music算法本质原理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
music算法本质原理
Music算法本质上是一种信号频率估计的多重分类算法,利用微弱生命体信号子空间与噪声子空间的正交性构造空间谱函数,通过谱峰搜索,确定心跳和呼吸信号的频率。
MUSIC算法的核心是对阵列输出信号的二阶矩Ry进行特征值分解,利用特征向量构建两个正交的子空间,即信号子空间和噪声子空间。对Ry进行特征分解,即是使得图册中的公式成立。
大特征值对应的特征向量组成的空间Us为信号子空间,小特征值对应的特征向量组成的空间Un为噪声子空间。将噪声特征向量作为列向量,组成噪声特征矩阵,并张成M-D维的噪声子空间Un,噪声子空间与信号子空间正交。而Us的列空间向量恰与信号子空间重合,所以Us的列向量与噪声子空间也是正交的,由此,可以构造空间谱函数。
在空间谱域求取谱函数最大值,其谱峰对应的角度即是来波方向角的估计值。