初中八年级数学最短路径问题

合集下载

人教版八年级数学上册1最短路径问题课件

人教版八年级数学上册1最短路径问题课件

在△AB′C′中,AB′< AC′+B′C′,
B′
∴AC+BC < AC′+B′C′,
即AC+BC最小.
归纳
B A
l
解决实 际问题
B
抽象为数学问题
A
C
l
轴对称
A C
用旧知解决新知
B
l
A
C
l
B′
B′
解决“两点一线”型最短路径问题的方法:
异侧: 连接两点,与直线的交点即为所求的点;
同侧: 作其中某一点关于直线的对称点,对称点与另
a P1
M .P
N
b
P2
解决“两线一点”型最短路径问题:
要作两次轴对称,从而构造出最短路径. a
P1
作法: 1.作点P关于直线a的对称 点P1; 2.作点P关于直线b的对称
M .P
点P2; 3.连接P1P2,分别交直线 a ,b于点M ,N ;
N
b
4.依次连接PM ,MN ,NP , 即所求最短路径。
A1
P
l1
.
A
Q
. B1
B
l2
再学习(4)造桥选址问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN.乔造在何处才能使从A到 B的路径AMNB最短?(假定河的两岸是平 行的直线,桥要与河垂直)
A
B
思维分析
A M
N B
如图假定任选位置造桥MN,连接AM和 BN,从A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短呢?
问题解决
如图,平移A到A1,使A
A
A1等于河宽,连接A1B

八年级数学最短路径题型归纳

八年级数学最短路径题型归纳

八年级数学中的最短路径问题,通常涉及到几何图形中的点、线、面等元素,需要利用一些基本的几何知识和数学原理来求解。

以下是一些常见的最短路径题型及其解题方法:1.两点之间的最短距离:题型描述:在平面上给定两点A和B,求A到B的最短距离。

解题方法:直接连接A和B,线段AB的长度即为最短距离。

2.点到直线的最短距离:题型描述:在平面上给定一点P和一条直线l,求P到l的最短距离。

解题方法:作点P到直线l的垂线,垂足为Q,则PQ的长度即为最短距离。

3.直线到直线的最短距离:题型描述:在平面上给定两条直线l1和l2,求l1到l2的最短距离。

解题方法:如果l1和l2平行,则它们之间的距离即为最短距离;如果l1和l2不平行,则作l1到l2的垂线,垂足所在的线段即为最短4.点到圆的最短距离:题型描述:在平面上给定一点P和一个圆O,求P到圆O的最短距离。

解题方法:如果点P在圆O内,则最短距离为P到圆心的距离减去圆的半径;如果点P在圆O外,则最短距离为P到圆心的距离;如果点P在圆O上,则最短距离为0。

5.圆到圆的最短距离:题型描述:在平面上给定两个圆O1和O2,求O1到O2的最短距离。

解题方法:如果两圆外离,则它们之间的最短距离为两圆的半径之和;如果两圆外切,则它们之间的最短距离为两圆的半径之差;如果两圆相交或内切,则它们之间的最短距离为0;如果两圆内含,则它们之间的最短距离为两圆的半径之差减去两圆半径之和的绝对值。

6.多边形内的最短路径:题型描述:在一个多边形内给定两个点A和B,求A到B的最短解题方法:通常需要将多边形划分为多个三角形,然后利用三角形内的最短路径(即连接两点的线段)来求解。

7.立体几何中的最短路径:题型描述:在立体图形中给定两点A和B,求A到B的最短路径。

解题方法:通常需要将立体图形展开为平面图形,然后利用平面几何中的最短路径原理来求解。

在解决最短路径问题时,需要注意以下几点:准确理解题目要求,确定需要求的是哪两点之间的最短距离。

八年级数学人教版(上册)13.4课题学习最短路径问题

八年级数学人教版(上册)13.4课题学习最短路径问题

F两点,并说明理由.
(3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分
别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最
短,找出E、F两点,并说明理由.
D
A
A M
C A 图图①① B
侵权必究
P
O
图图②②
BO
N B
图图③③
当堂练习
D C
AP C' 图①
P' A
E
P
O
F
B
图② P''
点,P是m上到A、B距离相等的点 C.P、Q都是m上到A、B距离之和最
短的点 D.P、Q都是m上到A、B距离相等
的点 侵权必究
当堂练习
2.如图,∠AOB=30°,∠AOB内有一定点P,且OP=
10.在OA上有一点Q,OB上有一点R.若△PQR周长
最小,则最小周长是( A )
A.10
B.15
C.20
在△AB′C′中,
C
AB′<AC′+B′C′,
C′
l
∴ AC +BC<AC′+BC′.
B′
即 AC +BC 最短.
侵权必究
讲授新课
如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处
修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,
图中实线表示铺设的管道,则所需要管道最短的是( D )
Q
Q
B
M' A
E
M
N
O
B
F
N'
图③
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究

13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册

13.4课题学习  最短路径问题   课件(共31张PPT)  初中数学人教版八年级上册
∙B A∙
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.

