2019浙江绍兴中考数学解析
浙江省绍兴市2019年中考数学试卷

浙江省绍兴市2019年中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分)(共10题;共40分)1.-5的绝对值是()A. 5B. -5C.D.2.某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A. 12.6×107B. 1.26×108C. 1.26×109D. 0.126×10103.如图的几何体由六个相同的小正方体搭成,它的主视图是()A. B. C. D.4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A. 0.85B. 0.57C. 0.42D. 0.155.如图,墙上钉着三根木条,a,b,c,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A. 5°B. 10°C. 30°D. 70°6.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A. -1B. 0C. 3D. 47.D在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3)(x-5),则这个变换可以是()A. 向左平移2个单位B. 向右平移2个单位C. 向左平移8个单位D. 向右平移8个单位8.如图,△ABC内接于⊙O,∠B=65°,∠C=70°,若BC=2 ,则的长为()A. πB. πC. 2πD. π9.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D,在点E从点A移动到点B 的过程中,矩形ECFG的面积()A. 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变10.如图1长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一楼进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A. B. C. D.二、填空题(本大题有6小题,每小题5分,共30分)(共6题;共30分)11.因式分解:x2-1=________.12.不等式3x-2≥4的解为________.13.我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、角线的三个数之和都相等。
2019绍兴市中考数学(word+详解+准图)

2019年浙江省绍兴市中考数学试卷考试时间:120分钟满分:150分一、选择题:本大题共10小题,每小题4分,合计40分.1.(2019•绍兴T1)-5的绝对值是()A.5B.-5C.15D.-15{答案}A2.(2019•绍兴T2)某市决定为全市中小学教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000元用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×1010{答案} B3.(2019•绍兴T3)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.{答案}A4.(2019•绍兴T4)为了解某地区九年级男生的身体情况,随机抽取了该地区100名九年级男)A.0.85B.0.57C.0.42D.0.15{答案}D{解析}本题考查了利用频率估计概率,先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.样本中身高不低于180cm的频率=15100=0.15,所以估计他的身高不低于180cm的概率是0.15.因此本题选D.5.(2019•绍兴T5)如图,墙上钉着三根木条a,b,c,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A .5°B .10°C .30°D .70° {答案} B{解析}本题考查了三角形内角和定理和对顶角的性质,设a ,b 所在直线所夹的锐角是∠α,由对顶角相等,得到∠3=∠2=100°,再根据∠α+∠1+∠3=180°,求得∠α=180°-70°-100°=10°,因此本题选B .{题目}6.(2019•绍兴T6)若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( )A . -1B . 0C . 3D . 4{答案}C{解析}本题考查了用待定系数法求一次函数解析式;设经过(1,4),(2,7)两点的直线解析式为y =kx +b ,∴⎩⎨⎧4=k +b ,7=2k +b .∴⎩⎨⎧k =3,b =1,∴y =3x +1,将点(a ,10)代入解析式,则a =3;因此本题选C .7.(2019•绍兴T7)在平面直角坐标系中,抛物线y =(x +5)(x -3)经过变换后得到抛物线y =(x+3)(x -5),则这个变换可以是( )A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位{答案}B{解析}本题考查了二次函数图象与几何变换,y =(x +5)(x -3)=(x +1)2-16,顶点坐标是(-1,-16);y =(x +3)(x -5)=(x -1)2-16,顶点坐标是(1,-16).所以将抛物线y =(x +5)(x -3)向右平移2个单位长度得到抛物线y =(x +3)(x -5),因此本题选B .8.(2019•绍兴T8)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°,若BC =22,则⌒BC 的长为( )A .πB . 2πC .2πD . 22πα3{答案}A{解析}本题考查了弧长的计算和圆周角定理,如图,连接OB 、OC ,由三角形内角和定理,求得∠A =180°-∠B -∠C =180°-65°-70°=45°,∴∠BOC =2∠BAC =2×45°=90°,∴OB =BC2=222=2,∴⌒BC 的长90×π×2180=π,因此本题选A .9.(2019•绍兴T9)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积( )A .先变大后变小B .先变小后变大C .一直变大D .保持不变{答案} D{解析}本题考查了相似三角形的性质,由题意,得∠BCD =∠ECF =90°,∴∠BCE =∠DCF ,又∵∠CBE =∠CFD =90°,∴△CBE ∽△CFD ,∴CE CD =CBCF ,∴CE ⋅CF =CB ⋅CD ,即矩形ECFG 的面积=正方形ABCD 的面积,因此本题选D .10.(2019•绍兴T10)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( ) A .245B .325C .123417D .203417{答案} A{解析}本题考查了勾股定理的应用,解决此题的突破点在于根据题意得到关系式:长方体中水的容积=倾斜后底面积为ADCB 的四棱柱的体积,列方程,得到DE 的长,如图,设DE =x ,则AD =8-x,12(8-x +8)×3×3=3×3×6,解得x =4.∴DE =4.在Rt △DEC 中,CD =DE 2+EC 2=42+32=5,过点C 作CH ⊥BF 于点H ,则由△CBH ∽△CDE ,得到CH CE =CB CD ,即CH 3=85,∴CH =245,因此本题选A .二、填空题:本大题共6小题,每小题5分,合计30分.11.(2019•绍兴T11)因式分解:x 2-1= .{答案}(x +1)(x -1)12.(2019•绍兴T12)不等式3x -2≥4的解为 . {答案} x ≥2.13.(2019•绍兴T13)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 .{答案}4{解析}本题考查了幻方的特点,数的对称性是解题的关键.根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15-2-5=8,∴m =15-8-3=4.14.(2019•绍兴T14)如图,在直线AP 上方有一个正方形ABCD ,∠PAD =30°,以点B 为圆ED C BAHF心,AB 为半径作弧,与AP 交于点A ,M ,分别以点A ,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 .{答案}45°或15°.{解析}本题考查了以正方形为背景的角度计算,正确画出图形是解题的关键.如图,∵四边形ABCD 是正方形,∴∠BAD =90°,∵∠PAD =30°,∴∠BAM =60°,又∵BA =BM ,∴△ABM 是等边三角形.当点E 在直线PA 的上方时,点E 与点B 重合,显然∠ADE =∠ADB =45°;当点E 在直线PA 的下方时,∠BDE =180°-∠BME =180°-2×60°=60°,∴∠ADE =∠BDE -∠ADB =60°-45°=15°,因此答案为45°或15°.15.(2019•绍兴T15)如图,矩形ABCD 的顶点A ,C 都在曲线y =kx (常数k >0,x >0)上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 .{答案}y =35x .{解析}本题考查了反比例函数中几何图形问题,设C (5,k 5),A (k 3,3),则A (k 3,k5);设直线BD 的函数表达式为y =ax +b ,则⎩⎪⎨⎪⎧k 3a +b =k 5,5a +b =3,解得⎩⎪⎨⎪⎧a =35,b =0, 因此直线BD 的函数表达式是y =35x .16.(2019•绍兴T16)把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E ,F 分别是AB ,AD 的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 .{答案}10或6+22或8+22.{解析}本题考查了图形的剪拼,抓住图形的特征是解题的关键,如下图,共有3种周长不同的拼法,拼成的四边形的周长分别为10或6+22或8+22.三、解答题:本大题共8小题,合计80分.17.(2019•绍兴T17(1))(1)计算:4sin 60°+(π-2)0-(-12)-2-12.{答案}解:原式=4×32+1-4-23=-3.17.(2019•绍兴T17(2))(2)x 为何值时,两个代数式x 2+1,4x +1的值相等?{答案}解:由题意,得x 2+1=4x +1,x 2-4x =0,x (x -4)=0,x 1=0,x 2=4.18.(2019•绍兴T18)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.{答案}解: (1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.E1千瓦时的电量汽车能行驶的路程为:15060-35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入, 得⎩⎨⎧150k +b =35,200k +b =10,∴⎩⎨⎧k =-0.5,b =100,∴y =-0.5x +110. 当x =180时,y =-0.5×180+110=20.答:当150≤x ≤200时,函数表达式为y =-0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.19.