函数对称性的应用
利用对称性解决函数问题

利用对称性解决函数问题函数问题是数学中一个非常重要的领域,函数的对称性是其中一个研究重点。
在这篇文章中,我们将会探讨如何利用对称性来解决函数问题。
一、对称性概述对称性是数学中一个重要的概念,不仅在函数问题中很常见,在几何、代数、拓扑等领域也经常出现。
在函数问题中,对称性通常涉及函数关于某个点、某条直线、某个平面或某个轴的对称性。
以二次函数为例,对称轴是非常常见的对称性,一般来说,关于对称轴对称的两点的函数值相等。
这种性质在解决一些对称轴位置已知的函数问题时,非常实用。
二、对称性解决函数问题的例子我们将通过一些例子来探讨如何应用对称性来解决函数问题。
例一:求解对称轴位置已知的二次函数对于一条已知对称轴位置的二次函数,我们可以利用对称性来求出函数的表达式。
以 $y = ax^2 +bx+c$ 为例,假设对称轴的方程为 $x=k$。
那么,对称性告诉我们: $f(k+h) = f(k-h)$。
这意味着 $f(x)$ 函数在点 $k+h$ 和 $k-h$ 的函数值应当相等。
因此,我们可以列出下面的等式:$$ a(k+h)^2 + b(k+h) + c = a(k-h)^2 + b(k-h) + c $$将上式化简之后,可以解出 $a$、$b$、$c$ 的值。
如果对称轴是 $y$ 轴,则 $k=0$,对称性等式就变成了 $f(-x)=f(x)$,也就是说函数关于 $y$ 轴对称。
这说明 $ax^2+bx+c$ 是偶函数,只需要求出 $a$,便可求出函数的表达式。
例二:利用周期性解决几何题在几何问题中,有时候我们需要求出某些图形的周长、面积等参数。
如果图形具有周期性,我们可以利用对称性来大大简化计算。
以正多边形为例,它的每条边的长度都相等,因此如果我们已经知道了正 $n$ 边形的周长 $L_n$,那么可以得到正 $2n$ 边形的周长$L_{2n}$。
事实上,正 $2n$ 边形可以看作是由 $n$ 个正 $n$ 边形拼成的,这样一来,它的周长就应该是 $n$ 边形周长的 $2$ 倍。
函数与方程的对称性揭示函数与方程的对称性质与应用

函数与方程的对称性揭示函数与方程的对称性质与应用在数学中,函数和方程是两个重要的概念,它们之间有着密切的联系。
通过对函数和方程的研究,我们可以揭示它们的对称性质,并将其应用于实际问题中。
本文将重点讨论函数与方程的对称性,并探讨对称性在数学和科学中的应用。
一、函数的对称性函数是一种数学对象,描述了两个集合之间的对应关系。
函数的对称性是指函数和其他几何或代数对象在空间中的对称性质。
常见的函数对称性包括奇偶性对称和周期性对称。
1. 奇偶性对称如果对于函数f(x),当x取任意实数时,f(-x) = f(x),则函数f(x)具有奇偶性对称。
奇函数满足f(-x) = -f(x),而偶函数满足f(-x) = f(x)。
奇偶性对称可以通过函数的图像来观察,奇函数关于原点对称,而偶函数关于y轴对称。
2. 周期性对称如果对于函数f(x),存在正常数T,使得f(x+T) = f(x),则函数f(x)具有周期性对称。
周期性对称可以通过函数的图像来观察,函数在每个周期内的表现相同。
二、方程的对称性方程是数学中的等式,描述了数学对象之间的关系。
方程的对称性是指方程在空间中的对称性质,包括对称轴、对称中心等。
1. 对称轴对称轴是指方程图像中的一条直线,使得对称轴两侧的图像关于该直线对称。
对称轴可以是水平轴、垂直轴或斜轴。
2. 对称中心对称中心是指方程图像中的一个点,使得对称中心周围的图像关于该点对称。
对称中心可以是原点或者其他指定的点。
三、对称性的应用对称性在数学和科学中有广泛的应用。
通过利用函数和方程的对称性,我们可以简化计算过程,提高问题的解决效率。
1. 方程解的求解对称性可以帮助我们求解方程的根。
通过观察方程的对称性,可以找到方程的特殊解或者简化计算过程。
例如,在解二次方程时,我们可以利用二次函数的对称性,直接求得方程的根。
2. 图形的绘制对称性可以帮助我们绘制函数图像。
通过观察函数的对称性,我们可以根据已知的部分图像,推导出其他部分的图像。
对称性在定积分的应用原理有哪些

对称性在定积分的应用原理有哪些1. 引言定积分是微积分的一个重要概念,用于计算曲线下方面积、体积等问题。
在定积分的计算过程中,对称性是一个非常有用的工具,可以简化计算,并提供更加直观的解释。
本文将介绍对称性在定积分中的应用原理。
2. 对称性的定义对称性是指某种规律或性质在变量改变时保持不变的特性。
在定积分中,常见的对称形式包括奇偶对称和周期性对称。
2.1 奇偶对称函数f(x)在区间[-a,a]上的奇偶对称性定义如下:•若f(-x)=-f(x),则函数f(x)在区间[-a,a]上具有奇对称性;•若f(-x)=f(x),则函数f(x)在区间[-a,a]上具有偶对称性。
2.2 周期性对称函数f(x)在区间[a,b]上的周期性对称性定义如下:•若存在正整数T,使得f(x+T)=f(x),则函数f(x)在区间[a,b]上具有周期性对称性。
3. 对称性在定积分中的应用原理对称性在定积分中有许多应用原理,主要包括减少计算量、简化积分表达式和提供直观解释。
3.1 减少计算量利用对称性可以将积分区间减半,从而减少计算量。
例如,若函数f(x)在区间[-a,a]上具有奇对称性,则可以利用对称性将积分区间变为[0,a],计算结果乘以2即可得到在[-a,a]上的定积分值。
3.2 简化积分表达式对称性还可以帮助我们简化积分表达式。
例如,若函数f(x)在区间[-a,a]上具有偶对称性,则可以将定积分转化为对区间[0,a]上的函数进行积分。
这样做的好处是,可以利用积分函数在对称轴上的值和性质简化计算步骤。
3.3 提供直观解释对称性在定积分中还可以提供直观的解释。
例如,考虑函数f(x)在区间[0,a]上具有周期性对称性,可以将函数的周期范围内的积分结果乘以周期次数,得到整个区间的定积分值。
这样做的好处是,可以将定积分问题转化为周期性函数的积分问题,从而更容易理解和解决。
4. 实例分析为了更好地理解对称性在定积分中的应用原理,我们以一个具体的实例进行分析。
高中数学函数对称性的应用探究

高中数学函数对称性的应用探究一、引言数学中的函数对称性是一种重要的性质,它在实际生活中有着广泛的应用。
在高中数学课程中,我们经常会学习到关于函数的对称性的知识,并且会在各种数学问题中应用这些知识。
本文将探讨高中数学函数对称性的应用,并通过一些例题来说明函数对称性在实际问题中的应用。
二、基本概念在数学中,函数对称性是指函数图象在某个轴、平面或中心对称的性质。
常见的对称性包括关于x轴的对称、关于y轴的对称、关于原点的对称以及关于直线y=x的对称等。
1. 关于x轴的对称:如果函数图象关于x轴对称,那么对于任意点(x,y),其对称点为(x,-y)。
即f(x) = f(-x)。
这些对称性在数学中有非常重要的意义,它不仅帮助我们理解函数的规律,还能够应用到各种实际问题中。
下面我们通过具体的例题来探讨函数对称性在实际问题中的应用。
三、实际问题探究1. 设有一根长为10cm的直线段,将其分成三段,使得这三段可以构成一个等边三角形。
求这三段的长度是多少?解析:设中间一段的长度为x,则另外两段的长度也为x。
根据等边三角形的性质可知,x+x+x=10,即3x=10。
解得x=10/3=3.33。
由于等边三角形的对称性,我们知道三条边的长度都是相等的。
这三段的长度分别为3.33cm,3.33cm和3.33cm。
在这个问题中,我们通过对称性的思想,将直线段分成了等长的三段,从而解决了问题。
这个问题展示了对称性在几何问题中的应用。
2. 考虑一个关于x轴对称的函数f(x),且f(2)=3。
求f(-2)的值。
解析:根据关于x轴的对称性可知,当x=2时,f(-2)的值也等于3。
因为对称性保证了函数图象在x轴两侧的对应点的函数值相等。
f(-2)=3。
在这个问题中,我们利用了函数图象的对称性来简化计算,从而快速得出了函数值的解。
3. 有一条铁路轨道,轨道的左半部分是直线段,右半部分是一个半圆。
已知轨道的总长度为100m,且轨道的左半部分与右半部分的交点为A。
高中数学函数对称性的应用探究