人教版初中数学八年级上册第十三章13.4课题学习 最短路径问题(ppt课件)

人教版初中数学八年级上册第十三章13.4课题学习 最短路径问题(ppt课件)

拓展延伸
2. 某班举行文艺晚会,桌子摆成AB,AC两行,如图13-4-27,AB桌面上 摆满了橘子,AC桌面上摆满了糖果,小明现在P处,准备先去拿橘子再 去拿糖果,然后回到P处.请你帮他设计一条行走路线,使其所走的总 路程最短.(保留作图痕迹,并简单写出作法)
拓展延伸
3. 如图,小华每天都要到李奶奶家做好事,在途中她要先到草场打
对点练习
4. 如图,AD为等腰三角形ABC底边上的高,E为AC边上一点,在AD
上求一点F,使EF+CF最小.
对点练习
5.如图,M为正方形ABCD的边CD的中点,BM=10,在对角线BD上求 作一点N,使MN+CN的值最小,并求出这个最小值.
拓展延伸
1、如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接 游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船 的最短路径.【来源:2教育
E
一只在E处的蚂蚁要爬到圆柱内侧D点处,试
画出其最短路径。
对点练习
2.(河边饮马问题)如图所示,牧马人从A地出发,到一条笔直的河边L饮
马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?
对点练习
3.点P是直线l上的一点,线段AB∥l,能使PA+PB 取得最小 值的点P的位置应满足的条件是 ( C ) A.点P为点A到直线l的垂线的垂足 B.点P为点B到直线l的垂线的垂足 C.PB=PA D.PB=AB
学习难点
确定最短距离及理论说明.
知识回顾:
思考:
(1)图①中从点A走到点B哪条路最短? (2)图②中点C与直线AB上所有的连线中哪 条线最短? 以上路径选择基于什么原理?
类型一:两点之间,线段最短——直接应用

人教版数学八年级上册13.4最短路径问题优秀教学案例

人教版数学八年级上册13.4最短路径问题优秀教学案例
结合课程内容,本节课的主要任务是让学生掌握利用坐标系求解两点间最短路径的方法,并能够运用到实际问题中。为了达到这个目标,我设计了一系列具有层次性的教学活动,如自主探究、合作交流、教师讲解等,旨在激发学生的学习兴趣,培养他们的动手操作能力和解决问题的能力。同时,我还将结合学生的学情,对教学内容进行适当的拓展,以提高学生的思维品质和创新能力。
2.组织学生进行课堂展示,让他们分享自己的学习心得和解决问题的方法,培养他们的表达能力和沟通能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
1.布置具有实践性和拓展性的作业,让学生运用所学知识解决实际问题,提高他们的应用能力。
2.要求学生在作业中总结最短路径问题的解决方法,培养他们的归纳总结能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际,激发他们的学习兴趣。
2.设计具有挑战性和趣味性的实例,让学生在解决问题的过程中,自然引入最短路径问题的概念和方法。
3.创设合作交流的氛围,让学生在小组内共同探讨问题,激发他们的思考和创造力。
(二)讲授新知
1.引导学生关注最短路径问题的本质,即寻找两点间的最优路径,让学生在解决问题的过程中,自然而然地掌握相关知识。
2.通过提问、设疑等方式,引导学生思考最短路径问题的解决方法,激发他们的求知欲和好奇心。
3.讲解最短路径问题的解决方法,如坐标系法、动态规划法、图论等,让学生了解多种解决思路。
3.教师及时批改作业,给予学生反馈,帮助他们发现不足,提高学习效果。
本节课的教学内容与过程注重知识的传授、方法的训练和情感的培养,充分体现了教育的人文关怀和学生的全面发展。通过本节课的学习,学生将更好地掌握最短路径问题的解决方法,提高他们的数学素养和实际应用能力,为未来的学习和生活打下坚实基础。

