E0
感应 E ' 外场 E 0
导体的静电感应过程


E0
感应 E ' 外场 E 0
导体的静电感应过程
E0 E ' E E E ' 0 0

第十章 静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。

试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。

习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。

(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。

试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。

习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。

静电场中的导体和电介质

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体一、导体的静电平衡1、金属导体的电结构及静电感应(1)金属导体:由带正电的晶格和带负电的自由电子组成.带电导体:总电量不为零的导体;中性导体:总电量为零的导体;孤立导体:与其他物体距离足够远的导体.“足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略.(2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程.(3)静电平衡状态:导体中自由电荷没有定向移动的状态.2、导体静电平衡条件(1)从场强角度看:①导体内任一点,场强;②导体表面上任一点与表面垂直.证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直.说明:①静电平衡与导体的形状和类别无关.②“表面”包括内、外表面;(2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体.①导体内各点电势相等;②导体表面为等势面.证明:在导体上任取两点A,B,.由于=0,所以.(插话:空间电场线的画法.由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.)二、静电平衡时导体上的电荷分布1、导体内无空腔时电荷分布如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为:导体静电平衡时其内,, 即.S面是任意的,导体内无净电荷存在.结论:静电平衡时,净电荷都分布在导体外表面上.2、导体内有空腔时电荷分布(1)腔内无其它电荷情况如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:由于静电平衡时,导体内因此,即S内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷空腔内表面上的净电荷为0.讨论:在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A点附近出现+q,B点附近出现-q,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,,但静电平衡时,导体为等势体,即,因此,假设不成立.结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同).(2)空腔内有点电荷情况如图所示,导体电量为Q,其内腔中有点电荷+q,在导体内作一高斯面S,高斯定理为静电平衡时 , .又因为此时导体内部无净电荷,而腔内有电荷+q,腔内表面必有感应电荷-q.结论:静电平衡时,腔内表面有感应电荷-q,外表面有感应电荷+q. 3、导体表面附近的电场强度和电荷面密度的关系(1)导体表面上电荷分布设在导体表面上某一面积元(很小)上,电荷分布如图所示 ,过边界作一闭合柱面,S上下底、均与平行,S侧面与垂直,柱面的高很小,即与非常接近,此柱面并且是关于对称的.S作为高斯面,高斯定理为(注意与无限大带电平面的区别).结论:导体表面附近,.(2)导体表面曲率对电荷分布影响理论证明某些规则形状的孤立导体带电后,在表面上曲率越大的地方场强越强, 必大,所以曲率大的地方电荷面密度大;导体曲率较小处,表面电荷面密度也较小;在表面凹进去的地方(曲率为负),电荷密度更小.但不是绝对结论.(3)、尖端放电尖端附近场强较大,该处的空气可能被电离成导体而出现尖端放电现象.如图,BC相对AC更容易放电.“电晕”:离子撞击空气分子时,有时能量较小不能使分子电离,但能使分子获得高能量而跃迁到高能级,返回基态时就会发出光子,在尖端出现暗淡的光环.夜晚高压线周围笼罩的绿色光晕.“电风”:金属针接起电机,针尖紧贴蜡烛焰.假设金属针带足量正电荷,针尖附近场强足够大,电离空气分子,吸引负电荷离子,排斥正电荷离子,则正电荷离子吹向蜡烛焰,形成“电风”.4、静电屏蔽(1)空腔内无带电体.由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响.(2)空腔导体接地.由于空腔外表面电荷因接地而与大地中和,所以腔内物体带电不影响腔外物体.静电屏蔽现象:空腔导体可以保护腔内物体不受腔外电荷和电场的影响,或接地的空腔导体可以保护外部物体不受腔内电荷和电场的影响.