高中数学函数对称性的应用探究
函数对称性是高中数学中一个重要的概念,在数学问题的解决过程中具有重要的应用价值。
本文将探究函数对称性在数学题目中的应用。
一、基本概念
函数的对称性是指函数图像在某一规则下的运动或转换后,与原图像重合或等价的性质。
常见的对称性有:轴对称、点对称、中心对称、旋转对称等。
二、应用探究
1.轴对称
轴对称是指函数图像相对于某一直线对称。
一些具有轴对称性质的函数在解题过程中能够利用这个性质简化计算方式,比如:
(1)正弦函数$f(x)=sinx$是一个偶函数,其图像关于$y$轴对称。
(2)函数$f(x)=x^2$关于$y$轴对称,因此,当$x≥0$时,$f(x)$的值等于$x^2$,当$x<0$时,$f(x)$的值等于$f(-x)=x^2$。
2.点对称
3.中心对称
中心对称是指函数图像相对于某一点对称,其中,中心点是图像的重心。
(1)圆函数$f(x) = \sqrt{1-x^2}$是一个中心对称的函数,它关于坐标原点对称。
4.旋转对称
旋转对称是指函数图像相对于某一点进行旋转后与原图像重合。
(1)函数$f(x)=\frac{1}{x}$是一个旋转对称的函数,它关于点$(1,1)$进行逆时针$90$度旋转后与原图像重合。
三、总结
函数对称性是高中数学中的一个重要概念,掌握了函数的对称性质以后,可以大大简化计算过程,提高解题效率。
我们需要在学习数学的时候,加强对函数对称性的理解,在实际问题中加以运用,方能更好地掌握此类内容。
对称性在数学教学中的应用

对称性在数学教学中的应用在数学教学中利用数学问题的对称性不仅有助于找到简洁优美的解法,也有利于学生思维水平的提高。
更重要的是可以在学习数学的同时欣赏数学美,正如古代哲学家普洛克拉斯曾说:“哪里有数学,哪里就有美。
”而对称美是数学美的基本内容和重要体现,因此在数学教学中,教师要有意识地揭示数学中的对称美,培养学生的美感,利用对称性提高学生解决问题的能力。
本文以例题为主,主要论述对称性在函数,几何等方面的应用,让学生充分认识对称性的作用,认识对称美。
运用对称性可以锻炼学生的思维,拓展学生的视野,丰富学生的想象,提高学习效果。
一、对称的概念“对称”一词,译自希腊语,其含义是“和谐”“美观”,原义指“在一些物品的布置时出现的般配与和谐”。
我国老一辈数学家段学复教授也说过:“对称,照字面来讲,就是两个东西相对而又相称(或者说相仿、相等)。
因此,把这两个东西互换一下,好像没动一样。
”在现实世界中,形式上和内容上的对称性,广泛地存在于客观事物之中,既有轴对称、中心对称、镜面对称等等的空间对称,又有周期、节奏和旋律的时间对称。
对称美,作为数学美的主要表现形式之一,其数学的实质就是自然物的和谐性在量和量的关系上最直观的表现,是组元的一个构形在其自同构变换群作用下具有的不变性。
从狭义上说,对称是指通常意义下的几何对称和代数对称;从广义上讲,对称还包含对偶、匀称等方面的内容,及各种数学概念、公式、定理间的对称思想。
二、函数中的对称性问题1.函数自身的对称性。
(1)利用奇偶函数的对称性解题。
众所周知,奇函数的图像关于原点对称,偶函数的图像关于y轴对称,只要掌握这些知识的内涵,就能得到处理这些问题的思路把看似复杂的问题简单化。
例1设(fx)是R上的奇函数,且(fx+3)=-(fx),当0≤时(fx)=x,求(f2008)。
解:因为y=(fx)是定义在R上的奇函数,所以点(0,0)是其对称中心,又(fx+3)=-(fx)=(f-x)=(f0-x),所以直线是y=(fx)的对称轴,故y=(fx)是周期为6的周期函数,所以(f2008)=(f6×335-2)=f(-2)=-(f3-1)=(f-1)=-(f1)=-1。
函数图像的对称性与单调性的研究与应用

函数图像的对称性与单调性的研究与应用函数是数学中的重要概念,用于描述变量之间的关系。
而函数图像的对称性与单调性是研究函数特性的重要内容。
本文将从理论和实际应用的角度,探讨函数图像的对称性与单调性。
一、对称性的研究与应用1.1 点对称性在函数图像中,如果存在一点P,对于图像上任意一点Q,都有关于点P对称的点R,那么称函数图像具有点对称性。
点对称轴就是过点P的垂直线。
点对称性在数学中有广泛的应用,如求解方程、证明等。
例如,对于函数y = x^2,其图像关于y轴对称,这意味着当x取正值和负值时,函数值相等,这种对称性可以简化计算。
1.2 奇偶对称性函数图像的奇偶性是指函数关于y轴或原点的对称性。
如果函数满足f(-x) =f(x),则称其为偶函数;如果满足f(-x) = -f(x),则称其为奇函数。
奇偶性在函数的积分计算、函数的性质证明等方面有重要应用。
例如,函数y = x^3是一个奇函数,其图像关于原点对称,这意味着当x取正值和负值时,函数值的正负相等。
二、单调性的研究与应用2.1 单调递增性函数图像的单调递增性是指函数在定义域上的任意两个点,若x1 < x2,则有f(x1) ≤ f(x2)。
单调递增性在优化问题、最值求解等方面有应用。
例如,对于函数y = x^2,在定义域上是单调递增的,这意味着当x1 < x2时,x1^2 ≤ x2^2。
2.2 单调递减性函数图像的单调递减性是指函数在定义域上的任意两个点,若x1 < x2,则有f(x1) ≥ f(x2)。
单调递减性也在优化问题、最值求解等方面有应用。
例如,对于函数y = -x^2,在定义域上是单调递减的,这意味着当x1 < x2时,-x1^2 ≥ -x2^2。
三、对称性与单调性的应用举例3.1 函数图像的变换对称性与单调性的研究可以帮助我们理解函数图像的变换规律。
例如,对于函数y = x^2,我们知道它关于y轴对称,那么当我们对其进行平移、缩放等变换时,可以利用对称性来简化计算。
高中数学函数对称性的应用探究

高中数学函数对称性的应用探究函数对称性是高中数学中一个重要且实用的概念,具有广泛的应用。
在日常学习和实际生活中,我们经常使用对称性来解决问题,比如在平面几何中,对称性用于求解图形对称中心和对称轴等;在画画中,对称性被用来制作对称图案;在物理学和工程等科学领域,对称性则被用来研究各种自然现象和物理规律。
因此,学习和掌握函数对称性的应用是非常有必要的。
一:奇偶性奇偶性是最为常见的函数对称性。
奇函数具有轴对称性,即其图像关于原点对称;而偶函数则具有中心对称性,即其图像关于纵坐标轴对称。
在计算奇偶函数值时,我们只需要验证函数值在 $-x$ 和 $x$ 处是否相等。
有些函数同时具有奇偶性,例如正弦函数,因为 $\sin (-x)=-\sin x$,又有 $\sin (\pi-x)=\sin x$,所以整个正弦函数的图像关于原点对称。
奇偶性的应用很广泛,通过奇偶性我们可以简化计算,化简式子。
例如,设$y=f(x)$ 为偶函数,那么有:$$f(x)-f(-x)=0, f(x)+f(-x)=2f(x)$$利用此关系,我们可以快速求解不等式或者将更复杂的式子化简为简单的形式。
此外,通过奇偶性,我们还可以得到一些有用的结论,例如奇函数之积为偶函数,偶函数之积为偶函数。
在实际问题中,奇偶性也经常发挥作用,例如在分析随机变量概率分布时,对于对称分布的情况,我们可以根据奇偶性简单地计算一些统计指标,进而做出更为准确的判断。
二:周期性周期性是指存在一个正数 $T$,使得对于所有 $x$,都有 $f(x+T)=f(x)$。
具有周期性的函数在图像上呈重复性,其图像会在一定的距离内一遍一遍地重复,因此有时也称为周期函数。
著名的周期函数有三角函数、指数函数等。
周期性在信号处理、电路设计、波动现象等方面有广泛的应用。
例如在声音处理中,频率$f$与周期$T$的关系为 $f=1/T$,通过周期性可以进行声音的合成和分解。
在电路设计中,通过选择不同的周期函数可实现不同类型的振荡器;在物理学中,周期性被用来描述波动现象,如光波和声波。
函数的对称性与单调性的应用