(2019•绍兴T19)小明、小聪参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法. {答案}解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪这5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒), 答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)一类:结合已知的两个统计图的信息及体育运动实际,如:集训时间不是越多越好,集训时间过长,可能会造成劳累,导致成绩下滑.二类:结合已知的两个统计图的信息,如:集训时间为10天或14天时,成绩最好.三类:根据已知的两个统计图中的其中一个统计图的信息,如:集训时间每期都增加.20.(2019•绍兴T 20)如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.(1)转动连杆BC ,CD ,使∠BCD 成平角,∠ABC =150°,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 再绕点C 逆时针旋转,使∠BCD =165°,如图3,问此时连杆端点D 离桌面l 的高度是增加还是减少?增加或减少了多少? (精确到0.1cm ,参考数据:2≈1.41,3≈1.73){答案}解:(1)如图2中,作BO⊥DE,垂足为O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°-90°=60°,∴OD=BD•sin60°=40•sin60°=203(cm),∴DF=OD+OE=OD+AB=203+5≈39.6(cm).(2)下降了.如图3,过点D作DF⊥l于F,过点C作CP⊥DF于P,过点B作BG⊥DF于G,过点C作CH⊥BG 于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,又∵∠BCD=165°,∴∠DCP=45°,∴CH=BC sin60°=103(cm),DP=CD sin45°=102(cm),∴DF=DP+PG+GF=DP+CH+AB=102+10+5(cm),∴下降高度:DE-DF=203+5-102-103-5=103-102≈3.2(cm).21.(2019•绍兴T21)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD =1,就可以求出AD 的长 小聪:你这样太简单了,我加的是∠A =30°,连结OC ,就可以证明△ACB 与△DCO 全等. 参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.{答案}解:(1)连接OC ,如图,∵CD 为切线,∴OC ⊥CD ,∴∠OCD =90°, ∵∠D =30°,∴OD =2OC =2, ∴AD =AO +OD =1+2=3; (2)本题答案不唯一,如: 添加∠DCB =30°,求AC 的长. 解:∵AB 为直径,∴∠ACB =90°, ∵∠ACO +∠OCB =90°,∠OCB +∠DCB =90°, ∴∠ACO =∠DCB , ∵∠ACO =∠A , ∴∠A =∠DCB =30°,在Rt △ACB 中,BC =12AB =1,∴AC =3BC =3.22.(2019•绍兴T22)有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一条边在AE 上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.{答案}解:(1)①若所截矩形材料的一条边是BC ,如图1所示: 过点C 作CF ⊥AE 于F ,S 1=AB •BC =6×5=30; ②若所截矩形材料的一条边是AE ,如图2所示:过点E作EF∥AB交CD于点F,FG⊥AB于点G,过点C作CH⊥FG于点H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG-HG=6-5=1,∴AG=AB-BG=6-1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于点M,FN⊥AE于点N,过点C作CG⊥FM于点G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6-x,∴FM=GM+FG=GM+CG=BC+BM=11-x,∴S=AM×FM=x(11-x)=-x2+11x=-(x-5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.23.(2019•绍兴T23)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC 的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.{答案}解:(1)①AM=AD+DM=40,或AM=AD-DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2-DM2=302-102=800,∴AM=202或(AM=-202舍去).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM =1010或(AM =-1010舍去).综上所述,满足条件的AM 的值为202或1010.(2)如图2中,连接CD 1.由题意:∠D 1AD 2=90°,AD 1=AD 2=30,∴∠AD 2D 1=45°,D 1D 2=302,∵∠AD 2C =135°,∴∠CD 2D 1=90°,∴CD 1=CD 22+D 1D 22=306,∵∠BAC =∠D 2AD 1=90°,∴∠BAC -∠CAD 2=∠D 2AD 1-∠CAD 2,∴∠BAD 2=∠CAD 1,又∵AB =AC ,AD 2=AD 1,∴△BAD 2≌△CAD 1(SAS ),∴BD 2=CD 1=306.24.(2019•绍兴T24)如图,矩形ABCD 中,AB =a ,BC =b ,点M ,N 分别在边AB ,CD 上,点E ,F 分别在边BC ,AD 上,MN ,EF 交于点P ,记k =MN ∶EF .(1)若a :b 的值为1,当MN ⊥EF 时,求k 的值.(2)若a :b 的值为12,求k 的最大值和最小值. (3)若k 的值为3,当点N 是矩形的顶点,∠MPE =60°,MP =EF =3PE 时,求a ∶b 的值.{答案}解:(1)如图1中,作EH ⊥BC 于H ,MQ ⊥CD 于Q ,设EF 交MN 于点O .∵四边形ABCD 是正方形,∴FH =AB ,MQ =BC ,∵AB =CB ,∴EH =MQ ,∵EF ⊥MN ,∴∠EON =90°,∵∠ECN =90°,∴∠MNQ +∠CEO =180°,∠FEH +∠CEO =180°,∴∠FEH =∠MNQ ,∵∠EHF =∠MQN =90°,∴△FHE ≌△MQN (ASA ),∴MN =EF ,∴k =MN ∶EF =1.(2)∵a ∶b =1∶2,∴b =2a ,由题意:2a ≤MN ≤5a ,a ≤EF ≤5a ,∴当MN 的长取最大时,EF 取最短,此时k 的值最大最大值=5,当MN 的最短时,EF 的值取最大,此时k 的值最小,最小值为255. (3)连接FN ,ME . ∵k =3,MP =EF =3PE ,∴MN PM =EF PE =3,∴PN PM =PF PE=2, ∵∠FPN =∠EPM ,∴△PNF ∽△PME ,∴NF ME =PN PM=2,ME ∥NF , 设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.作FH ⊥BD 于H .∵∠MPE =∠FPH =60°,∴PH =2m ,FH =23m ,DH =10m ,∴a b =AB AD =FH HD =35. ②如图3中,当点N 与C 重合,作EH ⊥MN 于H .则PH =m ,HE =3m ,∴HC =PH +PC =13m ,∴tan ∠HCE =MB BC =HE HC =313, ∵ME ∥FC ,∴∠MEB =∠FCB =∠CFD ,∵∠B =∠D ,∴△MEB ∽△CFD ,∴CD MB =FC ME =2,∴a b =CD BD =2MB BC =2313, 综上所述,a ∶b 的值为35或2313.。
(完整版)2019年绍兴中考数学真题(解析版)

f o 2019年绍兴中考数学真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.﹣5的绝对值是( )A .5B .﹣5C .D .﹣2.某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为( )A .12.6×107B .1.26×108C .1.26×109D .0.126×10103.如图的几何体由六个相同的小正方体搭成,它的主视图是( )A .B .C .D .4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:组别(cm )x <160160≤x <170170≤x <180x ≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是( )5.如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是( )A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于( )A.﹣1B.0C.3D.47.在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是( )A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位的长为( )8.如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则9.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动的面积( )到点B的过程中,矩形ECFGC.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A.B.C .D.二、填空题(共6小题)11.因式分解:x2﹣1= ﹣ .12.不等式3x﹣2≥4的解为 .13.我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是 .14.如图,在直线AP上方有一个正方形ABCD,∠PAD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为 .n15.如图,矩形ABCD 的顶点A ,C 都在曲线y =(常数是>0,x >0)上,若顶点D 的坐标为(5,3),则直线BD的函数表达式是 .16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E ,F 分别为AB ,AD 的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是 .三、解答题(共8小题)17.