应用:如电话线从高压线下经过,为了防止高压线对电话线的影响,在高压线与电话线之间装一金属网等.例10-1:在电荷+q的电场中,放一不带电的金属球,从球心 到点电荷所在距离处的矢径为,试问(1)金属球上净感应电荷?(2)这些感应电荷在球心处产生的场强?解:(1)0(2)球心处场强(静电平衡要求),即+q在处产生的场强与感应电荷在处产生场强的矢量和=0.方向指向+q.(感应电荷在处产生电势=?球电势=?选无穷远处电势=0.)P49.课本例题例10.1;10.2§10-2 电介质的电极化和有介质时的高斯定理一、电介质的电结构1、结构电介质:通常所说的绝缘体,常温下电阻率在108-1018Ω•m范围内.主要特征:它的分子中电子被原子核束缚的很紧,介质内几乎没有自由电子,其导电性能很差.与导体的主要区别:在外电场作用下达静电平衡时,电介质内部的场强不为零.2、电介质分类(2类)(1)无极分子电介质:无外电场时,分子正负电荷中心重合(如等).其固有电矩为零,对外不显电性.(2)有极分子电介质:即使无外电场时,分子的正负电荷中心也不重合(如:等).由于分子热运动的无规则性,在物理小体积内的平均电偶极矩仍为零,因而也没有宏观电偶极矩分布(对外不显电性).分子正负电荷中心不重合时相当于一电偶极子.二、电介质的极化1、电极化现象实验表明,将电容器充电后,再去掉电源,然后将某种电介质(如:玻璃,硬橡胶等)插入电容器之间,会发现极板间电压减小了.由知,E减小了.那么E是如何减少的呢?从平板电容场强公式知,E的减小,意味着电介质与极板的近邻处的电荷面密度减小了.但是,极板上的电荷没变,即电荷面密度没变,这种改变只能是电介质上的两个表面出现了如图所示的正、负电荷.电介质在外电场作用下,其表面或体内出现净电荷的现象称为电介质的极化.电极化时电介质表面处出现的净电荷称为极化电荷(属于束缚电荷范畴),称为自由电荷.可见,电荷面密度(自由电荷面密度)-(极化电荷面密度),即减小了.(束缚电荷受到限制,束缚电荷量比自由电荷少的多,故比少的多.)E减小.更直观的解释是,产生的场强与产生的场强相反,所以它的场强为,即减小了,这也可以解释实验结果.2、两类电介质的极化(1)无极分子的位移极化无极分子在没有受到外电场作用时,它的正负电荷的中心是重合的,因而没有电偶极矩,如图a所示,但当外电场存在时,它的正负电荷的中心发生相对位移,形成一个电偶极子,其偶极矩方向沿外电场方向,如图b所示.对一块介质整体来说,由于电介质中每一个分子都成为电偶极子,所以,它们在电介质中排列如图,在电介质内部,相邻电偶极子正负电荷相互靠近,因而对于均匀电介质来说,其内部仍是电中性的,但在和外电场垂直的两个端面上就不同了.由于电偶极子的负端朝向电介质一面,正端朝向另一面,所以电介质的一面出现负电荷,一面出现正电荷,显然这种正负电荷是不能分离的,故为束缚电荷.结论:无极分子的电极化是由于分子的正负电荷的中心在外电场的作用下发生相对位移的结果,这种电极化称为位移电极化.(2)有极分子的取向极化有极分子本身就相当于一个电偶极子,在没有外电场时,由于分子做不规则热运动,这些分子偶极子的排列是杂乱无章的,如图d所示,所以电介质内部呈电中性.当有外电场时,每一个分子都受到一个电力矩作用,如图所示,这个力矩要使分子偶极子转到外电场方向,只是由于分子的热运动,各分子偶极子不能完全转到外电场的方向,只是部分地转到外电场的方向,即所有分子偶极子不是很整齐地沿着外电场方向排列起来,如图f所示.但随着外电场的增强,排列整齐的程度要增大.无论排列整齐的程度如何,在垂直外电场的两个端面上都产生了束缚电荷.结论:有极分子的电极化是由于分子偶极子在外电场的作用下发生转向的结果,故这种电极化称为转向电极化.说明:在静电场中,两种电介质电极化的微观机理显然不同,但是宏观结果即在电介质中出现束缚电荷的效果时确是一样的,故在宏观讨论中不必区分它们.(3)附加电场由于电介质极化后出现极化电荷,介质内空间一点的场强:.:介质外的电荷产生的电场,即外电场;:介质上的极化电荷产生的电场.对均匀电介质,外场为匀强电场时,介质内的与方向严格相反,大小||<||.作用是减小介质内电场的,..(插话:1、对电介质的要求对于均匀电介质,极化电荷只出现在电介质表面;对于不均匀电介质,极化电荷出现在表面和内部.一般考虑均匀电介质.均匀电介质:电介质的物理和化学性质各处一致.比如,密度均匀,力学、热学、光学、电磁效应各处一致.2、极化电荷与自由电荷极化电荷:电介质因极化而出现在电介质表面(或体内)的宏观电荷;自由电荷:在外场作用下可以自由运动的宏观电荷.(1)极化电荷是束缚电荷的宏观表现,是束缚在晶格上的分子中的电子作的微小位移,或者整个分子作微小旋转所引起的.因此,极化电荷的运动范围不能超出分子线度;而自由电荷是由于原子或分子的电离或者金属中自由电子的重新分布引起的,它的活动范围可以是整个物体或物体之间;(2)极化电荷不能转移,自由电荷可以转移;可略(3)极化电荷可以吸附导体中自由电荷,但不能被中和掉,而自由电荷可以被中和.3、静电场中的电介质与静电场中的导体(1)它们都会因受电场的作用而出现宏观电荷;这些电荷反过来又会影响电场,这种影响都削弱了原电场;(比较微观本质的不同)(2)都会达到稳定状态——电介质的稳定极化状态和导体的静电平衡状态.(比较微观本质的不同)导体处于静电平衡状态时,表面的感应电荷在导体内产生的感应电场能把外电场完全抵消,导体内场强处处为零;而电介质被极化后,表面出现的极化电荷在介质内产生的电场不能完全抵消外电场,介质内存在电场.)3、电偶极子在外场受到的力和力矩均匀外场下,电偶极子所受总静电力:;总力矩: (10.3)虽然=0,但不为0. 