函数的对称性与单调性的应用在数学中,对称性与单调性是一些重要的概念,并且在函数的研究和应用中具有广泛的用途。
通过对函数的对称性和单调性的研究,我们可以更深入地了解函数的性质,进而应用于问题的求解和证明中。
本文将重点探讨函数的对称性与单调性在数学中的应用,并通过几个具体的例子来加深我们对这些概念的理解。
一、函数的对称性的应用1. 奇函数和偶函数奇函数和偶函数是函数在对称性研究中的两个重要概念。
奇函数的特点是在原点对称,即满足f(-x) = -f(x);而偶函数则在y轴上对称,即满足f(-x) = f(x)。
我们可以通过对奇函数和偶函数的研究,来解决一些对称性相关的问题。
举个例子,如果我们需要求解一个方程f(x) = 0的根,而该方程对应的函数是奇函数,那么我们只需要找到其中一个根x1,就可以确定其对称的根为-x1。
同样地,如果方程对应的函数是偶函数,那么我们只需要找到其中一个根x1,就可以确定其对称的根也为x1。
2. 对称轴对称轴也是函数对称性研究中常见的概念。
对称轴是函数图像中具有对称性的一条直线。
通过研究对称轴的性质,我们可以解决一些与对称性相关的问题。
例如,在一元二次函数y = ax^2 + bx + c中,如果a为非零常数且对称轴为直线x = p,那么我们可以通过对称性来确定另外一个对称点。
设对称轴上的点为(p, q),那么我们可以得到一个关于x的方程a(x-p)^2 + q = 0。
通过求解这个方程,我们可以得到另外一个对称点(p, -q)。
二、函数的单调性的应用1. 单调递增和单调递减在函数的单调性研究中,单调递增和单调递减是两个重要的概念。
如果函数在定义域的任意两个不同的点x1和x2上,满足f(x1) < f(x2),那么我们称函数在该区间上是单调递增的;如果满足f(x1) > f(x2),那么我们称函数在该区间上是单调递减的。
通过研究函数的单调性,我们可以解决一些与最值、零点和图像的整体形态等相关的问题。
函数对称性与周期性关系的应用

函数对称性与周期性关系的应用
简介
函数对称性和周期性是数学中常见的概念。
对称性指的是函数在某个轴线上的图像与轴线两侧的部分完全一致。
周期性则是指函数在某个特定的间隔内重复出现相同的图像。
函数对称性的应用
函数对称性在数学和物理学中有着广泛的应用。
以下是一些例子:
1. 对称函数的性质分析:通过研究函数的对称性,可以得到一些关于函数性质的重要信息。
例如,对称函数的奇偶性决定了函数的对称轴是不是原点,从而可以简化函数的分析和计算。
2. 对称性的图像处理:在图像处理中,往往需要分析和处理对称图像。
通过利用图像中的对称性,可以实现图像的压缩、重建和去噪等操作。
函数周期性的应用
函数周期性在信号处理和物理学中具有重要意义。
以下是一些
例子:
1. 周期信号的分析:周期函数可以用来描述许多信号,如周期
性震荡信号和周期运动。
通过分析周期信号的周期和幅值等特征,
可以获得信号的重要信息,如频率、振幅和相位等。
2. 周期性的运动预测:许多物理过程都可以用周期函数来描述,如天体运动和机械振动。
通过研究周期函数的周期和振幅,可以预
测物理过程的未来状态和行为。
结论
函数的对称性和周期性是数学中一些基本且重要的概念。
它们
在各个领域都有着广泛的应用,包括函数性质分析、图像处理、信
号处理和物理学等。
通过深入理解函数对称性和周期性的原理和应用,可以更好地应用于实际问题的解决中。
抽象函数对称性的几个结论及其应用

抽象函数对称性的几个结论及其应用1. 反演对称性(Inversion Symmetry)反演对称性是指函数在空间中经过一些点的反演之后保持不变。
具体来说,如果函数f(x)满足f(x)=f(-x),则称其具有反演对称性。
这种对称性常用于描述物理系统中的对称性,比如平面镜对称、球面镜对称等。
应用中常用反演对称性简化问题的求解过程,例如在研究电磁波传播时,通过利用反演对称性可以简化波动方程的求解。
2. 平移对称性(Translation Symmetry)平移对称性是指函数在空间中进行平移操作之后保持不变的性质。
具体来说,如果函数f(x)满足f(x+a)=f(x),其中a为任意实数,则称其具有平移对称性。
平移对称性在物理学中有广泛的应用,例如在研究周期性现象时,可以通过引入平移对称性简化问题的求解过程,如布洛赫定理在固体电子理论中的应用。
3. 旋转对称性(Rotation Symmetry)旋转对称性是指函数在空间中进行旋转操作之后保持不变。
具体来说,如果函数f(x)满足f(Rx)=f(x),其中R为旋转矩阵,则称其具有旋转对称性。
旋转对称性在几何学和物理学中非常重要,例如在研究物体的形状、电磁场分布等问题时,可以通过引入旋转对称性简化问题的求解过程。
4. 对偶对称性(Duality Symmetry)对偶对称性是指函数在一些操作下可以与其对偶函数互相转换的性质。
具体来说,如果函数f(x)满足一定的变换关系f(x)=g(x),其中g(x)为f(x)的对偶函数,则称其具有对偶对称性。
对偶对称性在数学和物理学中有广泛的应用,例如在研究波动现象时,可以通过引入对偶对称性简化问题的求解过程。
5. 微分对称性(Differential Symmetry)微分对称性是指函数在一些微分操作下保持不变的性质。
具体来说,如果函数f(x)满足一定的微分方程f''(x)=-f(x),则称其具有微分对称性。
微分对称性在数学和物理学中有重要的应用,例如在研究自然界中的自旋系统、波动现象等问题时,可以通过引入微分对称性简化问题的求解过程。
函数的对称性与奇偶性

函数的对称性与奇偶性函数的对称性和奇偶性是数学中重要的概念,用来描述函数在某种变换下的性质。
本文将介绍函数的对称性和奇偶性的概念和性质,并举例说明它们在数学和实际问题中的应用。
一、函数的对称性函数的对称性是指函数图像在某个变换下具有不变性。
常见的对称性有关于x轴对称、y轴对称和原点对称。
下面分别介绍这三种对称性:1. 关于x轴对称当一个函数的图像在x轴上下对称时,我们称之为关于x轴对称。
具体来说,如果对于函数中的任意一个点(x,y),该函数还包含另一个点(x,-y),那么这个函数就是关于x轴对称的。
例如,函数y = x^2就是关于x轴对称的。
当x取任意值时,对应的y值都是相等的,即对于任意一个点(x,y),图像上还存在一个对称的点(x,-y)。
2. 关于y轴对称当一个函数的图像在y轴左右对称时,我们称之为关于y轴对称。
具体来说,如果对于函数中的任意一个点(x,y),该函数还包含另一个点(-x,y),那么这个函数就是关于y轴对称的。
例如,函数y = sin(x)就是关于y轴对称的。
对于任意一个点(x,y),图像上还存在一个对称的点(-x,y)。
3. 关于原点对称当一个函数的图像在原点对称时,我们称之为关于原点对称。
具体来说,如果对于函数中的任意一个点(x,y),该函数还包含另一个点(-x,-y),那么这个函数就是关于原点对称的。
例如,函数y = x^3就是关于原点对称的。
对于任意一个点(x,y),图像上还存在一个对称的点(-x,-y)。
二、函数的奇偶性函数的奇偶性是指函数在x轴上对称和y轴对称的性质。
具体来说,如果函数在关于y轴的对称下,即对于任意的x值,函数中的点(x,y)和(-x,y)相等,那么这个函数就是偶函数。
而如果函数在关于原点的对称下,即对于任意的x值,函数中的点(x,y)和(-x,-y)相等,那么这个函数就是奇函数。
例如,函数y = x^2是一个偶函数,因为对于任意的x,y = x^2和y = (-x)^2是相等的。
对称性在定积分中的-应用