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:-①确定起点的最短路径问题即已知起始结点,求最短路径的问题.-②确定终点的最短路径问题与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.-③确定起点终点的最短路径问题即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最短路径.【问题原型】.“将军饮马”,“造桥选址”,“费马点”【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.】【十二个基本问题】1作法图形【问题原理A A两点之间线段最短.P l.交点即为P连AB,与l l PA+PB 最小值为AB.BB,使上求一点P在直线l值最小.PA+PB【问题2】“将军饮马”作法图形原理A AB'B关于作B l 的对称点两点之间线段最短.Bl l PA+PB 最小值为 A B P.'.连A B ',与l 交点即为P,使P在直线l 上求一点B'PA+PB 值最小.3】作法图形原理【问题P'l 1l 1分别作点P 关于两直线的两点之间线段最短.M PPM +MN +PN 的最小值为对称点P'和P',连P'P',P ll l 、上2.M,P'''的长.N与两直线交点即为线段P分别求点在直线l212NM 、N,使△PMN的周长P''最小.4】作法【问题图形原理l 1l1Q'Q关于直线分别作点Q 、P Q两点之间线段最短.MPl 、l P'Q'和的对称点21P周长的最小四边形PQMN l2',与两直线交点即Q连'P值为线段P'P''的长.l 2、l l 上分别求点在直线.,N为M21N,使四边形N 、M PQMN P'的周长最小.【问题5】“造桥选址”作法图形原理范文A A M m将点A 向下平移MN 的长度两点之间线段最短.n A'M n'B,交单位得A',连A N m AM +MN +BN 的最小值为B于m N 作NM ⊥于点N,过n N,n ,在m 、n 直线m ∥A'B+MN ..M B MN、N,使上分别求点M 的,且AM+ MN+ BN ⊥m 值最小.【问题6】作法图形原理A A'A将点A 向右平移a 个长度单B B l两点之间线段最短.的对',作 A '关于位得A l a N l M,交直线称点A',连A'B AM +MN +BN 的最小值为MN l MM(上求两点、N在直线l 点向左平,将于点NNA'B+ MN.A''MN a 移 a 个单位得M.在左),使,并使的值最小.AM + MN+ NB 】【问题7作法图形原理l l1 1 P'P P l点到直线,垂线段最短.',的对称点作点P 关于P 1A ll 于B⊥,交作P'B22PA+ AB 的最小值为线段P'l 2于A.l B的长.2l l 上求A上求点在,在21B,使PA+ AB 值最小.点B图形原理】【问题8作法l 1B'NAl 1l的对称点关于 A 作点2l2两点之间线段最短.MB l 的对称A ',作点 B 关于N1A AM +MN +NB 的最小值为lll,于B'交M 为上点B',连A'A 为上一定点,B 212线段A'B'的长.l 2BM l l ,一定点,在上求点交M.N 于21A'l 在使,N 点上求1的值最小.AM + MN+ NB图形原理】【问题9作法A A垂直平分上的点到线段两B端点的距离相等.B的中垂线与AB ,作连AB l l.l 直线的交点即为P PA PB =0.P PA 上求一点l P,使在直线的值最小.PB【问题10】作法图形原理范文A三角形任意两边之差小于A B作直线AB,与直线l 的交第三边.PA PB ≤AB.l Bl .点即为P P,使l 上求一点P在直线PA PB 的最大值=AB.PA PB 的值最大.【问题11】作法图形原理A三角形任意两边之差小于A作B 关于l 的对称点B'l B'第三边.PA PB ≤AB'.l交点即l 作直线 A B',与B P为P.B PA PB 最大值=AB'.,使l 上求一点P在直线PA PB 的值最大.【问题12】“费马点”作法图形原理A所求点为“费马点”,即满D APB=∠BPC=∠足∠A两点之间线段最短.E AC°.以AB、APC=120 C B、ABD 为边向外作等边△PA+ PB+ PC 最小值=CD .P△ABC 中每一内角都小于△ACE,连CD 、BE 相交CB于P ,点P 即为所求.,ABC 内求一点P120°,在△值最小.PA+PB+PC 使【精品练习】1 的面积为.如图所示,正方形ABCD12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD +PE 的和最小,则这个最小值为()AD62 62 3B..C.3D A.PEBC2.如图,在边长为2 的菱形ABCD 中,∠ABC =60 °,若将△ACD 绕点 A 旋转,当AC ′、AD ′分别与BC 、CD)交于点E、F ,则△CEF 的周长的最小值为(A.2B.2 3C.23D.4范文3.四边形ABCD 中,∠B=∠D =90°,∠C=70 °,在BC 、CD 上分别找一点M、N,使△AMN 的周长最小时,∠AMN + ∠ANM 的度数为()AD°110°D.140CA.120°B.130°.N BM4.如图,在锐角△ABC 中,AB =42 ,∠BAC=45 °,∠BAC 的平分线交BC 于点D,M、N 分别是AD 和ABC 的最小值是上的动点,则BM +MN .D MAN B5.如图,Rt△ABC 中,∠C=90 °,∠B=30 °,AB=6,点E 在AB 边上,点D 在BC 边上重合),、C (不与点B.的取值范围是且ED =AE,则线段AEA ECD B6.如图,∠AOB=30°,点M、N 分别在边OA、OB 上,且OM =1,ON=3,点P、Q 分别在边OB、OA 上,则MP +PQ+QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,222BC AC AB°,则有=90 C即Rt△ABC 中,∠)7.如图,三角形△ABC中,∠OAB=∠AOB=15°,点B 在x轴的正半轴,坐标为B( 63 ,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______.范文y轴上,D 在在x 轴上,则四边形4)、B (4,2).C 8.已知A(2,ABCD 的周长最小值为,两点的坐标分别为D 此时C、.yABOx.已知9).,2 1,1)、B(4A(y点的坐标;轴上一动点,求PA+PB 的最小值和此时P (1)P 为xBAOx点的坐标;P 的值最大时x 轴上一动点,求PA PB )(2 P 为y BAOx(3)CD 为x 轴上一条动线段, D 在 C 点右边且CD =1,求当AC+ CD+ DB 的最小值和此时C 点的坐标;yBAOxC D10 .点C 为∠AOB 内一点.(1)在OA 求作点 D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB =30°,OC=10,求△CDE 周长的最小值和此时∠DCE 的度数.ACB O范文11.(1)如图①,△ABD 和△ACE 均为等边三角形,BE、CE 交于F,连AF,求证:AF +BF +CF =CD ;(2)在△ABC 中,∠ABC =30°,AB=6,BC=8,∠ A ,∠C 均小于120°,求作一点P,使PA+PB+PC 的值最小,试求出最小值并说明理由.DA A EC B F图②C B图①处,需经过两座桥处到达 B A '处直角转弯,河宽相等,从12 .荆州护城河在CC',护城河及两桥EE '、DD点路径最短?到都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使B A范文。