的效果将使电偶极矩旋转到与外电场方向一致,使趋于0,形成稳定状态.三、电极化强度、极化电荷与极化强度的关系1、定义.电极化强度矢量定义为(10.4)即电极化强度矢量是单位体积内分子电矩的矢量和.当外电场越强时,极化现象越显著,单位体积内的分子电矩矢量和就越大,极化强度就越大.反之,外电场越弱,极化现象不显著,单位体积内的分子电矩矢量和就越小.可见,电极化强度矢量可以用来描述电介质的极化程度.上式给出的极化强度是点的函数,一般来说,介质中不同点的电极化强度矢量不同.但对于均匀的无极分子电介质处在均匀的外电场中,,其中n是分子数密度(单位体积的分子数),p是极化后电介质每个分子的电矩矢量.在国际单位制中,电极化强度矢量的单位为库仑/米2(C/m2).2、电极化强度与束缚电荷的关系由于束缚电荷是电介质极化的结果,所以束缚电荷与电极化强度之间一定存在某种定量关系.为方便讨论,现以无极分子电介质为例来讨论,考虑电介质内某一小面元dS,设其电场E的方向(因而P的方向)与dS的法线方向成θ角(如图6.7所示),由于E的作用,分子的正负电荷中心将沿电场方向拉开距离l.为简化分析,假定负电荷不动,而正电荷沿E 的方向发生位移l.在面元dS后侧取一斜高为l,底面积为dS的体元dV.由于电场E的作用,此体元内所有分子的正电荷中心将穿过dS面到前侧去.以q表示每个分子的正电荷量,则由于电极化而越过dS面元的总电荷为(1)介质表面处dS是电介质的表面,由于电介质极化(10.5)是其外法向单位矢.讨论:(2)封闭曲面处由于极化穿过有限面积S的电荷为,若dS是封闭曲面,则穿过整个封闭曲面的电荷为.因为电介质是电中性的,据电荷守恒定律,则得由电介质极化而在封闭面内净余的束缚电荷为(10.6)(10.6)可称为“极化强度的高斯定理”.从闭合面内向外的极化强度的通量,等于从闭合面内移出去的极化电荷的量.结论:式(10.5)和式(10.6)就是由于介质极化而产生的束缚电荷与电极化强度的关系.从(10.6)可以看出,在均匀外电场中,均匀电介质内部的任何体元内都不会有净余束缚电荷,束缚电荷只能出现在均匀电介质的表面,即:.对非均匀电介质,电介质内部也有束缚电荷分布.四、电极化强度与场强的关系电介质的极化状态通过极化强度来描述,由于电介质的极化是电场对电介质作用的结果,因此,电介质内任意一点的极化强度应由该点总电场()决定.与的关系与电介质的性质有关,对各向同性电介质:. (10.7):各向同性均匀电介质的电极化率.电场不太强时,由电介质性质决定,是无量纲量.该式是一个经验定律.课程中讨论的都是各向同性的均匀电介质.五、有介质时的高斯定理1、有介质时的高斯定理(1)定理推导根据真空中的高斯定理,通过闭合曲面S的电场强度通量为所给面包围的电荷除以,即此处, 应理解为闭合面内一切正、负电荷的代数和,在无电介质存在时,;在有介质存在时,S内既有自由电荷,又有极化电荷,应是S内一切自由电荷与极化电荷的代数和,即、分别表示自由电荷和极化电荷.由于难以测量和计算,应消除.根据.上式变换为令.得(2)定理形式(10.8)其中,称为电位移矢量.利用经验规律(10.9)其中,称为相对介电常数,称为绝对介电常数(也叫电容率).(10.9)式称为各向同性经验电介质的性能方程.(10.8)式称为“高斯定理的普遍形式”——“有介质时的高斯定理”.表明通过任意曲面的电位移通量,等于该封闭曲面内包围的自由电荷的代数和.说明:(1)上式为电介质中的高斯定理,是高斯定理的普遍形式.(2)是辅助量,无真正的物理意义,是为了回避难以量化的极化电荷而引入的辅助量.算出后,可求.(3)如同引进电力线一样,为描述方便,可引进电位移线,并规定电位移线的切线方向即为的方向,电位移线的密度(通过与电位移线垂直的单位面积上的电位移线条数)等于该处的大小.所以,通过任一曲面上电位移线条数为,称此为通过S的电位移通量;对闭合曲面,此通量为.(4)根据,以平行板电容器产生的线、线和线说明其区别.①电位移线总是始于正的自由电荷,止于负的自由电荷,与极化电荷无关.因而线在电介质和真空中一致;②电力线是可始于一切正电荷和止于一切负电荷(包括自由电荷与极化电荷).真空中,线与线一致,而在极化电荷内部,由于与反向,减弱了,如图.③电极化强度线起于极化负电荷,终于极化正电荷,只存在于极化电介质内,真空中=0,电介质内,.2、定理的应用例10-2:平行板电容器,板间有二种各向同性的均匀介质,分界面平行板面,介电常数分别为、,厚度为、,自由电荷面密度为.求(1)、=?(2)电容C=?解:(1) 设二种介质中电位移矢量分别为、,在左极板处做高斯面S,一对面平行板面,面积均为A,侧面垂直板面,由高斯定理有其中,左底面=0,侧面上.又,,即 ,方向垂直板面向右.同样在右极板处做高斯面,一对面平行极板面,面积均为,侧面与板面垂直,由高斯定理有:,即,方向向右.可见,,即两种介质中法向不变.方向向右.(2)例10-3:在半径为R的金属球外,有一外半径为的同心均匀电介质层,其相对介电常数为,金属球电量为Q,试求:(1)场强空间分布;(2)电势空间分布.解:(1)由题意知,均是球对称的,取球形高斯面S,由有Q>0:沿半径向外;Q<0:沿半径向内.(2)介质外任一点P电势介质内任一点Q电势球为等势体,电势为例10-4:有一个带电为+q半径为的导体球,与内外半径分别为、 带电量为-q的导体球壳同心,二者之间有两层均匀电介质,内层和外层电介质的介电常数分别为、,且二电介质分界面也是与导体球同心的半径为的球面.