对称性在定积分中的应用a定积分的计算中,对称性也简称“偶倍奇零”性质。
恰当地运用对称性能够大大地简化计算步骤,得到事半功倍的效果。
还可以根据问题的特点发现潜在的对称关系或构造某种对称性,使问题得到巧妙的解决。
一、对称性适用的条件对称性包括积分区间的对称性和被积函数的奇偶性,两个条件缺一不可。
当然很多情况下,我们可以挖掘潜在的对称性和奇偶性。
二、对称性解决的题型1. 积分区间对称且被积函数具有奇偶性时,直接利用“偶倍奇零”性质。
定理:例题:2. 积分区间对称的前提下,被积函数非奇非偶利用任一函数可写成一奇函数和一偶函数的和,把积分改写成0()()()()()[][()()]22aa a a a f x f x f x f x f x dx dx f x f x dx --+---=+=+-⎰⎰⎰ 例题:例2 计算积分44cos .1x x dx e ππ-+⎰ 解:原式40cos cos()[]11x xx x dx e e π--=+++⎰ 40cos xdx π=⎰2= 例3 计算积分()121ln 1.x x e dx -+⎰ 解:原式()()1220[ln 1()ln 1]x x x e x e dx -=++-+⎰ ()21201[ln 1ln ]x x x e x e x dx e ⎛⎫+=+- ⎪⎝⎭⎰ ()()12220[ln 1ln 1ln ]x x x x e x e x e dx =+-++⎰1202x dx =⎰ 23=a)b) 充分利用被积函数某一项的奇偶性进行简化积分的运算例1 计算积分(121arctan .x x dx -⎰解:原式121arctan x xdx -=⎰11x -+⎰1002x =+⎰令sin x t = 原式2202sin cos cos t t tdt π=⋅⋅⎰ 22402(sin sin )t t dt π=-⎰ 1312()2422π=-8π=c)3. 积分区间不对称的情况a) 作变量代换使变换后的积分区间对称。
函数的对称性及应用

函数的对称性及应用对称性是和谐的表现形式,对称性充分体现了数学的和谐美,给人以审美的愉悦感。
在函数中,函数的对称性是函数的一个基本性质,不仅表现出形式美、结构美,应用到一些数学问题中,更有方法美与思路美。
对称性对于简捷地解决某些函数问题至关重要,它可以帮助我们快速找到突破口。
1、函数内部的对称性(自对称)1.1 关于点对称函数y=f(x)关于点(a,b)对称?圳f(a+x)+f(a-x)=2b,也可以写成f(x)+f(2a-x)=2b。
若写成f(a+x)+f(b-x)=c,则函数f(x)关于点(,)对称。
1.2 关于直线对称函数y=f(x)关于x=a对称?圳f(a+x)+f(a-x),也可以写成f(x)=f (2a-x)。
若写成f(a+x)+f(b-x),则函数f(x)关于直线x= = 对称。
2、函数之间的对称性(互对称)2.1 关于点对称y=f(x)与y=g(x)关于点(a,b)对称?圳f(x)+g(2a-x)=2b或f(a+x)+g(a-x)=2b。
2.2 关于直线对称y=f(a+mx)与y=f(b+mx)(m≠0)关于直线x= 对称。
特别地,y=f(x)与y=f(2a-x)关于直线x=a对称。
3、函数对称性应用举例例1 设二次函数f(x)满足f(x+2)=f(-x+2),且其图像与y轴交于点(0,1),在x轴上截得的线段长为2 ,求f(x)的解析式。
解:f(x)关于x=2对称,可设f(x)=a(x-2)2+b。
由4a+b=1,再由x1-x2=2 ?圯2 =2 ,解得a= ,b=-1。
f(x)= (x-2)2-1例2 设f(x)是定义在R上的偶函数,且f(1+x)=f(1-x),当-1?燮x?燮0时,f(x)=- 则f(8.6)= 。
解:f(x)因是定义在R上的偶函数,所以x=0是f(x)对称轴;又f(1+x)=f(1-x)所以x=1也是f(x)对称轴。
故f(x)是以2为周期的周期函数,所以。
函数的对称性与奇偶性的应用

函数的对称性与奇偶性的应用函数的对称性和奇偶性是数学中重要的概念,它们在不同领域的数学问题中有广泛的应用。
本文将介绍函数的对称性和奇偶性的概念及其应用,并通过一些例子来进一步说明。
一、函数的对称性函数的对称性是指函数在某个特定的变换下具有不变性。
常见的对称性包括以下几种:1. 奇偶对称性:如果对于函数的每一个实数x,都有f(-x) = -f(x),则称函数具有奇对称性;如果对于函数的每一个实数x,都有f(-x) =f(x),则称函数具有偶对称性。
2. x轴对称:如果对于函数的每一个实数x,都有f(x) = f(-x),则称函数具有x轴对称性。
3. y轴对称:如果对于函数的每一个实数x,都有f(x) = -f(-x),则称函数具有y轴对称性。
二、奇偶性的应用奇偶性在数学中有着广泛的应用,下面将介绍一些常见的应用情况。
1. 确定函数的对称性:通过对函数f(x)进行变换,可以判断函数是否具有对称性。
如果f(x)与-f(x)完全相同,那么函数是偶对称的;如果f(x)与-f(x)相差一个负号,那么函数是奇对称的;如果f(x)与f(-x)完全相同,那么函数具有x轴对称性;如果f(x)与-f(-x)相差一个负号,那么函数具有y轴对称性。
2. 简化函数的求解:奇偶性可用来简化函数的求解过程。
如果函数f(x)是偶对称的,则在求解某些积分和方程时,可以利用对称性简化计算。
同样,如果函数f(x)是奇对称的,也可以利用对称性简化计算。
3. 求解函数的零点:根据函数的奇偶性,可以得到函数的零点的一些性质。
对于偶对称的函数,如果f(x)=0,则-f(x)=0,也是函数的零点;对于奇对称的函数,如果f(x)=0,则-f(x)=0是函数的零点。
4. 确定函数图像的性质:根据函数的对称性,可以推断出函数图像的一些性质。
例如,如果函数是偶对称的,则函数的图像关于y轴对称;如果函数是奇对称的,则函数的图像关于原点对称。
三、例子分析为了更好地理解函数的对称性和奇偶性的应用,下面以一些具体函数为例进行分析。
高中数学函数对称性的应用探究

高中数学函数对称性的应用探究
高中数学中,函数的对称性是一个重要的概念。
函数的对称性可以帮助我们简化问题
的解决过程,从而更好地理解和应用数学知识。
函数的对称性与图形的对称性密切相关。
通过对函数的图像进行观察,我们可以发现
一些常见的对称形状,如中心对称、轴对称等。
对于中心对称的函数,其图像可以通过绕
某一点旋转180度后与原图完全重合;对于轴对称的函数,则可以通过绕某一条直线镜像
翻转后与原图完全重合。
在实际应用中,函数的对称性可以帮助我们简化计算。
以奇偶函数为例,奇函数指的
是满足f(-x) = -f(x)的函数,而偶函数指的是满足f(-x) = f(x)的函数。
对于奇函数,
如果我们已经知道了函数在某个点的取值,那么通过奇函数的特性,我们可以推算出该点
对称位置的取值。
同理,对于偶函数,如果我们已经知道了函数在某个点的取值,那么通
过偶函数的特性,我们可以推算出该点关于y轴对称位置的取值。
函数的对称性还可以帮助我们解决一些特殊问题。
如果我们要证明一个函数恒等于零,可以通过构造一个满足对称性的函数来证明。
又对称性还可以帮助我们证明一些定理,如
中值定理、拉格朗日中值定理等。
函数的对称性在高中数学中具有重要的意义。
它可以帮助我们简化问题和计算过程,
提高解题的效率,同时也可以帮助我们理解和应用数学知识。
在学习和应用函数的过程中,我们应该重视对称性的概念,并学会灵活运用对称性来解决各种问题。
函数对称性、周期性的应用(含解析)