(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x 为何值时,两个代数式x 2+1,4x +1的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm ,参考数据:≈1.41,≈1.73)21.在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.,并解答.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母)22.有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.23.如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.24.如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b 的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.2019年绍兴中考数学真题(解析版)参考答案一、单选题(共10小题)1.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【知识点】绝对值2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字126000000科学记数法可表示为1.26×108元.故选:B.【知识点】科学记数法—表示较大的数3.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选:A.【知识点】简单组合体的三视图4.【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.【解答】解:样本中身高不低于180cm 的频率==0.15,所以估计他的身高不低于180cm的概率是0.15.故选:D.【知识点】利用频率估计概率、频数(率)分布表5.【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.【知识点】对顶角、邻补角、三角形内角和定理6.【分析】利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;【解答】解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.【知识点】一次函数图象上点的坐标特征7.【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),故选:B.【知识点】二次函数图象与几何变换8.【分析】连接OB,OC.首先证明△OBC是等腰直角三角形,求出OB即可解决问题..【解答】解:连接OB,OC∵∠A=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选:A.【知识点】弧长的计算、三角形的外接圆与外心、圆周角定理9.【分析】连接DE,△CDE的面积是矩形CFGE的一半,也是正方形ABCD的一半,则矩形与正方形面积相等.【解答】解:连接DE,∵,,∴矩形ECFG与正方形ABCD的面积相等.故选:D.【知识点】矩形的性质、正方形的性质10.【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.,如图所示:【解答】解:过点C作CF⊥BG于F根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD =,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF =.故选:A.【知识点】认识立体图形11.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【知识点】因式分解-运用公式法12.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x≥4+2,合并同类项得,3x≥6,把x的系数化为1得,x≥2.故答案为:x≥2.【知识点】解一元一次不等式13.【分析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.【解答】解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,∴m=15﹣8﹣3=4.故答案为:4【知识点】数学常识、有理数的加法14.【分析】分点E与正方形ABCD的直线AP的同侧、点E与正方形ABCD的直线AP的两侧两种情况,根据正方形的性质、等腰三角形的性质解答.【解答】解:∵四边形ABCD是正方形,∴AD=AE,∠DAE=90°,∴∠BAM=180°﹣90°﹣30°=60°,AD=AB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,∴∠ADE=45°,当点E与正方形ABCD的直线AP的两侧时,由题意得,E′A=E′M,∴△AE′M为等边三角形,∴∠E′AM=60°,∴∠DAE′=360°﹣120°﹣90°=150°,∵AD=AE′,∴∠ADE′=15°,故答案为:15°或45°.【知识点】正方形的性质15.【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (,3),C(5,),所以B (,),然后利用待定系数法求直线BD的解析式.【解答】解:∵D(5,3),∴A (,3),C(5,),∴B (,),设直线BD的解析式为y=mx+n,把D(5,3),B (,)代入得,解得,∴直线BD的解析式为y =x.故答案为y =x.【知识点】待定系数法求一次函数解析式、反比例函数图象上点的坐标特征、矩形的性质16.【分析】先根据题意画出图形,再根据周长的定义即可求解.【解答】解:如图所示:图1的周长为1+2+3+2=6+2;图2的周长为1+4+1+4=10;图3的周长为3+5++=8+2.故四边形MNPQ的周长是6+2或10或8+2.故答案为:6+2或10或8+2.【知识点】平面镶嵌(密铺)、整式的加减三、解答题(共8小题)17.【分析】(1)根据实数运算法则解答;(2)利用题意得到x2+1=4x+1,利用因式分解法解方程即可.【解答】解:(1)原式=4×+1﹣4﹣2=﹣3;(2)x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x1=0,x2=4.【知识点】特殊角的三角函数值、实数的运算、零指数幂、负整数指数幂、解一元二次方程-因式分解法18.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y关于x的函数表达式,再把x=180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:千米;(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得,∴,∴y=﹣0.5x+110,当x=180时,y=﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【知识点】一次函数的应用19.【分析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天.【知识点】算术平均数、条形统计图、扇形统计图20.【分析】(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,求出DF,再求出DF﹣DE即可解决问题.【解答】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DF=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10=3.2(cm).【知识点】解直角三角形的应用21.【分析】(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30度的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;(2)添加∠DCB=30°,求AC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30度的直角三角形三边的关系求AC的长.【解答】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC =AB=1,∴AC=BC =.【知识点】圆周角定理、切线的性质、全等三角形的判定22.【分析】(1)①若所截矩形材料的一条边是BC,过点C作CF⊥AE于F,得出S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,证出△CHF为等腰三角形,得出AE=FG=6,HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG﹣HG=1,AG=AB﹣BG=5,得出S2=AE•AG=6×5=30;(2)在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,证出△CGF为等腰三角形,得出MG=BC=5,BM=CG,FG=CG,设AM=x,则BM=6﹣x,FM=GM+FG=GM+CG=BC+BM=11﹣x,得出S=AM×FM=x(11﹣x)=﹣x2+11x,由二次函数的性质即可得出结果.【解答】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,即:AM=5.5时,FM=11﹣5.5=5.5,S的最大值为30.25.【知识点】矩形的性质23.【分析】(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2﹣DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.【解答】解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==30,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.【知识点】几何变换综合题24.【分析】(1)作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.证明△FHE≌△MQN(ASA),即可解决问题.(2)由题意:2a≤MN ≤a,a≤EF ≤a,当MN的长取最大时,EF取最短,此时k 的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.由k=3,MP=EF=3PE ,推出==3,推出==2,由△PNF∽△PME ,推出==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,接下来分两种情形①如图2中,当点N与点D重合时,点M恰好与B重合.②如图3中,当点N与C重合,分别求解即可.中,【解答】解:(1)如图1∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN ≤a,a≤EF ≤a,∴当MN的长取最大时,EF取最短,此时k 的值最大最大值=,当MN的最短时,EF的值取最大,此时k 的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE =m,∴HC=PH+PC=13m,∴tan∠HCE ===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴==2,∴===,综上所述,a:b 的值为或.【知识点】相似形综合题。