初二数学最短路径技巧

初二数学最短路径技巧

初二数学最短路径技巧
在初二数学中,最短路径问题是一个常见的题型。

这类问题通常涉及到几何图形,如三角形、四边形等,要求找出从一点到另一点的最短路径。

解决最短路径问题的一般步骤如下:
1. 确定起点和终点:首先明确问题的起点和终点,这是解题的基础。

2. 构建几何模型:根据题目描述,将问题抽象化为一个几何模型。

这可能涉及到三角形、四边形、圆等几何图形。

3. 应用几何定理:根据几何定理,如勾股定理、三角形的三边关系等,来分析最短路径。

4. 求解最短路径:通过计算和推理,找出起点到终点的最短路径。

下面是一个具体的例子:
题目:一个池塘的四周是一条宽1米的马路,现在要在马路的四周每隔2米种一棵树。

四个角各种一棵,请问需要多少棵树?
分析:
1. 确定起点和终点:起点是马路的起点,终点是马路的终点。

2. 构建几何模型:将马路和池塘抽象为一个矩形,四个角各种一棵树。

3. 应用几何定理:由于四个角各种一棵树,因此最短路径是从一个角到其对角线的中点。

根据勾股定理,最短距离为 $\sqrt{2}$ 米。

4. 求解最短路径:由于每隔2米种一棵树,因此需要的树的数量为
$\frac{\sqrt{2}}{2} \times 2 = \sqrt{2}$ 棵。

通过以上步骤,我们可以求解出最短路径问题。

需要注意的是,这类问题需要灵活运用几何知识和定理,同时还需要一定的计算能力。

13.4 课题学习 最短路径问题 课件(共15张PPT)人教版初中数学八年级上册

13.4 课题学习 最短路径问题   课件(共15张PPT)人教版初中数学八年级上册

迁移应用
3.如图,点P是∠AOB内任意一点,点M和点N分别是射线OB和射线OA 上的动点,当△PMN的周长为最小时,画出点M,N的位置.
B P'
M P
O
N
A
P''
解:如图所示,点 M,N 即为所求
B
M
P
O
A N
课后延伸
1.课本P93,第15题 2.收集最短路径的其他模型
人教版八年级数学第十三章《轴对称》
课题学习—最短路径问题
情境引入
古从军行 唐·李颀
经验唤醒
如图所示,请规划从A地到B地最近的路线?为什么 这条路线最近?
A
B
AB即为最短路线,因为两点之间,线段最短
探究一
问题情境1
图形
将军从烽火台到河边饮马 在这个情境中我们 再回到营地,饮马点在什么位 分别把烽火台,营 置,可使将军所走的路径最短? 地,河流抽象成哪
种几何图形?
A. 点 B.线
A
l B
最短路径作法
直线异侧 “两定点”
连定点 得最短
A
l P
B
两点之间 线段最短
探究二
问题情境2
将军从烽火台到河边 饮马再回到营地,饮马点 在什么位置,可使将军所 走的路径最短?
图形
我们可以把情境 2抽象成怎样的几何 图形?
最短路径作法
直线同侧“两定点”
作对称 化折为直得最短
∴AM1+M1N1+BN1=AA1+A1N1+BN1 在△A1N1B中
因为A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN. ∴AM +MN+BN为最短路径.

八年级数学上册人教版课件:1最短路径问题

八年级数学上册人教版课件:1最短路径问题

将点B“移”到l 的另一侧B′
处,满足直线l 上的任意一点
A
·
C,都保持CB 与CB′的长度
相等?
B
·
l
探究 活动 1
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
B
追问2 你能利用轴对称的 A
·
有关知识,找到上问中符合条
·
件的点B′吗?
l
探究 活动 1
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法:
(1)作点B 关于直线l 的对称
A
·
点B′;
(2)连接AB′,与直线l 相交
C
于点C.
则点C 即为所求.
B
·
l B′
探究 活动 1
问题3 你能用所学的知识证明AC +BC最短吗?
即 AC +BC 最短.
B′
探究 活动 1
证明AC +BC 最短时,为什么要在直线l 上任取一 点C′(与点C 不重合),证明AC +BC <AC′
+BC′?这里的“C′”的作用是什么?
若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小.
N
A/
P
Q
B/
A
M
B
l
探究 活动 3
(造桥选址问题)如图,A和B两地在一条河的 两岸,现要在河上造一座桥MN,桥造在何处可使 从A到B的路径AMNB最短?(假定河的两岸是平 行的直线,桥要与河垂直。)