函数对称性、周期性的应用高考对函数性质的考查往往是综合性的,如将奇偶性、周期性、单调性及函数的零点综合考查,因此,复习过程中应注意在掌握常见函数图象和性质的基础上,注重函数性质的综合应用的演练.(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称 在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可.例如:关于轴对称,或得到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称.① 要注意偶函数是指自变量取相反数,函数值相等,所以在中,仅是括号中的一部分,偶函数只是指其中的取相反数时,函数值相等,即,要与以下的命题区分: 若是偶函数,则:是偶函数中的占据整个括号,所以是指括号内取相反数,则函数值相等,所以有② 本结论也可通过图像变换来理解,是偶函数,则关于轴对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.2、中心对称的等价描述:(1)关于中心对称(当时,恰好就是奇函数)(2)关于中心对称 在已知对称中心的情况下,构造形如的等式同样需注意两点,一是等式两侧和()()f a x f a x -=+⇔()f x x a =0a =()()()f a x f b x f x -=+⇔2a b x +=()()f a x f b x -=+f x ,a b 2a b x +=()f x 1x =()()2f x f x ⇒=-()()31f x f x -=-+()f x ()f x a +()()f x a f x a +=-+()f x x a =()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=-+⎡⎤⎣⎦()f x x ()()f x a f x a +=-+⎡⎤⎣⎦()f x a +()f x a +0x =()f x ()f x a +a a ()f x x a =()()f a x f a x -=-+⇔()f x (),0a 0a =()()()f a x f b x f x -=-+⇔,02a b +⎛⎫ ⎪⎝⎭()()f a x f b x -=-+f前面的符号均相反;二是的取值保证为所给对称中心即可.例如:关于中心对称,或得到均可,同样在求函数值方面,一侧是更为方便(3)是奇函数,则,进而可得到:关于中心对称.① 要注意奇函数是指自变量取相反数,函数值相反,所以在中,仅是括号中的一部分,奇函数只是指其中的取相反数时,函数值相反,即,要与以下的命题区分: 若是奇函数,则:是奇函数中的占据整个括号,所以是指括号内取相反数,则函数值相反,所以有② 本结论也可通过图像变换来理解,是奇函数,则关于中心对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:(1)可利用对称性求得某些点的函数值(2)在作图时可作出一侧图像,再利用对称性得到另一半图像(3)极值点关于对称轴(对称中心)对称(4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同(二)函数的周期性1、定义:设的定义域为,若对,存在一个非零常数,有,则称函数是一个周期函数,称为的一个周期2、周期性的理解:可理解为间隔为的自变量函数值相等3、若是一个周期函数,则,那么,即也是的一个周期,进而可得:也是的一个周期4、最小正周期:正由第3条所说,也是的一个周期,所以在某些周期函数中,往往寻找x ,a b 2a b x +=()f x ()1,0-()()2f x f x ⇒=---()()35f x f x -=--+()f x ()f x a +()()f x a f x a +=--+()f x (),0a ()f x a +x x ()()f x a f x a +=-+()f x ()()f x a f x a +=--+⎡⎤⎣⎦()f x x ()()f x a f x a +=--+⎡⎤⎣⎦()f x a +()f x a +()0,0()f x ()f x a +a a ()f x (),0a ()f x D x D ∀∈T ()()f x T f x +=()f x T ()f x T ()f x ()()f x T f x +=()()()2f x T f x T f x +=+=2T ()f x ()kT k Z ∈()f x ()kT k Z ∈()f x周期中最小的正数,即称为最小正周期.然而并非所有的周期函数都有最小正周期,比如常值函数5、函数周期性的判定:(1):可得为周期函数,其周期(2)的周期分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:所以有:,即周期注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期(3)的周期 分析: (4)(为常数)的周期分析:,两式相减可得:(5)(为常数)的周期(6)双对称出周期:若一个函数存在两个对称关系,则是一个周期函数,具体情况如下:(假设)① 若的图像关于轴对称,则是周期函数,周期分析:关于轴对称关于轴对称的周期为② 若的图像关于中心对称,则是周期函数,周期③ 若的图像关于轴对称,且关于中心对称,则是周期函数,周期()f x C =()()f x a f x b +=+()f x T b a =-()()()f x a f x f x +=-⇒2T a =()()2f x a f x a +=-+()()()()()2f x a f x a f x f x +=-+=--=2T a =()()()1f x a f x f x +=⇒2T a =()()()()1121f x a f x f x a f x +===+()()f x f x a k ++=k ()f x ⇒2T a =()()()(),2f x f x a k f x a f x a k ++=+++=()()2f x a f x +=()()f x f x a k ⋅+=k ()f x ⇒2T a =()f x ()f x b a >()f x ,x a x b ==()f x ()2T b a =-()f x x a =()()2f x f a x ⇒-=+()f x x b =()()2f x f b x ⇒-=+()()22f a x f b x ∴+=+()f x ∴()222T b a b a =-=-()f x ()(),0,,0a b ()f x ()2T b a =-()f x x a =(),0b ()f x ()4T b a =-7、函数周期性的作用:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质.(1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值(2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制+粘贴”(3)单调区间:由于间隔的函数图象相同,所以若在上单调增(减),则在上单调增(减)(4)对称性:如果一个周期为的函数存在一条对称轴 (或对称中心),则 存在无数条对称轴,其通式为 证明:关于轴对称函数的周期为关于轴对称 注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法.【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( ) ()kT k Z ∈()f x ()(),a b b a T -≤()f x ()(),a kT b kT k Z ++∈T ()f x x a =()f x ()2kT x a k Z =+∈()f x x a =()()2f x f a x ∴=-()f x T ()()f x kT f x ∴+=()()2f x kT f a x ∴+=-()f x ∴2kT x a =+A .6B .8C .12D .16例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭ D.⎫⎪⎪⎝⎭例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( )A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-= 例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( ) A .0 B .6 C .12 D .18例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >> 例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( )①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点.A .①③B .②④C .①③④D .②③④ 例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( ) A .222e e +B .25050e e +C .2100100e e +D .222e e --例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =()A .2-B .2log 3C .3D .2log 5- 2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .201940963.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( ) A .2 B .3 C .4 D .54.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .05.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe -=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( ) A .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .78.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( ) A .c a b >> B .c b a >> C .b a c >> D .a c b >>9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x x x x y e e ----=+的曲线有下列说法: ①该曲线关于2x =对称;②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数.其中正确的是( )A .②③B .①④C .②④D .①③11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3B .4C .5D .612.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1m i i i x y =+=∑( ) A .0 B .m C .2m D .4m【经典例题】例1.【2020年高考全国Ⅲ卷文数12】已知函数()1sin sin f x x x =+,则 ( )A .()f x 的最小值为2B .()f x 的图像关于y 轴对称C .()f x 的图像关于直线x =π对称D .()f x 的图像关于直线2x π=对称 【答案】D【思路导引】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C ,D .【解析】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对,故选:D .【专家解读】本题考查了三角函数图象及其性质,考查三角函数周期公式,考查数形结合思想,考查数学运算、直观想象等学科素养.解题关键是熟记三角函数的性质.例2.(2020·全国高三三模)已知定义域为R 的函数()f x 的图像关于原点对称,且()()30f x f x -+-=,若曲线()y f x =在()()6,6f 处切线的斜率为4,则曲线()y f x =在()()2022,2022f --处的切线方程为( )A .48088y x =--B .48088y x =+C .1101142y x =--D .1101142y x =+ 【答案】B【解析】因为定义域为R 的函数()f x 的图像关于原点对称,所以()00f =,因为()()30f x f x -+-=,()()630f x f x -+-=,两式相减可得,()()6f x f x -=-,故6T =,故()()202200f f -==;因为()()()2022064f f f '''-===,故所求切线方程为48088y x =+,故选:B .例3.(2020·南岗·黑龙江实验中学高三三模)若()f x 为偶函数,对任意x ∈R ,()()11f x f x -=+恒成立,且当10x -≤≤时,()()()211f x x x =-+.则方程()29log f x x =根的个数为( )A .6B .8C .12D .16【答案】D【解析】对任意x ∈R ,()()11f x f x -=+恒成立,故()()2f x f x -=+,又()f x 为偶函数,所以()()2f x f x =+,2T =,且当10x -≤≤时,()()()221122f x x x x =-+=-,设()293log log h x x x ==,则()h x 为偶函数,求方程()29log f x x =根的个数转化为求()f x 与()g x 的交点个数,画出当0x >时()y f x =与()y g x =的图像,如图:可知两图像有8个交点,又()f x 与()g x 都为偶函数,所以()f x 与()g x 有16个交点,即方程()29log f x x =根的个数为16.故选:D.例4.(2020·山西大学附中三模)已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.0,6⎛⎫⎪ ⎪⎝⎭B.6⎛⎫⎪ ⎪⎝⎭C.0,5⎛ ⎝⎭D.5⎛⎫⎪ ⎪⎝⎭【答案】A【解析】由题可知:cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像 在0x >的交点至少有3对,可知()0,1a ∈, 如图所示,当6x =时,log 62a >-,则0a <<故实数a的取值范围为0,6⎛ ⎝⎭故选:A例5.(2020·启航中学三模)已知函数()f x 在定义域上的值不全为零,若函数()1f x +的图象关于()1,0对称,函数()3f x +的图象关于直线1x =对称,则下列式子中错误的是( ) A .()()f x f x -=B .(2)(6)f x f x -=+C .(2)(2)0f x f x -++--=D .(3)(3)0f x f x ++-=【答案】D【解析】∵函数(1)f x +的图象关于()1,0对称, ∴函数()f x 的图象关于(2,0)对称,令()(1)F x f x =+,∴()()2F x F x =--,即()(3)1f x f x -=-+,∴()()4f x f x -=- …⑴ 令()(3)G x f x =+,∵其图象关于直线对称,∴()()2G x G x +=-,即()()53f x f x +=-,∴()()44f x f x +=- …⑵ 由⑴⑵得,()()4f x f x +=-,∴()()8f x f x += …⑶ ∴()()()844f x f x f x -=-=+-,由⑵得()()()()()4444f x f x f x +-=--=,∴()()f x f x -=;∴A 对; 由⑶,得()()282f x f x -+=-,即()()26f x f x -=+,∴B 对; 由⑴得,()()220f x f x -++=,又()()f x f x -=, ∴()()(2)(2)220f x f x f x f x -++--=-++=,∴C 对;若()()330f x f x ++-=,则()()6f x f x +=-,∴()()12f x f x +=,由⑶得()()124f x f x +=+,又()()4f x f x +=-,∴()()f x f x =-,即()0f x =,与题意矛盾,∴D 错.故选:D.例6.(2020·山东高密·高三三模)已知函数(1)2y f x =+-是奇函数,21()1x g x x -=-,且()f x 与()g x 的图像的交点为11(,)x y ,22(,)x y ,,66(,)x y ,则126126x x x y y y +++++++=( )A .0B .6C .12D .18【答案】D 【解析】()211211x g x x x -==+--,由此()g x 的图像关于点()1,2中心对称,()12y f x =+-是奇函数()()1212f x f x -+-=-++,由此()()114f x f x -+++=,所以()f x 关于点()1,2中心对称,1266x x x +++=,12612y y y +++=,所以12612618x x x y y y +++++++=,故选D例7.