试求:(1)电位移矢量分布;(2)场强分布;(3)导体球与导体空间电势差;(4)导体球壳构成电容器的电容.解:(1)由题意知,场是球对称的,选球形高斯面S, 由有得 ,沿半径向外.(2)与同向,即沿半径向外.(3)(4)根据自由电荷分布利用高斯定理求解,和前面一样,必须满足对称性:第一,自由电荷的分布和电介质的分布同时满足三种对称性之一,即平面对称、轴对称、球对称,概括为“电介质的表面为等势面”;第二,电介质充满整个电场.在满足上述对称性后,可以利用高斯定理唯一地求解电场问题,此时电位移矢量与极化电荷无关.§10-3 电容 电容器一、孤立导体的电容在真空中设有一半径为R的孤立的球形导体,它的电量为q,那么它的电势为(取无限远处电势=0)对于给定的导体球,即R一定,当变大时,V也变大;变小时,V也变小,但是却不变.此结论虽然是对球形孤立导体而言的,但对一定形状的其它导体也是如此,仅与导体大小和形状等有关,因而有下面定义.定义:孤立导体的电量q与其电势V之比称为孤立导体电容,用C表示,记作:(10.11)对于孤立导体球,其电容为.C的单位为:F(法),1F=1C/1V.在实用中F太大,常用或,他们之间换算关系:.(电容与电量的存在与否无关)二、电容器及其电容实际上,孤立的导体是不存在的,周围总会有别的导体.当有其它导体存在时,则必然因静电感应而改变原来的电场分布,进而影响导体电容.下面我们具体讨论电容器的电容.1、电容器:两个带有等值而异号电荷的导体所组成的带电系统称为电容器.电容器可以储存电荷,也可以储存能量.2、电容器电容:如图所示,两个导体A、B放在真空中,它们所带的电量分别为+q,-q,如果A、B电势分别为、,那么A、B电势差为,电容器的电容定义为:(10.12)由上可知,如将B移至无限远处,=0.所以,上式就是孤立导体的电容.所以,孤立导体的电势相当于孤立导体与无限远处导体之间的电势差.所以,孤立导体电容是B放在无限远处时的特例.导体A、B常称电容器的两个电极.3、电容器电容的计算①极间分别带有+Q,-Q电量,利用高斯定理,计算极间电场强度分布;②根据电场去分布,求出极间电势差;③将极板电量和极间电势差代入电容器电容定义式,计算出电容.(1)、平行板电容器的电容设A、B二极板平行,面积均为S,相距为d,电量为+q,-q,极板线度比d大得多,且不计边缘效应.所以A、B间为均匀电场.板间充满电介质,介电常数为ε.由高斯定理知,A、B间场强大小为.则 (10.13)为该电容器极板间真空时的电容值.(2)、球形电容器设二均匀带电同心球面A、B,半径、,电荷为+q,-q. 板间充满电介质,介电常数为ε.A、B间任一点场强大小为:,.为该电容器极板间真空时的电容值.讨论:①当时,有,令,为平行板电容器电容.②当为孤立球形电容器电容.A为导体球或A、B均为导体球壳结果如何?(3)、圆柱形电容器圆柱形电容器是两个同轴柱面极板构成的,如图所示,设A、B半径为、,电荷为+q,-q,板间充满电介质,介电常数为ε.除边缘外,电荷均匀分布在内外两圆柱面上,单位长柱面带电量,是柱高.由高斯定理知,A、B内任一点P处的大小为则 (10.15)(可知:在计算电容器时主要是计算两极间的电势差).(插话:4、电介质对电容器电容的影响以上所得电容是极间为真空情况,若极间充满电介质(不导电的物质),实际表明,此时电容C要比真空情况电容大,可表示,或.与介质有关,称为相对介电系数 .以上各情况若充满电介质(极间),有:球形: ;平板:;柱形:.称为介质的介电常数.())下面以平行板电容器为例求:(1)电介质中场强 E由电容器定义,有(无介质) 为电压,为电量.(有介质) 为电压,为电量.(2)极化电荷面密度介质内电场:.即: (极化电荷面密度)三、电容器的串联与并联在实际应用中,现成的电容器不一定能适合实际的要求,如电容大小不合适,或者电容器的耐压程度不合要求有可能被击穿等原因.因此有必要根据需要把若干电容器适当地连接起来.若干个电容器连接成电容器的组合,各种组合所容的电量和两端电压之比,称为该电容器组合的等值电容.1、 串联:几个电容器的极板首尾相接(特点:各电容的电量相同).设A、B间的电压为,两端极板电荷分别为+q,-q,由于静电感应,其它极板电量情况如图,.由电容定义有(10.16a)2、并联:每个电容器的一端接在一起,另一端也接在一起.(特点:每个电容器两端的电压相同,均为,但每个电容器上电量不一定相等)等效电量为:,由电容定义有:(10.16b)例10-5:平行板电容器,极板宽、长分别为a和b,间距为d,今将厚度t,宽为a的金属板平行电容器极板插入电容器中,不计边缘效应,求电容与金属板插入深度x的关系(板宽方向垂直底面).解:由题意知,等效电容如左下图所示,电容为:说明:C大小与金属板插入位置(距极板距离)无关;注意:(1)掌握串并联公式;(2)掌握平行板电容器电容公式.例8-3:半径为a的二平行长直导线相距为d(d>>a),二者电荷线密度为,,试求(1)二导线间电势差;(2)此导线组单位长度的电容.解:(1)如图所取坐标,P点场强大小为:(2)注意:(1)公式.(2)此题的积分限,即明确导体静电平衡的条件.§10.4 电场的能量一、电容器储存的静电能一个电中性的物体,周围没有电场,当把电中性物体的正、负电荷分开时,外力作了功,这时该物体周围建立了电场.所以,通过外力做功可以把其它形式能量转变为电能,贮藏在电场中.。