2019年浙江省绍兴市中考数学试卷(含解析)完美打印版

2019年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(4分)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×10103.(4分)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.4.(4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.155.(4分)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°6.(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.47.(4分)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.(4分)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()A.πB.πC.2πD.2π9.(4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.(4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)因式分解:x2﹣1=.12.(5分)不等式3x﹣2≥4的解为.13.(5分)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是.14.(5分)如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE 的度数为.15.(5分)如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.16.(5分)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.三、解答题(本大题共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x为何值时,两个代数式x2+1,4x+1的值相等?18.(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.(8分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD 与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)21.(10分)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.22.(12分)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.23.(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.24.(14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.2019年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.2.(4分)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:数字126000000科学记数法可表示为1.26×108元.故选:B.3.(4分)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选:A.4.(4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.15【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.【解答】解:样本中身高不低于180cm的频率==0.15,所以估计他的身高不低于180cm的概率是0.15.故选:D.5.(4分)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.6.(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4【分析】利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;【解答】解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.7.(4分)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),故选:B.8.(4分)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()A.πB.πC.2πD.2π【分析】连接OB,OC.首先证明△OBC是等腰直角三角形,求出OB即可解决问题.【解答】解:连接OB,OC.∵∠A=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选:A.9.(4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变【分析】连接DE,△CDE的面积是矩形CFGE的一半,也是正方形ABCD的一半,则矩形与正方形面积相等.【解答】解:连接DE,∵,,∴矩形ECFG与正方形ABCD的面积相等.故选:D.10.(4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.【解答】解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)因式分解:x2﹣1=(x+1)(x﹣1).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.(5分)不等式3x﹣2≥4的解为x≥2.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x≥4+2,合并同类项得,3x≥6,把x的系数化为1得,x≥2.故答案为:x≥2.13.(5分)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是4.【分析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.【解答】解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,∴m=15﹣8﹣3=4.故答案为:414.(5分)如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE 的度数为15°或45°.【分析】分点E与正方形ABCD的直线AP的同侧、点E与正方形ABCD的直线AP的两侧两种情况,根据正方形的性质、等腰三角形的性质解答.【解答】解:∵四边形ABCD是正方形,∴AD=AE,∠DAE=90°,∴∠BAM=180°﹣90°﹣30°=60°,AD=AB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,∴∠ADE=45°,当点E与正方形ABCD的直线AP的两侧时,由题意得,E′A=E′M,∴△AE′M为等边三角形,∴∠E′AM=60°,∴∠DAE′=360°﹣120°﹣90°=150°,∵AD=AE′,∴∠ADE′=15°,故答案为:15°或45°.15.(5分)如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是y=x.【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A(,3),C(5,),所以B(,),然后利用待定系数法求直线BD的解析式.【解答】解:∵D(5,3),∴A(,3),C(5,),∴B(,),设直线BD的解析式为y=mx+n,把D(5,3),B(,)代入得,解得,∴直线BD的解析式为y=x.故答案为y=x.16.(5分)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是6+2或10或8+2.【分析】先根据题意画出图形,再根据周长的定义即可求解.【解答】解:如图所示:图1的周长为1+2+3+2=6+2;图2的周长为1+4+1+4=10;图3的周长为3+5++=8+2.故四边形MNPQ的周长是6+2或10或8+2.故答案为:6+2或10或8+2.三、解答题(本大题共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x为何值时,两个代数式x2+1,4x+1的值相等?【分析】(1)根据实数运算法则解答;(2)利用题意得到x2+1=4x+1,利用因式分解法解方程即可.【解答】解:(1)原式=4×+1﹣4﹣2=﹣3;(2)x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x1=0,x2=4.18.(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y关于x的函数表达式,再把x=180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:千米;(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得,∴,∴y=﹣0.5x+110,当x=180时,y=﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.19.(8分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【分析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天.20.(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD 与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)【分析】(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,求出DF,再求出DF﹣DE即可解决问题.【解答】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DF=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10=3.2(cm).21.(10分)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.【分析】(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30度的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;(2)添加∠DCB=30°,求AC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30度的直角三角形三边的关系求AC的长.