(2020·四川泸州·高三三模)定义在实数集R 上的函数()f x 满足(1)(1)f x f x +=-,且当1≥x 时,()f x 是增函数,则()3log 2a f =,⎛=- ⎝b f ,(3)c f =的大小关系正确的是( ). A .a b c >> B .b c a >> C .c a b >>D .b a c >>【答案】C 【解析】(1)(1)f x f x +=-,∴()f x 关于1x =对称,又1≥x 时,()f x 是增函数,()()3339log 22log 2log 2f f f ⎛⎫=-= ⎪⎝⎭,33392log 4,log 4log 321-==<<<, ∴b a c <<.故选:C.例8.(2020·北大附中高三三模)若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( ) ①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点. A .①③ B .②④ C .①③④ D .②③④【答案】C【解析】由()()2f x f x +=,得()()2f x f x -=-, 结合()f x 为偶函数,得()()2f x f x -=, 则曲线()y f x =关于直线1x =对称,则①正确; 无法推出()()3f x f x -=-,则②不一定正确;由曲线()()12y f x x =≤≤可得曲线()()01y f x x =≤≤, 即得曲线()()02y f x x =≤≤,恰好是在一个周期内的图象; 再根据()f x 是以2为周期的函数,得到曲线()()24y f x x =≤≤,因为在()y f x =在[]1,2上是减函数,()y f x =在[]3,4上是减函数,则③正确; 因为()y f x =在[]1,2上是减函数,()110f =>,()210f =-<,所以()y f x =在[]1,2上有唯一的一个零点,根据对称性,()f x 在区间()4,4-内有8个零点.故选:C.例9.(2020·咸阳市教育教学研究室高三三模)设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=( )A .222e e +B .25050e e +C .2100100e e +D .222e e --【答案】A【解析】由()()22f x f x -=+得:()f x 关于2x =对称 又()f x 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+,故选:A例10.(2020·山东省实验高三三模)已知定义域为R 的奇函数()f x 满足()()210f x f x -++=,且当()0,3x ∈时,()()12f f ==-则()()()()0122020f f f f +++⋅⋅⋅+=( )A .0BC .D .【答案】B 【解析】()f x 是奇函数且满足()()210f x f x -++=,(1)(2)(2)f x f x f x ,(3)()f x f x ∴+=,()f x ∴是以3为周期的函数,且(0)0f =,()()()()()()()0122020674067416732f f f f f f f ∴+++⋅⋅⋅+=++=故选:B.【精选精练】1.(2020·黑龙江·大庆四中三模)已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =() A .2- B .2log 3C .3D .2log 5-【答案】D 【解析】已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,()()(3)f x f x f x ∴-=-=-,∴()f x 的周期为3.3,02x ⎛⎫∴∈- ⎪⎝⎭时,2()log (27)f x x =+,22(2020)(36731)(1)(1log (27)lo )5g f f f f =⨯+==-=--+-=-,故选D .2.(2020·济南一中2020届高三三模)若定义在R 上的函数()f x 满足()()0f x f x -+=,()()4f x f x +=,且当()0,2x ∈时,()2x f x =,则()2log 2019f =( )A .20482019-B .40962019-C .40962019D .20194096【答案】B【解析】由()()4f x f x +=,得函数()f x 的周期是4. 由()()0f x f x -+=,则()f x 在R 上是奇函数, 且当()0,2x ∈时,()2xf x =,210log 201911<<,所以()()()222log 2019log 20191212log 2019f f f =-=--212log 2019409622019-=-=-.故选:B 3.(2020·西安市鄠邑区第一中学三模)已知函数()f x 满足()()f x f x =-和()()+2f x f x =,且在[]0,1x ∈时,()1f x x =-,则关于x 的方程13x y ⎛⎫= ⎪⎝⎭在[]0,4上解的个数是( )A .2B .3C .4D .5【答案】D【解析】由题意可得,函数()f x 为偶函数,且是周期为2的周期函数. 方程1()()3xf x =在[0x ∈,4]上解的个数,即函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数,再根据当[0x ∈,1]时,()1f x x =-, 设1,(0)11()()()()330x xx g x g f x =--∴-==.因为1211113()1()0223236g -=--=-=<,数形结合可得,函数()y f x =的图象与函数1()3xy =的图象在[0,1)内存在两个交点,画出函数()f x 在[0,4]上的图象,如图,故函数()y f x =的图象与函数1()3xy =的图象在[0,4]上的交点个数为5.(在[0,1]内有2个,在[1,2]有1个,在(2,4]有2个),故选:D .4.(2020·哈尔滨市第一中学校三模)已知定义在R 上的函数满足()()2,(0,2]f x f x x +=-∈时,()sin f x x x π=-,则20201()i f i ==∑( )A .6B .4C .2D .0【答案】D【解析】根据题意,函数()f x 满足()()2f x f x +=-,则()4()f x f x +=,即()f x 是周期为4的周期函数,当2(]0,x ∈时,()sin f x x x π=-,则()11sin 1f π=-=,()22sin 22f π=-=, 又由()()2f x f x +=-,则()()()()311,422f f f f =-=-=-=-, 所以(1)(2)(3)(4)0f f f f +++=,所以20201()505((1)(2)(3)(4))0i f i f f f f ==⨯+++=∑.故选:D .5.(2020·湖南开福·周南中学三模)已知偶函数()f x 满足(3)(3)f x f x +=-,且当[0,3]x ∈时,2()xf x xe-=,若关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,则实数t 的取值范围是( )A .120,e -⎛⎤ ⎥⎝⎦B .1322,3e e --⎡⎫⎪⎢⎣⎭C .3123,2e e --⎛⎤ ⎥⎝⎦D .112,2e e --⎡⎫⎪⎢⎣⎭【答案】B【解析】当[0,3]x ∈时,2()xf x xe =,22211122()x x xf x ee e x x ---⎛⎫-=- ⎪⎝⎭'=, 当(2,3]x ∈时,()0f x '<,当[0,2)x ∈时,()0f x '>, 所以函数()f x 在(2,3]x ∈单调递减,在2(]0,x ∈单调递增,(0)0f =,32(3)30f e -=>,又(3)(3)f x f x +=-,函数()f x 关于3x =对称,且是偶函数,所以()()f x f x =-,所以(3)(3)(3)f x f x f x +=-=-,所以函数周期6T =,关于x 的不等式2()()0f x tf x ->在[150,150]-上有且只有150个整数解,即()f x t >在[150,150]-上有且只有150个整数解,所以每个周期内恰有三个整数解结合草图可得:1322,3t e e --⎡⎫∈⎪⎢⎣⎭.故选:B.6.(2020·浙江西湖·学军中学高三三模)定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos xf x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭【答案】C【解析】∵f (x )是奇函数;∴f (x+2)=f (-x )=-f (x );∴f (x+4)=-f (x+2)=f (x ); ∴f (x )的周期为4;∴f (2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ ∵x ∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫⎪⎝⎭∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C.7.(2020·陕西省商丹高新学校三模)若定义在R 上的函数()f x 满足()()2f x f x +=且[]1,1x ∈-时,()f x x =,则方程()3log f x x =的根的个数是A .4B .5C .6D .7【答案】A【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数.又[1,1]x ∈-时,()||f x x =,所以函数()f x 的图象如图所示.再作出3log y x =的图象,易得两图象有4个交点,所以方程3()log ||f x x =有4个零点.故应选A . 8.(2020·全国高三三模)已知函数()f x 的图象关于直线1x =对称,当211x x >>时,2121[()()]()0f x f x x x --<恒成立,设1()2a f =-,(2)b f =,()c f e =,则,,a b c 的大小关系为( )A .c a b >>B .c b a >>C .b a c >>D .a c b >>【答案】C【解析】:∵当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立, ∴()()()122121,1,,0x x x x f x f x ∀∈+∞>-<且,有 , ∴f (x )在(1,+∞)上单调递减, 又∵函数f (x )的图象关于直线x =1对称, ∴a=f (12-)=f (52),∵e>52>2>1, ∴f (e)<f (52)<f (2) 即b>a>c,故选:C.9.(2020·贵州黔东南·高三三模)已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为( ) A .[4,)+∞ B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】C【解析】函数()f x 的图象关于点()1,0对称且在(,0)-∞上单调递增,所以()f x 在(2,)+∞上单调递增,所以对称轴22m≤,即4m ≤.故选:C 10.(2020·湖北黄州·黄冈中学三模)方程()222(1)(3)x xx x y e e ----=+的曲线有下列说法:①该曲线关于2x =对称; ②该曲线关于点(2,1)-对称;③该曲线不经过第三象限;④该曲线上有无数个点的横、纵坐标都是整数. 其中正确的是( ) A .②③ B .①④ C .②④ D .①③【答案】D【解析】因为曲线方程为()222(1)(3)x xx x y e e ----=+,而220x x e e --+>恒成立,故等价于()()()22213x xx x y f x ee----==+.①因为()()()()21122xxx x f x f x e e-+-+==-+,故该曲线关于2x =对称;②要该曲线关于()2,1-对称,则需满足()()2212f x f x ++-=-,而由①中所求,显然()()22f x f x ++-不是常数,故该曲线不关于()2,1-对称; ③当0x <时,()()2130x x -->,且220x x e e --+>,则()0f x >恒成立, 故该曲线不经过第三象限;④容易知()()()21,10,30f f f =-==,此外该曲线上没有其它横纵坐标都是整数的点. 事实上,本题可以利用导数和函数对称性可知,函数图像如下所示:,则容易知该曲线的各种性质. 故选:D.11.(2020·湖南长沙一中三模)设函数()f x 的定义域为R ,()()f x f x -=,()()2f x f x =-,当[]01x ∈,时,()3f x x =,则函数()()g x cos x f x π-=在区间13,22⎡⎤-⎢⎥⎣⎦上零点的个数为( ) A .3 B .4 C .5 D .6【答案】C【解析】由()()f x f x -=,得()f x 的图象关于y 轴对称. 由()()2f x f x =-,得()f x 的图象关于直线1x =对称.当[]01x ∈,时,()3f x x =,所以()f x 在[]1,2-上的图象如图. 令()()0g x cos x f x π-==,得()cos x f x π=,两函数()y f x =与y cos x π=的图象在13,22⎡⎤-⎢⎥⎣⎦上的交点有5个.故选:C.12.(2020·云南省下关第一中学三模)已知定义在R 上的函数()f x 满足()()1f 3x f x +=-,且()3y f x =+为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()()()4.5 3.512.5f f f -<<B .()()()3.5 4.512.5f f f -<<C .()()()12.5 3.5 4.5f f f -<<D .()()()3.512.5 4.5f f f -<<【答案】B【解析】∵函数()f x 满足()()13f x f x +=-,∴()()163f x f x +=-+=()1f x 1f x -=-(), ∴f (x )在R 上是以6为周期的函数,∴f (12.5)=f (12+0.5)=f (0.5),()()()4.5 4.56 1.5f f f -=-+=又()3y f x =+为偶函数,∴f (x )的对称轴为x =3,∴f (3.5)=f (2.5), 又∵0<0.5<1.5<2.5<3,且()f x 在(0,3)内单调递减,∴f (2.5)<f (1.5)<f (0.5) 即f (3.5)<f (-4.5)<f (12.5),故选B .13.(2020·福建高三三模)已知定义在R 上的函数()f x 的对称中心为()2,0,且当[2,)x ∈+∞时,2()2f x x x =-+,则不等式()f x x >的解集为( )A.⎛ ⎝-⎭∞ B.⎫⎪⎝+⎭∞⎪ C.⎫⎪⎝+⎭∞⎪ D.⎛ ⎝-⎭∞ 【答案】D【解析】依题意知()f x 图象关于点(2,0)对称, 作出()f x 图象如图,可知()f x 在R 上为减函数,由图象可得(,2]x ∈-∞时,()(4)(2)(4)f x f x x x =--=--,由(2)(4)x x x x --=⇒=或x 舍去), 由图象可知()f x x >的解为⎛ ⎝-⎭∞,故选:D .14.(2020·广东濠江·金山中学高三三模)已知函数()f x (x ∈R )满足()()4f x f x -=-,若函数21x y x +=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A .0B .mC .2mD .4m【答案】C【解析】因为函数()f x (x ∈R )满足()()4f x f x -=-,即函数()f x (x ∈R )满足()()22f x f x -+=,所以()y f x =是关于点(0,2)对称,函数21x y x +=等价于12y x =+, 所以函数21x y x +=也关于点(0,2)对称,所以函数21x y x+=与()y f x =图像的交点为()11,x y ,()22,x y ,…,(),m m x y 也关于点(0,2)对称,故交点()11,x y ,()22,x y ,…,(),m m x y 成对出现,且每一对点都关于(0,2)对称,故()12121()()0422mi i m m i mx y x x x y y y m =+=+++++++=+⨯=∑. 故选:C.。
函数的对称与平移