静电场中的导体与电介质一章习题解答讲解

静电场中的导体与电介质一章习题解答讲解

静电场中的导体与电介质一章习题解答习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如图所示。

A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为:[ ] (A)S Q 012ε (B) SQ Q 0212ε- (C) SQ01ε (D) S Q Q 0212ε+解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即SQS Q S Q E 01010122εεε=+=板间 所以,应该选择答案(C)。

习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。

把它们串联起来在两端加上1000V 的电压,则[ ](A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿 答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,则有231221==C C V V ①100021=+V V ②联立①、②可得V 6001=V , V 4002=V可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。

所以,应该选择答案(C)。

习题8—3 三个电容器联接如图。

已知电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别为100V 、200V 、300V 。

则此电容器组的耐压值为[ ](A) 500V (B) 400V (C) 300V (D) 150V (E) 600V解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。

10静电场中的导体和电介质习题解答

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。

设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。

所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。

所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。

用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电o R d +q . 选择题2图荷为零,所以有)π4π4000Rq d qV εε-+=。

所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R 解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D )5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E 解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。

大学物理第十章有导体和电介质时的静电场习题解答和分析

大学物理第十章有导体和电介质时的静电场习题解答和分析

第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。

分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有AC AB U U =。

解:(1)设B 、C 板上的电荷分别为Bq 、C q 。

因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。

导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。

作如图中虚线所示的圆柱形高斯面。

因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ① 又因为: AC AB U U = 而: 2AC AC d U E =⋅AB AB U E d =⋅∴ 2AC AB E E =于是:02C Bσσεε =⋅两边乘以面积S 可得:2C BS S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-1题10-1解图d(2) 00222C C A AC C AC AC q d d dU U U U E S σεε =+==⋅=⋅=⋅ 7334122102102.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求: (1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ; (2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。