【解答】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.22.(12分)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.【分析】(1)①若所截矩形材料的一条边是BC,过点C作CF⊥AE于F,得出S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG 于H,则四边形AEFG为矩形,四边形BCHG为矩形,证出△CHF为等腰三角形,得出AE=FG=6,HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG﹣HG=1,AG=AB﹣BG=5,得出S2=AE•AG =6×5=30;(2)在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,证出△CGF为等腰三角形,得出MG=BC=5,BM=CG,FG =DG,设AM=x,则BM=6﹣x,FM=GM+FG=GM+CG=BC+BM=11﹣x,得出S=AM×FM=x(11﹣x)=﹣x2+11x,由二次函数的性质即可得出结果.【解答】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.23.(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【分析】(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2﹣DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.【解答】解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==30,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.24.(14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.【分析】(1)作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.证明△FHE≌△MQN(ASA),即可解决问题.(2)由题意:2a≤MN≤a,a≤EF≤a,当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.由k=3,MP=EF=3PE,推出==3,推出==2,由△PNF∽△PME,推出==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,接下来分两种情形①如图2中,当点N与点D重合时,点M恰好与B重合.②如图3中,当点N与C重合,分别求解即可.【解答】解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤a,a≤EF≤a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE=m,∴HC=PH+PC=13m,∴tan∠HCE===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴==2,∴===,综上所述,a:b的值为或.。
2019浙江省绍兴市中考数学试题(含答案)【中考】

浙江省2019年初中学业水平考试绍兴市试卷数学试题卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是A.5B.-5C.51D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 A.π B.π2 C.π2 D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为A.524B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
2019年浙江省中考数学试卷(附答案与解析)

第2页(共24页)123如图的几何体由六个相同的小正方体搭成,它的主视图是()4C .0.42D .0.15,C ,量得170∠︒=,2100∠︒=,那么木条a ,b 所在()第5题图C .30︒D .70︒10)在同一直线上,则a 的值等于()C .3D .4()()53x x +-=经变换后得到抛物线(3)(5)y x x =+-,()B .向右平移2个单位D .向右平移8个单位65︒=,70C ∠︒=.若BC =则»BC的长为()第8题图C .2πD .E ,以EC 为边作矩形ECFG ,且边FG 过点D .在ECFG 的面积()第9题图B .先变小后变大毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3第4页(共24页)C .一直变大D .10.如图1,长、宽均为3,高为8面高为6意图,则图2中水面高度为图1第10题图A .245B .325C卷Ⅱ二、填空题(本大题有6小题,每小题5分,共3011.因式分解:21x -=.12.不等式324x-≥的解为.13.所表示的数是.第13题图14.如图,在直线AP 上方有一个正方形ABCD ,∠半径作弧,与AP 交于点A ,M ,分别以点A ,M 交于点E ,连结ED ,则ADE ∠的度数为.题14题图C 都在曲线ky x =(常数0k >,0x >)上,若顶点D的函数表达式是.第15题图分割成如图的四块,其中点O 为正方形的中心,点.用这四块纸片拼成与此正方形不全等的四边形MNPQ ,则四边形MNPQ 的周长是.第16题图17~20小题每小题8分,第21小题10分,第22,14分,共80分.解答需写出必要的文字说明、演算212-⎛⎫--- ⎪⎝⎭21x +,41x +的值相等?数学试卷第5页(共第6页(共24页)18.路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为0150x ≤≤时,求1(2)当150200x ≤≤时,求y 关于x 蓄电池的剩余电量.19.小明、小聪参加了100 m 跑的5期集训,时间、测试成绩绘制成如下两个统计图.第19题图根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5(2底座的高AB 为5cm ,长度均为20cm 的连杆.BCD 成平角,150ABC ∠︒=,如图2,求连杆端点D C 逆时针旋转,使165BCD ∠︒=,如图3,问此时0.1cm ,参考数据:2 1.41≈,3 1.73≈)图2图3第20题图AB 的长为2,过点C 的切线交AB 的延长线于点D ..30D ∠︒=,求AD 的长.请你解答.AD 的长30A ∠︒=,连结OC ,就可以证明ACB V 与DCO V ,并解答.第21题图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7第8页(共24页)22.有一块形状如图的五边形余料ABCDE ,AB =135C ∠︒=,90E ∠︒>并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE (2)能否截出比(1最大值;如果不能,说明理由.23.(12分)如图1是实验室中的一种摆动装置,BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,10DM =.(1)在旋转过程中,①当A ,D ,M 三点在同一直线上时,求AM ②当A ,D ,M (2)若摆动臂AD 顺时针旋转90°,点D 2D 处,连结12D D ,如图2,此时2135AD C ∠︒=,260CD =,求2BD 的长.图1a ,BCb =,点M ,N 分别在边AB ,CD 上,点E ,FEF 交于点P ,记k MN EF =:.EF ⊥时,求k 的值..60MPE ∠︒=,3MP EF PE ==时,求:a b 第24题图数学试卷第9页(共第10页(共24页)浙江省绍兴市2019卷Ⅰ一、选择题1.【答案】A【解析】根据绝对值的性质求解.解:根据负数的绝对值等于它的相反数,得|5|5-=.故选:A.【考点】绝对值2.【答案】B【解析】科学记数法的表示形式为10na ⨯值时,要看把原数变成a 数相同.当原数绝对值1>时,n 解:数字126000000科学记数法可表示为81.2610⨯故选:B.【考点】科学计数法3.【答案】A个正方形,故A 符合题意,故选:A.【考点】三视图4.【答案】D【解析】先计算出样本中身高不低于180 cm 解:样本中身高不低于180 cm 的频率150.15100==,所以估计他的身高不低于180 cm 的概率是0.15.故选:D.【考点】统计,等可能事件的概率,根据三角形内角和定理计算,得到答案.1801007010︒︒︒︒=--=,180°再将点(,10)a 代入解析式即可;y kx b +=,;.,顶点坐标是(1,16)--.(1,16)-.2个单位长度得到抛物线(3)(5)y x x =+-,数学试卷第1112页(共24页)8.【答案】A【解析】连接OB ,OC .首先证明OBC △解:连接OB ,OC .∵180180657045A ABC ACB ∠=-∠-∠=-︒-︒=︒︒︒∴90BOC ︒∠=∴BC =∴2OB OC ==∴»BC的长为2902360ππ⋅⋅=,故选:A.【考点】三角形内角和,圆周角,圆心角,弧长公式9.【答案】D【解析】由BCE FCD △∽△,即可得矩形ECFG 与正方形ABCD 的面积相等.解:∵正方形ABCD 和矩形ECFG 中,90DCB FCE ︒∠=∠=,90F B ︒∠=∠=,∴DCF ECB ∠=∠,∴BCE FCD △∽△,∴CF CDCB CE=,∴CF CE CB CD ⋅⋅=,∴矩形ECFG 与正方形ABCD 的面积相等.故选:D.【考点】正方形,矩形,相似三角形10.【答案】A【解析】设DE x =,则8AD x -=,BG 于F ,由CDE BCF △∽△的比例线段5=,数学试卷第13页(共第14页(共24页)解:原式(1)(1)x x =+-.故答案为:(1)(1)x x +-.【考点】因式分解,平方差公式12.【答案】2x ≥【解析】先移项,再合并同类项,把x 的系数化为1解:移项得,342x +≥,合并同类项得,36x ≥,把x 的系数化为1得,2x ≥.故答案为:2x ≥.【考点】一元一次不等式13.【答案】4【解析】根据“解:根据“上的三个数之和都等于15,∴第一列第三个数为:15258--=,∴15834m =--=.故答案为:4【考点】一元一次方程14.【答案】15°或45°【解析】分点E 与正方形ABCD 的直线AP 解:∵四边形ABCD 是正方形,∴AD AE =,90DAE ∠=︒,∴180903060BAM ∠=︒-︒-︒=︒,AD AB =,当点E 与正方形ABCD 的直线AP ∴45ADE ∠=︒,当点E 与正方形ABCD 的直线AP ∴AE M '△为等边三角形,∴60E AM ∠'=︒,︒,,33k A ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫ ⎪⎝⎭,BD 的解析式.,35n k n +=+=,解得350m n ⎧=⎪⎨⎪=⎩,数学试卷第15第16页(共24页)16.【答案】6+或10或8+解:如图所示:图1的周长为1236+++=+;图2的周长为141410+++=;图3的周长为358++=+故四边形MNPQ 的周长是6+或10或8+故答案为:6+或10或8+三、解答题17.