(完整版)初二数学最短路径问题知识归纳+练习

(完整版)初二数学最短路径问题知识归纳+练习

初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.在直线l 上求一点P ,使PB PA -的值最大.作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .PB PA -的最大值=AB .【问题11】 作法图形 原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '. PB PA -最大值=AB '.【问题12】“费马点” 作法图形 原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求.两点之间线段最短. P A +PB +PC 最小值=CD .【精品练习】1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A .3B .26C .3D 62.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2B .32C .32+D .4lBAlPABl ABlBPAB'ABCPEDCBAADEPB C3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. DEABCD MABMN8.已知A (2,4)、B (4,2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,此时 C 、D 两点的坐标分别为 .9.已知A (1,1)、B (4,2).(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;10.点C 为∠AOB 内一点.(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.图①12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?。

八年级数学最短路径问题知识点

八年级数学最短路径问题知识点

八年级数学最短路径问题知识点教学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最瀛路径.算法具体的形式包括:E确定起点的最短路径问题■即已知起始结点,求最短路径的问题.②确定终点的最短路径问题•与确定包点的问题相反,该问题是已知终结结点,求最短路径的问题,③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最理路径.【问题原型】“将军饮马北"造桥选址)〃费马点【涉及知识「俩点之间线段最短”「,垂线段最短1 “三角形三边关系,"轴对称,“平移二【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等,【解题思路】我对称点实现“折”转"直北近两年出现三折线”转“直”等变式问题考查.【例题及解析】例1 如图1,在直角梯形ABCD 中,ZABC=90°, AD〃BC, AD=4, AB=5, BC=6, 点P是AB上一个动点,当PC+PD的和最小时,PB的长为()(A)l (B)2 (C)2.5 (D)3分析此题首先要确定P点的位看可以延长CB (或DA)的一倍,即CB=BM,再连接MD交AB于点P(大家可以思考一下P点的正确性与合理性一可运用两点之间,线段最短这一性质).我们可以通过AMPBS/WPA,从而求出PB的长,故选D.例2如图2, AABC礼AB=AC=13, BC=10, AD是BC边上的中线,F为AD上的动点,E 为AC边上的动点,则CE+EF的最小值为分析显然,本题需要确定两个动点E和F,那么,怎样确定这两个点呢?我们可以过点B 作BE1AC交AD于点F,从而确定了E和F点(大家可以用从直线外一点与直线上所有点的连线中,垂线段最短来加以说明).此时,CF + EF = BE.用与囱=;殖・比^;班”。

,构造■方程,求出BE =号,即CE + EF的最小值为号.例3如图3,已知平面直角坐标系中,A (2, -3), B(4, -1).(1)若点P(x, 0)是x 轴上的一个动点,当APAB 的周长最短时,求x 的值; (2)若C D 是x 轴上的两个动点,且D(a, 0), CD=3,当四边形ABCD 的周长最短时,求a 的值;(3)设M, N 分别为x 轴、y 轴上的动点,问:是否存在这样的点M(m, 0)和N(0, n),使得四边形ABMN 的周长最短?若存在,求出叫n 的值.若不存在,请说明理由.⑴如图3,找出A (或B)关于x 轴的对称点A1,连结AiB 交x 轴 于点P.设直线AB 的解析式为y=kix+bi.将AQ 3)、B (4, -1)代入,得产 +" =3,1% + 4 = . I,解之叶…16, = 7.故 y =-2彳+7,⑵如图4,过A 点作x 轴的平行线,并截取A%=3.画点A1关于x 轴的对称点生,连结A?B 交x 轴于点C,再在x 轴上截取CD=3,可得周长最短的四边形ABCD (大家也可以利 用两点之间,线段最短,来证明最短周长的正确性).由题意,可知4(5,3).设4B 的直线悬 析式为)=&七+ b 2. 将代人,得 产 + % = 3, i 倏 +% =-1,故y = 4*-17, 当,=0时/ = y -3 = 44 4如图5,我们可以先分别找出A 、B 关于y 轴和x 轴的对称点Ai 和&,再连结ABi,分别交x 轴和y 轴干点M 与N,此时,四边形ABMN 的周长是最短的(同样, 可以用两点之间,线段最短来加以证明).设AB 的直线解析式为y=k3x+b.将4(-2, 一)”©「)代入,得产 + 4 : 1,分析与解 解之得h =4,6) = -17(3)I - 24, + 65 ; . 3, u .1 解之得A 56「.亨故厂参-{■.当x =0 时,=-Y,■ 当)• =0时,Z =京.所以…的值分别为右等例4如图6,四边形ABCD是正方形,M是对角线BD上的任意一点.⑴当点M在何处时,AM+CM的值最小?⑵当点M在何处时,AM+BM+CM的值最小?并说明理由.图6 困7分析(1)(如图6,显然,连结AC与BD的交点即为M点(可利用两点之间,线段最短来证明).(2)如图7,以AB为边在正方形外画等边三角形ABE,连结EC交BD于点M.此时,MA+MB+MC=EC(其中,ABMN 为等边三焦形,且YEBNgACBM,所以MA+MB=EM). 若在BD上(除M点之外)任取一点M,,过点Mi作MiNi〃MN交BN 或延长线于点Ni, 连结ENi.可利用两点之间线段最短,证明MiA+M】B+MiOEC,从而得出MA+.MB+ MC最短.。