大学物理下册第10章课后题答案

大学物理下册第10章课后题答案

习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。

10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。

故正确答案为(A)。

10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。

设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。

导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。

感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。

第章静电场中的导体和电介质PPT课件

第章静电场中的导体和电介质PPT课件

q2
EA
1 2 o
2 2 o
3 2 o
4 2 o
0
EB
1 2 O
2 2 O
3 2 o
4 2 o
0
1
23
4
由电荷守恒:
1S 2 S q1
A
B
3S 4S q2
1
4
q1 q2 2S
2
3
q1 q2 2S
20
1
4
q1 q2 2S
q1
2
3
q1 q2 2S
1
2
上述结果表明:平板相背的两面带电等
R3 R2
R3
RR11
qq1 1
RR33
问题:电势表
达式能直接写
R2 R1
q1
4 or
2
dr
R3
(q q1 )
4 or 2
dr
出来吗?
q1
4 o
1 R1
1 R2
q q1
4 o R3
V1 V2
同理,球壳的电势为:
V2
E dl
R3
R3
(q
4
q1 ) or 2
dr
q q1
2.内屏蔽
+
+
壳外表面上的电荷分布与腔内带电体的位置无关,只 取于导体外表面的形状。
若将空腔接地,则空腔外表面上的感应电荷被大地电荷 中和,腔外电场消失,腔内电荷不会对空腔外产生影响。即 接地空腔对内部电场起到了屏蔽作用,这是静电屏蔽的另外 一种——内屏蔽。
高压设备用金属导体壳接地做保护。 14
五、利用静电平衡条件和性质作定量计算
例1:半径为R和r的球形导体(R>r),用很长的细导线连 接起来,使两球带电Q、q,求两球表面的电荷面密度。

《静电场中的导体与电介质》选择题解答与分析

《静电场中的导体与电介质》选择题解答与分析

13静电场中的导体与电介质 13.1静电平衡1. 当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. 答案:(D) 参考解答:静电平衡时的导体电荷、场强和电势分布的特点: (1) 电荷仅分布在导体的表面,体内静电荷为零.(2) 导体表面附近的场强方向与导体表面垂直,大小与导体表面面电荷密度成正比;(3) 导体为等势体,表面为等势面.答案(D)正确,而(A)(B)(C)均需考虑电势是一个相对量,在场电荷的电量以及分布确定的同时,还必须选定一个电势零点,在这样的情况下,场中各点电势才能确定。

给出参考解答,进入下一题:2. 设一带电导体表面上某点附近电荷面密度为σ,则紧靠该表面外侧的场强为0/εσ=E . 若将另一带电体移近,(1) 该处场强改变,公式0/εσ=E 仍能用。

(2) 该处场强改变,公式0/εσ=E 不能用。

上述两种表述中正确的是(A) (1) . (B) (2).答案:(A) 参考解答:处于静电平衡的导体,其表面上各处的面电荷密度与相应表面外侧紧邻处的电场强度的大小成正比,即0εσ=E . 将另一带电体移近带电导体,紧表面外侧的场强会发生改变,电荷面密度为σ也会改变,但公式0εσ=E 仍能用。

给出参考解答,进入下一题:3. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。

下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。

大学物理静电场中的导体和电介质习题答案

大学物理静电场中的导体和电介质习题答案

第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。

大学物理下 静电场中的导体和电介质习题解答

大学物理下 静电场中的导体和电介质习题解答

q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为

电势 (选U∞=0)为

D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

静电场中的导体和电介质(含答案,大学物理作业,考研真题)

1、一片二氧化钛晶片,其面积为 1.0cm2, 厚度为 0.10mm 。把平行板电容器的两极板紧
贴在晶片两侧。此时电容器的电容为_____________. ;当在电容器的两板上加上 12V 电压时,
极板上的电荷为_____________. ;电容器内的电场强度为_____________ .。(二氧化钛的相
[
]
3、(2018 年暨南大学)将一带电量为 Q 的金属小球靠近一个不带电的金属导体时,则有:
(A)金属导体因静电感应带电,总电量为-Q;
(B)金属导体因感应带电,靠近小球的一端带-Q,远端带+Q;
(C)金属导体两端带等量异号电荷,且电量 q<Q;
(D)当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、 填空题
1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)
的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布

;若腔内有电荷,则空腔导体上的电荷应分布


3、如图所示,两同心导体球壳,内球壳带电量+q,外球壳带电量-2q。
(C)、使电容增大,但与介质板的位置无关;(D)、使电容增大,但与介质板的位置有关。
[
]
3、(2011 年太原科技大学)两个半径相同的金属球,一为空心,一为实心,把两者各自
孤立时的电容值加以比较,则:
(A)空心球电容值大;
(B)实心球电容值大;
(C)两球电容值相等;
(D)大小关系无法确定
[
]
二、 填空题
(1)若两极上分别带有电荷+Q 和—Q,求各区域的电位移 D,电场强度 E,及电势 U;