【答案】解:(1)原式341432=⨯+--=-.(2)2141x x +=+,240x x -=,(4)0x x -=,10x =,24x =.【解析】(1)根据实数运算法则解答;(2)利用题意得到2141x x +=+因式分解18.【答案】解:(115066035=-千米;,(200,10)代入,20=,0.5110y x =-+,当汽车已行驶180千米时,蓄.35千瓦时时汽车已行驶了150千米,据x 的函数表达式,再把180x =代入即可求出当汽车已.5710142056++++=(天),11.7611.6111.5311.62)511.68++++÷=(秒),5次测试的平均成绩是11.68秒;4期出现,建议集训时间定为14天.5期的集训共有多少天和小聪5次测试的平均.DE ⊥于O .数学试卷第17页(共第18页(共24页)图2∵90OEA BOE BAE∠=∠=∠=︒,∴四边形ABOE是矩形,∴90OBA=︒∠,∴1509060DBO∠=︒-︒=︒,∴sin60OD BD︒=⋅=,∴539.6(cm)DF OD OE OD AB=+=+=≈.(2)作DF l⊥于F,CP DF⊥于P,BG DF⊥于是矩形,图3∵60CBH∠=︒,90CHB∠=︒,∴30BCH∠=︒,∵165BCD∠=︒,45DCP∠=︒,∴sin60CH BC︒=⋅=,sin45DP CD︒=⋅∴DF DP PG GF DP CH AB=++=++=5 3.2(cm)-=.DE于O.解直角三角形求出OD即可解决问题.P,BG DF⊥于G,CH BG⊥于H.则四边形PCHG-DE即可解决问题.90DCB+∠=︒90OCD∠=︒,再根据含30度的直角2,然后计算OA OD+即可;的长,利用圆周角定理得到90ACB∠=︒,再证明数学试卷第19第20页(共24页)30A DCB∠=∠=︒,然后根据含3022.【答案】(1)①若所截矩形材料的一条边是BC 过点C 作CF AE ⊥于F ,16530S AB BC =⋅=⨯=;②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点则四边形AEFG 为矩形,四边形BCHG 为矩形,∵135C ∠=︒,∴45FCH ∠=︒,∴CHF △为等腰直角三角形,∴6AE FG ==,5HG BC ==,BG CH FH ==,∴651BG CH FH FG HG ===-=-=,∴615AG AB BG =-=-=,∴*26530S AE AG ==⨯=;(2)能;理由如下:在CD 上取点F ,过点F 作FM AB ⊥于M ,FN ⊥则四边形ANFM 为矩形,四边形BCGM 为矩形,∵135C ∠=︒,∴45FCG ∠=︒,∴CGF △为等腰直角三角形,∴5MG BC ==,BM CG =,FG DG =,设AM x =,则6BM x =-,∴11FM GM FG GM CG BC BM x =+=+=+=-,∴22(11)11( 5.5)S AM FM x x x x x =⨯=-=-+=-+∴当 5.5x =时,S 的最大值为30.25.图1图2图3BC ,过点C 作CF AE ⊥于F ,得出,过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过AEFG 为矩形,四边形BCHG 为矩形,证出CHF △6FG ==,5HG BC ==,BG CH FH ==,求出1=,5AG AB BG =-=,得出26530S AE AG =⋅=⨯=;FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM⊥四边形BCGM 为矩形,证出CGF △为等腰三角形,CG ,FG DG =,设AM x =,则6BM x =-,11BC BM x=+=-,得出211x x +,由二次函数的性质即可得出结果.40DM +=,或20.AM AD DM =-=22223010800DM -=-=,.22230101000DM +=+=,.或.数学试卷第21页(共第22页(共24页)由题意:1290D AD ∠=︒,1230AD AD ==,∴2145AD D ︒∠=,12302D D =,∵2135AD C ︒∠=,∴1290CD D ︒∠=,∴221212306CD CD D D =+=∵2190BAC A AD ∠=∠=︒,∴2212BAC CAD D AD CAD ∠-∠=∠-∠,∴12BAD CAD ∠=∠,∵AB AC =,21AD AD =,∴21()BAD CAD SAS V V ≌,∴21306BD CD ==【解析】(1)①分两种情形分别求解即可.②显然MAD ∠不能为直角.当AMD ∠为直角时,根据222AM AD DM =-,计算即可,当90ADM ∠=︒时,根据222AM AD DM =+,计算即可.(2)连接CD .首先利用勾股定理求出1CD ,再利用全等三角形的性质证明21BD CD =即可.【考点】线段、角的和差,勾股定理,等腰直角三角形,全等三角24.【答案】(1)如图1中,Q ,设EF 交MN 于点O .1+80CEO ∠=︒, ,k 的值最大,最大值,k 的值最小,最小值为5.第24页(共24页)∴3MN EFPM PE==,∴2PN PFPM PE==,∵FPN EPM∠=∠,∴PNF PMEV V∽,∴2NF PNME PM==,//NFME设2PE m=,则4PF m=,6MP m=,12NP m=,①如图2中,当点N与点D重合时,点M恰好与B图2∵60MPE FPH∠=∠=︒,∴2PH m=,FH=,10PH m=,∴35a AB FHb AD HD===②如图3中,当点N与C重合,作EH MN⊥于H.图3∴13HC PH PC m=+=,∴tan13MB HEHCEBC HC∠=--,∵ME FC∥,∴MEB FCB CFD∠=∠=∠,MQ CD⊥于Q,设EF交MN于点O.证明.,当MN的长取最大时,EF取最短,此的最短时,EF的值取最大,此时k的值最小,3PE=,推出=3MN EFPM PE-,推出2PN PFPM PE==,2PNPM==,ME NF∥,设2PE m=,则4PF m=,2中,当点N与点D重合时,点N与C重合,分别求解即可.数学试卷第23。
2019浙江省绍兴市中考数学试题(含答案)

浙江省2019年初中学业水平考试绍兴市试卷数学试题卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是A.5B.-5C.51D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 A.π B.π2 C.π2 D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为A.524B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
2019年浙江省绍兴市数学中考试题及答案

浙江省2019年初中学业水平考试绍兴市试卷数学试题卷卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是 A.5 B.-5 C.51 D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为A.πB.π2C.π2D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为 A.524 B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
2019年浙江省绍兴市中考数学试卷及答案

2019年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.)1.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣2.某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×10103.如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.155.如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1 B.0 C.3 D.47.在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()A.πB.πC.2πD.2π9.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A 移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:x2﹣1=.12.不等式3x﹣2≥4的解为.13.我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是.14.如图,在直线AP上方有一个正方形ABCD,∠PAD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE 的度数为.15.如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD 的函数表达式是.16.把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.三、解答题(共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.)17.(8分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x为何值时,两个代数式x2+1,4x+1的值相等?18.(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.(8分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)21.(10分)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.22.(12分)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.23.(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.24.(14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.2019年浙江省绍兴市中考数学试卷答案1.A.2.B.3.A.4.D.5.B.6.C.7.B.8.A.9.D.10.A.11.(x+1)(x﹣1).12.x≥2.13.414.15°或45°.15.y=x.16.6+2或10或8+2.17.解:(1)原式=4×+1﹣4﹣2=﹣3;(2)x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x1=0,x2=4.18.解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:千米;(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得,∴,∴y=﹣0.5x+110,当x=180时,y=﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.19.解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好成绩是都是在第4期出现,建议集训时间定为14天.20.解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DF=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10=3.2(cm).21.解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.22.解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.23.解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==30,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.24.解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴EH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤a,a≤EF≤a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE=m,∴HC=PH+PC=13m,∴tan∠HCE===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴==2,∴===,综上所述,a:b的值为或.。