人教版数学八年级上册《课题学习——最短路径问题》课件

人教版数学八年级上册《课题学习——最短路径问题》课件
方法点拨:解决“两线两点”型最短路径问题 的方法以两线为对称轴,分别作靠近线的点的 对称点,连接两个对称点,将最短路径转化为 连接两个对称点的线段.
感悟新知
解:如图13 .4 -4,(1)作点A 关于直 线l1 的对称点A′; (2)作点B 关于直线l2 的对称点B′; (3)连接A′B′,分别与直线l1,l2相交 于C,D 两点,连接AC,BD,则沿 路线A → C → D → B 走才能使总路 程最短.
第十三章 轴对称
13.4 课题学习 最短路径问题
感悟新知
知识点 1 最短路径问题
知1-讲
类型
问题
作法
最小值
一 线 两
点 型
两点 在直 线异

在直线l 上找 一点P,使PA
+PB 最小
连接AB,与直 线l 的交点即为
点P
PA+PB 的最小值 为AB的

感悟新知
类型
问题
作法
知1-讲
最小值
两点
一 线 两
知1-练
ቤተ መጻሕፍቲ ባይዱ
感悟新知
知1-练
3-1.如图,AB 是∠ MON内部的一条线段,在∠ MON 的两 边OM,ON 上分别取点C,D组成四边形ABDC,如何 取点才能使该四边形的周长最小?
感悟新知
知1-练
(1)如果居民小区A,B 在主干线l 的两侧,如图13.4-1,那么 分支点M 在什么地方时总线路最短?
解:如图13 .4 -1,
连接AB,与l 的 交点即为所求的
分支点M.
感悟新知
知1-练
(2)如果居民小区A,B 在主干线l 的同侧,如图13.4-2,那么 分支点M 在什么地方时总线路最短?

初二数学专题:最短路径问题

初二数学专题:最短路径问题

初二数学专题:最短路径问题问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图中两结点之间的最短路径。

算法包括确定起点的最短路径问题、确定终点的最短路径问题、确定起点和终点的最短路径问题以及全局最短路径问题。

问题原型】最短路径问题有“将军饮马”、“造桥选址”、“费马点”等原型。

涉及知识】解决最短路径问题需要掌握“两点之间线段最短”、“垂线段最短”、“三角形三边关系”、“轴对称”、“平移”等知识。

此外,角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等也可能涉及到该问题。

解题思路】解决最短路径问题的思路包括找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题。

十二个基本问题】问题1】已知点A、B和直线l,求在直线l上距离点A和点B之和最小的点P。

作法:在直线l上找到与AB连线垂直的交点P。

问题2】“将军饮马”已知点A、B和直线l,求在直线l上距离点A和点B之和最小的点P。

作法:将点B关于直线l对称得到点B',连接AB',在直线l上找到与AB'连线垂直的交点P。

问题3】已知两条直线l1、l2和点P,求在直线l1、l2上距离点P之和最小的两个点M、N。

作法:在直线l1、l2上找到与点P对称的点P'、P'',连接P'P'',在直线l1、l2上找到与P'、P''连线垂直的交点M、N。

问题4】已知两条直线l1、l2和点Q、P,求在直线l1、l2上距离点Q、P之和最小的两个点M、N。

作法:将点Q、P分别关于直线l1、l2对称得到点Q'、P',连接Q'P',在直线l1、l2上找到与Q'、P'连线垂直的交点M、N。

问题5】“造桥选址”已知点A、B和线段MN,求在点A向下平移MN长度单位后,在直线m上距离点A和点B之和最小的点N,以及在直线n上与N连线垂直的交点M。

人教版初中数学八年级上册13.4最短路径问题(教案)

人教版初中数学八年级上册13.4最短路径问题(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与最短路径相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示最短路径的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“最短路径在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《最短路径问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过如何找到两点间最短距离的情况?”(如从家到学校的最短路线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索最短路径的奥秘。
(3)在复杂图形中寻找最短路径时,可以引导学生从简单图形出发,逐步增加难度,让学生掌握解题方法;
(4)结合实际应用,可以设计一些案例,如旅行商问题、工程选址问题等,指导学生如何将所学知识运用到实际中。
在教学过程中,教师应针对这些难点和重点,运用生动形象的语言、具体实例和操作演示,帮助学生理解、掌握和运用相关知识。同时,注意关注学生的反馈,适时调整教学方法和进度,确保学生透彻理解本节课的核心内容。
(3)在实际图形中寻找最短路径,如三角形、四边形等;
(4)将现实生活中的问题转化为数学模型,利用数学知识求解。
举例:讲解最短路径概念时,可以通过实际生活中的例子(如地图上两点间的最短距离)进行说明,使学生理解并掌握这个核心概念。
2.教学难点
(1)如何将实际问题抽象为数学模型,找到最短路径;