函数的对称与平移函数在数学中起着重要的作用,它描述了数值之间的关系。
函数的对称性和平移性是函数的两个重要概念,从而帮助我们更好地理解和分析函数的性质。
在本文中,我们将探讨函数的对称性和平移性的概念及其应用。
一、函数的对称性函数的对称性是指函数关于某个轴线或点的性质。
常见的函数对称性有奇函数和偶函数。
1. 奇函数奇函数是指对任意的x,满足f(-x) = -f(x)的函数。
即函数的图像关于原点对称。
例如,f(x) = x^3是一个奇函数。
当x取正值时,函数值与相应的负值相等但符号相反。
2. 偶函数偶函数是指对任意的x,满足f(-x) = f(x)的函数。
即函数的图像关于y轴对称。
例如,f(x) = x^2是一个偶函数。
无论x取正值还是负值,函数值相等。
函数的对称性在实际问题中有广泛的应用。
例如,电路中的交流电信号是奇函数,而直流电信号是偶函数。
对称性的研究可更好地理解函数的性质和简化问题的求解。
二、函数的平移性函数的平移是指通过改变函数的方程使得函数图像在坐标平面上沿着某个方向移动。
常见的平移包括横向平移和纵向平移。
1. 横向平移横向平移是指通过改变函数的自变量使得函数图像在x轴方向上移动。
当横向平移的量为正时,图像向左平移;当横向平移的量为负时,图像向右平移。
以函数f(x)为例,横向平移的一般形式为f(x-h),其中h代表平移的量。
例如,图像y = sin(x)经过横向平移h个单位,可以表示为y = sin(x-h)。
2. 纵向平移纵向平移是指通过改变函数的因变量使得函数图像在y轴方向上移动。
当纵向平移的量为正时,图像向上平移;当纵向平移的量为负时,图像向下平移。
以函数f(x)为例,纵向平移的一般形式为f(x) + k,其中k代表平移的量。
例如,图像y = x^2经过纵向平移k个单位,可以表示为y = (x+k)^2。
函数的平移性对于函数的图像以及问题的解决具有重要意义。
通过平移函数,我们可以调整曲线的位置,从而更好地理解函数的性质和规律。
函数的对称性和奇偶性