2019年绍兴中考数学真题(解析版)

2019年紹興中考數學真題(解析版)學校:________ 班級:________ 姓名:________ 學號:________一、單選題(共10小題)1.﹣5的絕對值是()A.5 B.﹣5 C.D.﹣2.某市決定為全市中小學教室安裝空調,今年預計投入資金126000000元,其中數字126000000用科學記數法可表示為()A.12.6×107B.1.26×108C.1.26×109 D.0.126×10103.如圖的幾何體由六個相同的小正方體搭成,它的主視圖是()A.B.GAGGAGAGGAFFFFAFAFC.D.4.為了解某地區九年級男生的身高情況,隨機抽取了該地區100名九年級男生,他們的身高x(cm)統計如下:組別(cm)x<160160≤x<170170≤x<180x≥180人數5384215根據以上結果,抽查該地區一名九年級男生,估計他的身高不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.155.如圖,墻上釘著三根木條a,b,C,量得∠1=70°,∠2=100°,那么木條a,b所在直線所夾的銳角是()A.5°B.10°C.30°D.70°6.若三點(1,4),(2,7),(a,10)在同一直線上,則a的值等于()A.﹣1 B.0 C.3 D.47.在平面直角坐標系中,拋物線y=(x+5)(x﹣3)經變換后得到拋物線y=(x+3)(x﹣5),則這個變換可以是()A.向左平移2個單位B.向右平移2個單位C.向左平移8個單位D.向右平移8個單位8.如圖,△ABC內接于⊙O,∠B=65°,∠C =70°.若BC=2,則的長為()GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAFA .πB .πC .2πD .2π9.正方形ABCD 的邊AB 上有一動點E ,以EC 為邊作矩形ECFG ,且邊FG 過點D .在點E 從點A 移動到點B 的過程中,矩形ECFG的面積( )A .先變大后變小B .先變小后變大C .一直變大D .保持不變 10.如圖1,長、寬均為3,高為8的長方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱進行旋轉傾斜后,水面恰好觸到容器口邊緣,圖2是此時的示意圖,則圖2中水面高度為( )A .B .C .D .二、填空題(共6小題)11.因式分解:x2﹣1=﹣.12.不等式3x﹣2≥4的解為.13.我國的《洛書》中記載著世界上最古老的一個幻方:將1~9這九個數字填入3×3的方格內,使三行、三列、兩對角線上的三個數之和都相等.如圖的幻方中,字母m所表示的數是.14.如圖,在直線AP上方有一個正方形ABCD,∠PAD=30°,以點B為圓心,AB長為半徑作弧,與AP交于點A,M,分別以點A,M為圓心,AM長為半徑作弧,兩弧交于點E,連結ED,則∠ADE的度數為.15.如圖,矩形ABCD的頂點A,C都在曲線y=(常數是>0,x>0)上,若頂點D的坐標為(5,3),則直線BD的函數表達式是.16.把邊長為2的正方形紙片ABCD分割成如圖的四塊,其中點O為正方形的中心,點E,F分別為AB,AD的中點.用這四塊紙片拼成與此正方形不全等的四邊形MNPQ(要求這四塊紙片不重疊無縫隙),則四邊形MNPQ的周長是.GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF三、解答題(共8小題)17.(1)計算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x 為何值時,兩個代數式x 2+1,4x +1的值相等?18.如圖是某型號新能源純電動汽車充滿電后,蓄電池剩余電量y (千瓦時)關于已行駛路程x (千米)的函數圖象.(1)根據圖象,直接寫出蓄電池剩余電量為35千瓦時時汽車已行駛的路程.當0≤x ≤150時,求1千瓦時的電量汽車能行駛的路程.(2)當150≤x ≤200時,求y 關于x的函數表達式,并計算當汽車已行駛180千米時,蓄電池的剩余電量.19.小明、小聰參加了100m 跑的5期集訓,每期集訓結束時進行測試,根據他們的集訓時間、測試成績繪制成如下兩個統計圖.GAGGAGAGGAFFFFAFAF根據圖中信息,解答下列問題:(1)這5期的集訓共有多少天?小聰5次測試的平均成績是多少?(2)根據統計數據,結合體育運動的實際,從集訓時間和測試成績這兩方面,說說你的想法.20.如圖1為放置在水平桌面l 上的臺燈,底座的高AB 為5cm ,長度均為20cm 的連桿BC ,CD 與AB 始終在同一平面上.(1)轉動連桿BC ,CD ,使∠BCD 成平角,∠ABC =150°,如圖2,求連桿端點D 離桌面l 的高度DE .(2)將(1)中的連桿CD 再繞點C 逆時針旋轉,使∠BCD =165°,如圖3,問此時連桿端點D 離桌面l 的高度是增加還是減少?增加或減少了多少?(精確到0.1cm ,參考數據:≈1.41,≈1.73)21.在屏幕上有如下內容:如圖,△ABC 內接于⊙O ,直徑AB 的長為2,過點C 的切線交AB 的延長線于點D .張老師要求添加條件后,編制一道題目,并解答.(1)在屏幕內容中添加條件∠D =30°,求AD 的長.請你解答.GAGGAGAGGAFFFFAFAF (2)以下是小明、小聰的對話:小明:我加的條件是BD =1,就可以求出AD 的長小聰:你這樣太簡單了,我加的是∠A =30°,連結OC ,就可以證明△ACB 與△DCO 全等.參考此對話,在屏幕內容中添加條件,編制一道題目(可以添線添字母),并解答.22.有一塊形狀如圖的五邊形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°,要在這塊余料中截取一塊矩形材料,其中一條邊在AE 上,并使所截矩形材料的面積盡可能大.(1)若所截矩形材料的一條邊是BC 或AE ,求矩形材料的面積.(2)能否截出比(1)中更大面積的矩形材料?如果能,求出這些矩形材料面積的最大值;如果不能,說明理由.23.如圖1是實驗室中的一種擺動裝置,BC 在地面上,支架ABC 是底邊為BC 的等腰直角三角形,擺動臂AD 可繞點A 旋轉,擺動臂DM 可繞點D 旋轉,AD =30,DM =10.(1)在旋轉過程中,①當A ,D ,M 三點在同一直線上時,求AM 的長.②當A ,D ,M 三點為同一直角三角形的頂點時,求AM 的長.(2)若擺動臂AD 順時針旋轉90°,點D 的位置由△ABC 外的點D 1轉到其內的點D 2處,連結D 1D 2,如圖2,此時∠AD 2C =135°,CD 2=60,求BD 2的長.GAGGAGAGGAFFFFAFAF24.如圖,矩形ABCD 中,AB =a ,BC =b ,點M ,N 分別在邊AB ,CD 上,點E ,F 分別在邊BC ,AD上,MN ,EF 交于點P ,記k =MN :EF .(1)若a :b 的值為1,當MN ⊥EF 時,求k 的值.(2)若a :b 的值為,求k 的最大值和最小值.(3)若k 的值為3,當點N 是矩形的頂點,∠MPE =60°,MP =EF =3PE 時,求a :b 的值.2019年紹興中考數學真題(解析版)參考答案一、單選題(共10小題)1.【分析】根據絕對值的性質求解.【解答】解:根據負數的絕對值等于它的相反數,得| 【解答】解:根據負數的絕對值等于它的相反數,得| 【解答】解:根據負數的絕對值等于它的相反數,得||﹣5|=5.故選|5|=5.故選A.【知識點】絕對值2.【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【解答】解:數字126000000科學記數法可表示為1.26×108元.故選:B.【知識點】科學記數法—表示較大的數3.【分析】根據從正面看得到的視圖是主視圖,可得答案.【解答】解:從正面看有三列,從左起第一列有兩個正方形,第二列有兩個正方形,第三列有一個正方形,故A符合題意,故選:A.【知識點】簡單組合體的三視圖4.【分析】先計算出樣本中身高不低于180cm的頻率,然后根據利用頻率估計概率求解.【解答】解:樣本中身高不低于180cm的頻率==0.15,所以估計他的身高不低于180cm的概率是0.15.故選:D.【知識點】利用頻率估計概率、頻數(率)分布表5.【分析】根據對頂角相等求出∠3,根據三角形內角和定理計算,得到答案.【解答】解:∠3=∠2=100°,∴木條a,b所在直線所夾的銳角=180°﹣100°﹣70°=10°,故選:B.GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF【知識點】對頂角、鄰補角、三角形內角和定理6.【分析】 利用(1,4),(2,7)兩點求出所在的直線解析式,再將點(a ,10)代入解析式即可;【解答】 解:設經過(1,4),(2,7)兩點的直線解析式為y =kx +b ,∴∴, ∴y =3x +1,將點(a ,10)代入解析式,則a =3;故選:C .【知識點】一次函數圖象上點的坐標特征7.【分析】 根據變換前后的兩拋物線的頂點坐標找變換規律.【解答】 解:y =(x +5)(x ﹣3)=(x +1)2﹣16,頂點坐標是(﹣1,﹣16).y =(x +3)(x ﹣5)=(x ﹣1)2﹣16,頂點坐標是(1,﹣16).所以將拋物線y =(x +5)(x ﹣3)向右平移2個單位長度得到拋物線y =(x +3)(x ﹣5),故選:B .【知識點】二次函數圖象與幾何變換8.【分析】 連接OB ,OC .首先證明△OBC 是等腰直角三角形,求出OB 即可解決問題.【解答】 解:連接OB ,OC .∵∠A =180°﹣∠ABC ﹣∠ACB =180°﹣65°﹣70°=45°,∴∠BOC =90°,∵BC =2,∴OB =OC =2,∴的長為=π,故選:A .【知識點】弧長的計算、三角形的外接圓與外心、圓周角定理9.【分析】 連接DE ,△CDE 的面積是矩形CFGE 的一半,也是正方形ABCD 的一半,則矩形與正方形面積相等.【解答】解:連接DE,∵,,∴矩形ECFG與正方形ABCD的面積相等.故選:D.【知識點】矩形的性質、正方形的性質10.