初中数学八年级上册《13.4 课题学习 最短路径问题》

初中数学八年级上册《13.4 课题学习 最短路径问题》

13.4 课题学习 最短路径问题学习目标:1.利用“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”来解决有关的最短路径问题.2.学会运用轴对称、平移把已知问题转化为容易解决的问题,从而解决最短路径问题. 一、学前准备1.如图,在Rt △ABC 中,CD 是斜边AB 上的高,∠B =30°,AD =2 cm ,则AB 的长度是( ) A .2 cmB .4 cmC .8 cmD .16cm2.如图所示,从A 地到B 地有三条路可供选择,你会选走哪条路最近?你的理由是什么?二、预习导航 (一)预习指导活动1 探究牧马人饮马问题(阅读教材第85~86页,运用轴对称解决牧马人饮马问题) 3.(两点在一条直线异侧)如图,点A 、点B 在直线的两侧,请你在上找一个点P ,使得这个点到点A 、B 的距离和最短,即PA +PB 最小. 思考:为什么这样做就能得到最短距离呢?你如何验证PA +PB 最短呢?lAB第1题图BA CD第2题图4.(两点在一条直线同侧)问题:如图,牧马人从A 地出发,到一条笔直的河边饮马,然后到B 地.牧马人到河边的什么地方饮马,可是所走的路径最短?(提示:这个问题可以转化为:当点C 在的什么位置时,AC 与BC 的和最小?)活动2 探究造桥选址问题(阅读教材第86~87页,运用平移解决造桥选址问题) 5.如图所示,在一条河的两岸有两个村庄A 和B ,现要在河上建一座小桥,桥的方向与河流垂直,设河的宽度不变,试问:桥架在何处,才能使从A 到B 的距离最短?归纳:造桥选址问题是利用__________将问题转化为__________________________的问题. 预习疑惑: (二)预习检测6.如图,在正方形ABCD 中,点M 在DC 上,点N 是AC 上一动点,当N 在________和AC 的交点处时,DN +MN 的值最小.三、课堂互动 问题1最短路径问题7.如图,牧童在A 处放牛,其家在B 处,A ,B 到河岸的距离分别为AC ,BD ,且AC =BD ,若A 到河岸CD 的中点的距离为500 m .问:lABa bAB(1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?(2)最短路程为多少?方法总结:四、总结归纳1. 你有什么收获?(从知识、方法、规律方面总结)2. 你还有哪些疑惑?3. 你认为老师上课过程中还有哪些需要注意或改进的地方?4. 在展示中,哪位同学是你学习的榜样?哪个学习小组的表现最优秀?教(学)后记:五、达标检测1.如图,直线l是一条河,A、B两地相距5 km,A,B两地到l的距离分别为3 km,6 km,欲在l上的某点M处修建一个水泵站,向A,B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A.B.C.D.2.如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD 上一点,则PE+PC的最小值为()A.3B.3C.2D.333.如图,A,B两个电话分机到电话线l的距离分别是3 m,5 m,CD=6 m,若由l上一点分别向A,B连电话线,最短应为()A.8 mB.9 mC.10 mD.11 m4.如图,在矩形ABCD中,点E为BC的中点,点F在C D上,要使△AEF的周长最小时,确定点F的位置的方法为.《13.4 课题学习 最短路径问题》参考答案一、学前准备 1.答案:C.2.答案:②,理由:两点之间,线段最短. 二、预习导航3.略.4.略.5.略.归纳:平移;两点之间,线段最短. 6.答案:BM . 三、课堂互动7.解:(1)作点A 关于CD 的对称点A′,连接A′B ,交CD 于M .则点M 为饮水处,线段A′B 的长度即为牧童从A 处把牛赶到河边饮水后回家,所走的最短路程; (2)连接AM .∵点A 关于CD 的对称点是A′,点M 在CD 上, ∴A′C =AC ,A′M =AM . ∵AC =DB , ∴A′C =BD .∵AC ⊥CD ,BD ⊥CD , ∴∠ACD =∠A′CD =∠BDC =90°. ∵在△CA′M 和△DBM 中,'''A CM BDM A MC BMD A C BD ∠=∠∠=∠=⎧⎪⎨⎪⎩∴△CA′M ≌△DBM . ∴A′M =BM ,CM =DM . ∴M 为CD 中点.∴BM=AM=500(米)∴A′B=A′M+BM=AM+BM=1000(米)即最短路程是1000米.五、达标检测1.答案:A.2.答案:D.3.答案:C.4.答案:作点E关于DC的对称点E′,连接AE′交CD于点F.。