第十章静电场中的导体与电介质(标准答案)

第十章静电场中的导体与电介质(标准答案)

一、选择题[ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0,静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得:022202010=-+εσεσεσ联立解得: 1222σσσσ=-=,[ C ]2(基础训练4)、三个半径相同的金属小球,其中甲、乙两球带有等量同号电荷,丙球不带电。

已知甲、乙两球间距离远大于本身直径,它们之间的静电力为F ;现用带绝缘柄的丙球先与甲球接触,再与乙球接触,然后移去,则此后甲、乙两球间的静电力为:(A) 3F / 4. (B) F / 2. (C) 3F / 8. (D) F / 4. 【提示】设原来甲乙两球各自所带的电量为q ,则2204q F rπε=;丙球与它们接触后,甲带电2q ,乙带电34q ,两球间的静电力为:203324'48q q F F r πε⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭==[ C ]3(基础训练6)半径为R 的金属球与地连接。

在与球心O 相距d =2R 处有一电荷为q 的点电荷。

如图所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【提示】静电平衡时金属球是等势体。

金属球接地,球心电势为零。

球心电势可用电势叠加法求得:000'044q dq q R d πεπε'+=⎰, 00'01'44q q dq R d πεπε=-⎰, 'q q R d =-,其中d = 2R ,'2qq ∴=-[ C ]4(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差为:A+σ2(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V【提示】反接,正负电荷抵消后的净电量为661212(82)101000610Q Q Q C U C U C --=-=-=-⨯⨯=⨯这些电荷重新分布,最后两个电容器的电压相等,相当于并联。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。

设无限远处的电势为零,则导体球的电势为 ( )20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。

所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。

所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。

用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电o R d +q . 选择题3图选择题2图荷为零,所以有)π4π4000Rq d qV εε-+=。

所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比σR /σr 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R 解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D )5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E 解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。

所以选(B )6. 一空气平行板电容器,充电后测得板间电场强度为E 0,现断开电源,注满相对介质常数为εr 的煤油,待稳定后,煤油中的极化强度的大小应是( )0r 00rr 0r r 00r 01 . D 1 . C 1 . B .A )E (εεE ε)(εE ε)(εεE εε --- 解:断开电源后,不管是否注入电介质,极板间的自由电荷q 不变,D 0=D 即 E E r 000εεε= 得到 r 0/εE E =又 P E D +=0ε0rr 0r 00000)1(E E E E D P εεεεεεε-=-=-= 所以选(B )7. 两个半径相同的金属球,一为空心,一为实心,两者的电容值相比较( )A. 实心球电容值大B. 实心球电容值小C. 两球电容量值相等D. 大小关系无法确定解:孤立导体球电容R C 0π4ε=,与导体球是否为空心或者实心无关。

所以选(C )8. 金属球A 与同心球壳B 组成电容器,球A 上带电荷q ,壳B 上带电荷Q ,测得球和壳间的电势差为U AB ,则该电容器的电容值为( )A. q /U ABB. Q /U ABC. (q +Q )/ U ABD. (q +Q )/(2 U AB )解:根据电容的定义,应选(A )。

9. 一空气平行板电容器,极板间距为d ,电容为c 。

若在两板中间平行地插入一块厚度为d / 3的金属板,则其电容值变为 ( )A. CB. 2C /3C. 3 C /2D. 2C 解:平行板电容器插入的金属板中的场强为零,极板上电荷量不变,此时两极板间的电势差变为:0 32)3(εσεσd d d d E U =-='= 其电容值变为: C d S S U Q C 23233d 2 00===='εεσσ 所以选(C )10. 一平板电容器充电后保持与电源连接,若改变两极板间的距离,则下述物理量中哪个保持不变?( )A. 电容器的电容量B. 两极板间的场强C. 电容器储存的能量D. 两极板间的电势差解:平板电容器充电后保持与电源连接,则两极板间的电势差不变;平行板电容器的电容dS C ε=,改变两极板间的距离d ,则电容C 发生变化;两极板间的场强dU E =,U 不变,d 变化,则场强发生变化;电容器储存的能量2e 21CU W =,U 不变,d 变化,导致电容C 发生变化,则电容器储存的能量也要发生变化。

所以选(D )二 填空题1. 一任意形状的带电导体,其电荷面密度分布为σ(x 、y 、z ),则在导体表面外附近任意点处的电场强度的大小E (x 、y 、z ) = ,其方向 。