函数的对称性和奇偶性函数的对称性和奇偶性是数学中重要的概念,用于描述函数的性质和特点。
通过研究函数的对称性和奇偶性,我们可以更深入地了解函数的行为和图像的形状。
本文将详细介绍函数的对称性和奇偶性的定义、性质以及在实际问题中的应用。
一、对称性的定义和性质函数的对称性是指函数在某些变换下具有不变性的性质。
常见的对称性包括关于y轴的对称、关于x轴的对称和关于原点的对称。
下面将分别介绍这三种对称性的定义和性质。
1. 关于y轴的对称性如果对于函数中的任意x值,都有f(-x) = f(x),则称函数关于y 轴对称。
也就是说,函数图像相对于y轴是对称的。
例如,函数y = x^2就是关于y轴对称的,因为对于任意x值,都有(-x)^2 = x^2。
2. 关于x轴的对称性如果对于函数中的任意x值,都有f(x) = -f(-x),则称函数关于x轴对称。
也就是说,函数图像相对于x轴是对称的。
例如,函数y = sin(x)就是关于x轴对称的,因为对于任意x值,都有sin(x) = -sin(-x)。
3. 关于原点的对称性如果对于函数中的任意x值,都有f(-x) = -f(x),则称函数关于原点对称。
也就是说,函数图像相对于原点是对称的。
例如,函数y = x^3就是关于原点对称的,因为对于任意x值,都有(-x)^3 = -x^3。
对于一个函数而言,可能同时具有以上三种对称性,也可能只具有其中一种对称性。
在实际应用中,我们可以根据函数的对称性来简化计算和分析。
二、奇偶性的定义和性质函数的奇偶性是指函数在某些变换下具有不变性的性质。
奇函数和偶函数是最常见的具有奇偶性的函数。
下面将分别介绍奇函数和偶函数的定义和性质。
1. 奇函数如果对于函数中的任意x值,都有f(-x) = -f(x),则称函数为奇函数。
也就是说,奇函数关于原点对称。
例如,函数y = sin(x)就是奇函数,因为对于任意x值,都有sin(-x) = -sin(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数对称性的应用
高中数学新课标对函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。
尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。
在这方面一直是教学的难点,尤其是抽象函数的对称性判断。
所以我对高中阶段所涉及的函数对称性知识做一个粗略的总结
一、对称性的概念
(1)函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
(2)中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
二、常见函数的对称性(所有函数自变量可取有意义的所有值)
(1)常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为
它的对称轴
(2)幂函数:幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴。
(3)正弦函数:既是轴对称又是中心对称,其中(k π,0)是它的对称中心,x=kπ+π/2是它的对称轴。
(4)正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。
(5)余弦函数:既是轴对称又是中心对称,其中x=k π是它的对称轴,(kπ+π/2,0)是它的对称中心。
(6)正切函数:不是轴对称,但是是中心对称图形,其中(kπ/2,0)是它的对称中心,(不要误以为对称中心只是(kπ,0))。
(7)三次函数:任何三次函数都是中心对称图形,对称中心的横坐标是二阶导数的零点。
(8)对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。
(它没有对称轴),例如在处理函数y=x+1/x时误以为会有f0.5)=f (1.5),我在教学时总是问学生:你可看见过老师将“√”
两边画得一样齐?学生们立刻明白并记忆深刻。
(9)绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。
前者显然是偶函数,它会关于y轴对称;
后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。
三、抽象函数的对称性猜测
(一)函数自身的对称性
定理1函数y=f(x)的图像关于点A(a,b)对称的充要条件是:f(x)+f(2a-x)=2b
推论:函数y=f(x)的图像关于原点O对称的充要条件是:f(x)+f(-x)=0
定理2.函数y=f(x)的图像关于直线x=a对称的充要条件是:f(a+x)=f(a-x)即f (x)=f(2a-x)
推论:函数y=f(x)的图像关于y轴对称的充要条件是f(x)=f(-x)。
推论:满足条件f (x-a)的函数的图象关于直线x=对称。
定理3.①若函数y=f(x)f(b-x)图像同时关于点A (a,c)和点B (b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期。
②若函数y=f(x)图像同时关于直线x=a和直线x=b成轴对称(a≠b),则y=f(x)是
周期函数,且2|a-b|是其一个周期。
③若函数y=f(x)图像既关于点A(a,c)成中心对称又关于直线x=b成轴对称(a ≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期。
(二)不同函数对称性的探究
定理4. 函数y=f(x)与y=2b-f (2a-x)的图像关于点A (a ,b)成中心对称。
定理5. ①函数y = f (x)y =f(2a-x)的图像关于直线x=a成轴对称。
②函数y=f(x)与a-x = f (a-y)的图像关于直线x +y=a成轴对称。
③函数y=f(x)与x-a=f(y + a)的图像关于直线x-y=a成轴对称。
定理6. ①函数y=f (x)与y=f(-x)的图像关于直线x=0成轴对称。
②函数y=f(x)与y=-f(x)的图像关于直线y=0成轴对称。
③函数y=f(x)与y=-f(-x)的图像关于原点成中心对称。
④函数y=f(x)与y=f(x)的图像的关系。
f(x)的图象先保留f(x)在Y轴右方的图象,擦去Y轴左方的图象,然后作出Y轴右方的图象关于Y轴的对称图形得到。
⑤函数y=f(x)与y=f(x)的图像的关系f(x)。
的图象先保留f(x)原来在X轴上方的图象,作出X轴下方的图象关于X轴的对称图形,然后擦去X轴下方的图象得到。