初中八年级上次路径最短问题模型

初中八年级上次路径最短问题模型

初中八年级上学期,学生们在数学课程上接触到了路径最短问题模型。

这是一个重要的数学问题,也是实际生活中常见的问题之一。

本文将对路径最短问题模型进行深入的探讨和解析,帮助读者更好地理解和应用这一数学概念。

一、路径最短问题模型的定义1.1 路径最短问题是指在一个图中,从一个特定的起点到达目标点所经过的最短路径。

这个问题常常用于交通运输、网络通信等实际问题中。

1.2 在数学上,路径最短问题可以用图论的方法进行描述和求解。

通常情况下,我们可以将路径最短问题抽象成一个带有权值的有向图或无向图,然后利用特定的算法来求解最短路径。

二、路径最短问题的常见算法2.1 迪杰斯特拉算法(Dijkstra algorithm)是一种常用的求解路径最短问题的算法。

该算法利用了贪婪算法的思想,通过不断更新起点到各个顶点的最短距离来求解整个图的最短路径。

2.2 弗洛伊德算法(Floyd algorithm)是另一种常用的路径最短问题算法。

该算法通过动态规划的方式,逐步更新图中各个顶点之间的最短路径,最终求解整个图的最短路径。

2.3 贝尔曼-福特算法(Bellman-Ford algorithm)是针对带有负权边的图而设计的一种路径最短问题算法。

该算法利用了松弛操作和负权环的判定,能够有效地求解带有负权边的图的最短路径。

三、路径最短问题模型的应用3.1 在交通运输领域,路径最短问题模型常常用于规划最佳的行车路线,以使得车辆能够以最短的时间和距离到达目的地,从而提高交通效率。

3.2 在网络通信领域,路径最短问题模型可以用于路由器的选择和数据包的传输路径规划,以实现网络中数据传输的高效和稳定。

3.3 在物流配送领域,路径最短问题模型可以帮助物流公司合理规划配送路线,提高配送效率和降低成本。

3.4 在工程建设领域,路径最短问题模型可以用于规划管道、电缆等线路的敷设,以实现最短距离和最低成本的布局。

四、路径最短问题模型的拓展和深化4.1 针对不同类型的图,如稠密图、稀疏图等,路径最短问题模型的求解方法和算法都会有所不同。

八年级上册最短路径难题讲解

八年级上册最短路径难题讲解

八年级上册最短路径难题讲解
八年级上册最短路径问题是一个重要的数学问题,涉及到图论和几何知识。

以下是几个经典的最短路径问题及相应的解题思路:
1. 将军饮马问题:两个将军分别在河的两岸,他们想要到河的对面饮马。

河水流速很快,不能逆流而上。

他们应该选择怎样的路径才能使其中一位将军到河对岸的总时间最短?
解题思路:在这种情况下,两个将军都可以选择直接过河,但是这样会花费较长的时间。

为了使总时间最短,他们可以选择在河岸的某一位置相遇,然后一起走到河对岸。

这样,他们可以节省掉单独过河的时间。

2. 造桥选址问题:有两个人分别在河的两岸,他们想要通过建造一座桥来互相通行。

为了使造桥的成本最低,他们应该选择怎样的桥址?
解题思路:在这种情况下,最短的路径就是直接在两岸之间建造一座桥。

因此,他们应该选择在河的中心建造桥,这样可以使得桥的长度最短,同时也可以节省造桥的成本。

3. 费马点问题:在三角形中,任意选取三个点,要求找到一个点到其他三个点的距离之和最短的位置。

解题思路:首先,我们可以将这个问题转化为求三角形三个顶点的中点。

然后,我们可以利用三角形的性质来证明这个结论。

具体来说,我们可以证明任意一个点到其他三个点的距离之和都大于等于三角形三个顶点的中点到其他三个点的距离之和,当且仅当这个点是三角形三个顶点的中点时取等号。

因此,三角形的费马点就是其三个顶点的中点。

以上是最短路径问题的几个经典例子及相应的解题思路。

通过这些例子,我们可以了解到最短路径问题的基本概念和方法,以及如何利用几何和图论的知识来解决这些问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学最短路径问题
一、两点在一条直线异侧
例:已知:如图,A,B在直线L的两侧,在L上求一点P,
使得PA+PB最小。

练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A 到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)
二、两点在一条直线同侧
例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.
练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。

三、一点在两相交直线内部
例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小.
练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。

练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?
提高训练
一、题中出现一个动点。

1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值.
例:如图,在正方形ABCD中,点E为AB上一定点,
且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。

二、题中出现两个动点。

当题中出现两个定点和两个动点时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。

例:如图,在直角坐标系中有四个点, A(-8,3),B(-4,5)C(0,n),D(m,0),当四边形ABCD周长最短时,求C、D的坐标。

练习1如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是.
三、题中出现三个动点时。

在求解时应注意两点:(1)作定点关于动点所在直线的对称点,
(2)同时要考虑点点,点线,线线之间的最短问题.
例:如图,在菱形ABCD中,AB=2,∠BAD=60°,E,F,P分别为AB,BC,AC上动点,
求PE+PF最小值
例:如图,∠AOB=45°,角内有一动点P ,PO=10,在AO,BO上有两动点Q,R,
求△PQR周长的最小值。

练习1如图,∠AOB=30°,角内有一定点P ,PO=20cm,在AO,BO上有两动点C、D,求△PCD周长的最小值。

相关文档
最新文档