解:E (x 、y 、z )= σ(x 、y 、z )/ε0,其方向与导体表面垂直朝外(σ>0)或与导体表面垂直朝里(σ<0)。

d /3 选择题9题2. 如图所示,一无限大均匀带电平面附近设置一与之平行的无限大平面导体板。

已知带电面的电荷面密度为σ ,则导体板两侧面的感应电荷密度分别为σ1 和σ2 = 。

解:由静电平衡条件和电荷守恒定律可得:022202010=-+εσεσεσ;21σσ-=。

由此可解得:21σσ-= ;22σσ=。

3. 半径为R 1和R 2的两个同轴金属圆筒(R 1< R 2),其间充满着相对介电常数为εr 的均匀介质,设两筒上单位长度带电量分别为λ 和-λ ,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。

解:根据有介质情况下的高斯定理,选同轴圆柱面为高斯面,则有D = λ /(2πr ),电场强度大小E = D /εr ε0=λ /(2πεr ε0 r )。

4. 平行板电容器的两极板A 、B 的面积均为S ,相距为d ,在两板中间左右两半分别插入相对介电常数为εr1和εr2的电介质,则电容器的电容为 。

解:该电容器相当于是两个面积为S /2的电容器的并联,电容值分别为:d S C 211r 01εε=,dS C 212r 02εε=, )(22r 1r 021εεε+=+=∴dS C C C 5. 半径为R 的金属球A ,接电源充电后断开电源,这时它储存的电场能量为5×10-5J,今将该球与远处一个半径是R 的导体球B 用细导线连接,则A 球储存的电场能量变为 。

解:金属球A 原先储存的能量J 1052152-⨯==CQ W ,当它与同样的金属球B 连接,则金属球A 上的电荷变为原来的1/2,则能量J 1025.1)2/(2152-⨯=='CQ W 6. 三个完全相同的金属球A 、B 、C ,其中A 球带电量为Q ,而B 、C 球均不带电,先使A 球同B 球接触,分开后A 球再和C 球接触,最后三个球分别孤立地放置,则A 、B 两球所储存的电场能量W e A 、W e B ,与A 球原先所储存的电场能量W e0比较,W e A 是W e0的 倍,W e B 是W e0的 倍。

解:初始A 球的电场能量CQ W 20e 21=,先使A 球同B 球接触,则σ σ 1 2 填充题2图Q Q Q B A 21==,0e 2e 41)2/(21W C Q W B ==, 分开后,A 球再和C 球接触,则Q Q Q C A 41==',0e 2e 161)4/(21W C Q W A == 7. 一空气平行板电容器,其电容值为C 0,充电后将电源断开,其储存的电场能量为W 0,今在两极板间充满相对介电常数为εr 的各向同性均匀电介质,则此时电容值C = ,储存的电场能量W e = 。

解:初始时电容000U Q C =,充电后将电源断开,Q 0不变,由r 0/εεD E =,当两极板间充满电介质时,两极板电势差r0r 00r 0εεεεεU S d Q d D Ed U ====,0r 0C UQ C ε==∴ r 0r 20202121εεW C Q C Q W ===。

8. 一平行板电容器,极板面积为S ,间距为d ,接在电源上并保持电压恒定为U 。

若将极板距离拉开一倍,那么电容器中静电能的增量为 ,电源对电场做功为 ,外力对极板做功为 。

解:初始时,电容器的静电能2000002121U dS U Q W e ε==,将极板距离拉开一倍,电容值变为00212C d S C ==ε,极板间电压不变,00002121Q U C CU Q ===∴,此时电容器的静电能200e 0e 412121U dS W QU W ε=== ∴电容器中静电能的增量 200e e e 41U dS W W W ε-=-=∆ 电源对电场做功200021)21(U dS Q Q U q U W ε-=-=∆= 由能量守恒,电源和外力做功的和等于电容器中静电能的改变,所以外力做的功dSU U d S U d S W W W 424202020e εεε=+-=-∆=' 9. 平板电容器两板间的空间(体积为V )被相对介电常数为εr 的绝缘体充填,极板上电荷的面密度为σ,则将绝缘体从电容器中取出过程中外力所做的功为 。

(摩擦不计)解:当平板电容器充满相对介电常数为εr 电介质时,场强r0r 01εεσεε==D E ,抽出后场强002εσε==D E此时具有的静电能 ⎰⎰⎰⎰⎰⎰===V V E V w W e r0221r 0e 121d 21d εεσεε 当电介质取出后静电能 ⎰⎰⎰⎰⎰⎰===V V E V w W 02220e 2e 21d 21d εσε 由能量守恒,在此过程中若不计摩擦,外力做功的等于静电能的增量)11(22121r02r 0202e εεσεεσεσ-=-=V V V W三 计算题1. 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电量Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点,试求:(1)球壳内外表面上的电荷;(2)球心处由球壳内表面上电荷产生的电势;(3)球心处的总电势。

相关文档
最新文档