【分析】設DE=x,則AD=8﹣x,由長方體容器內水的體積得出方程,解方程求出DE,再由勾股定理求出CD,過點C作CF⊥BG于F,由△CDE∽△BCF的比例線段求得結果即可.【解答】解:過點C作CF⊥BG于F,如圖所示:設DE=x,則AD=8﹣x,根據題意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,GAGGAGAGGAFFFFAFAF∴CF=.故選:A.【知識點】認識立體圖形二、填空題(共6小題)11.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案為:(x+1)(x﹣1).【知識點】因式分解-運用公式法12.【分析】先移項,再合并同類項,把x的系數化為1即可.【解答】解:移項得,3x≥4+2,合并同類項得,3x≥6,把x的系數化為1得,x≥2.故答案為:x≥2.【知識點】解一元一次不等式13.【分析】根據“每行、每列、每條對角線上的三個數之和相等”解答即可.【解答】解:根據“每行、每列、每條對角線上的三個數之和相等”,可知三行、三列、兩對角線上的三個數之和都等于15,∴第一列第三個數為:15﹣2﹣5=8,∴m=15﹣8﹣3=4.故答案為:4【知識點】數學常識、有理數的加法14.【分析】分點E與正方形ABCD的直線AP的同側、點E與正方形ABCD的直線AP的兩側兩種情況,根據正方形的性質、等腰三角形的性質解答.【解答】解:∵四邊形ABCD是正方形,∴AD=AE,∠DAE=90°,∴∠BAM=180°﹣90°﹣30°=60°,AD=AB,當點E與正方形ABCD的直線AP的同側時,由題意得,點E與點B重合,∴∠ADE=45°,當點E與正方形ABCD的直線AP的兩側時,由題意得,E′A=E′M,∴△AE′M為等邊三角形,∴∠E′AM=60°,∴∠DAE′=360°﹣120°﹣90°=150°,∵AD=AE′,∴∠ADE′=15°,故答案為:15°或45°.GAGGAGAGGAFFFFAFAF【知識點】正方形的性質15.【分析】利用矩形的性質和反比例函數圖象上點的坐標特征得到A(,3),C(5,),所以B(,),然后利用待定系數法求直線BD的解析式.【解答】解:∵D(5,3),∴A(,3),C(5,),∴B(,),設直線BD的解析式為y=mx+n,把D(5,3),B (,)代入得,解得,∴直線BD的解析式為y=x .故答案為y=x.【知識點】待定系數法求一次函數解析式、反比例函數圖象上點的坐標特征、矩形的性質16.【分析】先根據題意畫出圖形,再根據周長的定義即可求解.【解答】解:如圖所示:图1的周长为1+2+3+2=6+2;图2的周长为1+4+1+4=10;GAGGAGAGGAFFFFAFAF图3的周长为3+5++=8+2.故四邊形MNPQ的周长是6+2或10或8+2.故答案为:6+2或10或8+2.【知識點】平面鑲嵌(密鋪)、整式的加減三、解答題(共8小題)17.【分析】(1)根據實數運算法則解答;(2)利用題意得到x2+1=4x+1,利用因式分解法解方程即可.【解答】解:(1)原式=4×+1﹣4﹣2=﹣3;(2)x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x1=0,x2=4.【知識點】特殊角的三角函數值、實數的運算、零指數冪、負整數指數冪、解一元二次方程-因式分解法18.【分析】(1)由圖象可知,蓄電池剩余電量為35千瓦時時汽車已行駛了150千米,據此即可求出1千瓦時的電量汽車能行駛的路程;(2)運用待定系數法求出y關于x的函數表達式,再把x=180代入即可求出當汽車已行駛180千米時,蓄電池的剩余電量.【解答】解:(1)由圖象可知,蓄電池剩余電量為35千瓦時時汽車已行駛了150千米.1千瓦時的電量汽車能行駛的路程為:千米;(2)設y=kx+b(k≠0),把點(150,35),(200,10)代入,得,∴,∴y=﹣0.5x+110,當x=180時,y=﹣0.5×180+110=20,答:當150≤x≤200時,函數表達式為y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【知识点】一次函数的应用19.【分析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF (2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天.【知识点】算术平均数、条形统计图、扇形统计图20.【分析】 (1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG是矩形,求出DF ,再求出DF ﹣DE 即可解决问题.【解答】 解:(1)如图2中,作BO ⊥DE 于O .∵∠OEA =∠BOE =∠BAE =90°,∴四边形ABOE 是矩形,∴∠OBA =90°,∴∠DBO =150°﹣90°=60°,∴OD =BD •sin60°=20(cm ),∴DF =OD +OE =OD +AB =20+5≈39.6(cm ).(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,∵∠CBH =60°,∠CHB =90°,∴∠BCH =30°,∵∠BCD =165°,°∠DCP =45°,∴CH =BC sin60°=10(cm ),DP =CD sin45°=10(cm ),∴DF =DP +PG +GF =DP +CH +AB =(10+10+5)(cm ),∴下降高度:DE ﹣DF =20+5﹣10﹣10﹣5=10﹣10=3.2(cm ).【知识点】解直角三角形的应用21.【分析】(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30度的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;(2)添加∠DCB=30°,求AC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30度的直角三角形三边的关系求AC的长.【解答】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.【知识点】圆周角定理、切线的性质、全等三角形的判定22.【分析】(1)①若所截矩形材料的一条边是BC,过点C作CF⊥AE于F,得出S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,证出△CHF为等腰三角形,得出AE=FG=6,HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG﹣HG=1,AG=AB﹣BG=5,得出S2=AE•AG=6×5=30;(2)在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,证出△CGF为等腰三角形,得出MG=BC=5,BM=CG,FG=CG,设AM=x,则BM=6﹣x,FM=GM+FG=GM+CG=BC+BM=11﹣x,得出S=AM×FM=x(11﹣x)=﹣x2+11x,由二次函数的性质即可得出结果.【解答】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;GAGGAGAGGAFFFFAFAF②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,即:AM=5.5时,FM=11﹣5.5=5.5,S的最大值为30.25.GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF【知识点】矩形的性质23.【分析】 (1)①分两种情形分别求解即可.②显然∠MAD 不能为直角.当∠AMD 为直角时,根据AM 2=AD 2﹣DM 2,计算即可,当∠ADM =90°时,根据AM 2=AD 2+DM 2,计算即可.(2)连接CD .首先利用勾股定理求出CD 1,再利用全等三角形的性质证明BD 2=CD 1即可.【解答】 解:(1)①AM =AD +DM =40,或AM =AD ﹣DM =20.②显然∠MAD 不能为直角.当∠AMD 为直角时,AM 2=AD 2﹣DM 2=302﹣102=800,∴AM =20或(﹣20舍弃).当∠ADM =90°时,AM 2=AD 2+DM 2=302+102=1000,∴AM =10或(﹣10舍弃).综上所述,满足条件的AM 的值为20或10.(2)如图2中,连接CD .由题意:∠D 1AD 2=90°,AD 1=AD 2=30,∴∠AD 2D 1=45°,D 1D 2=30, ∵∠AD 2C =135°,∴∠CD 2D 1=90°,∴CD 1==30,∵∠BAC =∠A 1AD 2=90°,∴∠BAC ﹣∠CAD 2=∠D 2AD 1﹣∠CAD 2,∴∠BAD 1=∠CAD 2,∵AB =AC ,AD 2=AD 1,∴△BAD 2≌△CAD 1(SAS ),∴BD 2=CD 1=30.【知识点】几何变换综合题24.【分析】(1)作EH ⊥BC于H,MQ⊥CD于Q ,设EF交MN于点O.证明△FHE≌△MQN(ASA),即可解决问题.(2)由题意:2a ≤MN ≤a,a≤EF≤a,当MN 的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.由k=3,MP=EF=3PE,推出==3,推出==2,由△PNF∽△PME,推出==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,接下来分两种情形①如图2中,当点N与点D重合时,点M恰好与B重合.②如图3中,当点N与C重合,分别求解即可.【解答】解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN (ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤a,a≤EF≤a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.GAGGAGAGGAFFFFAFAF(3)连接FN,ME .∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH =60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH =m,HE =m,∴HC=PH+PC=13m,∴tan∠HCE===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD ,∵∠B=∠D,∴△MEB ∽△CFD,∴==2,∴===,综上所述,a:b的值为或.【知识点】相似形综合题23587 5C23 尣!28413 6EFD 滽23671 5C77 屷35196 897C 襼.27690 6C2A 氪5Gxyf23948 5D8C 嶌GAGGAGAGGAFFFFAFAF。
2019年浙江省绍兴市中考数学试卷及答案解析(word版)

2019年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选,多选,错选,均不给分)1.﹣8的绝对值等于()A.8 B.﹣8 C.D.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×1093.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条4.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.6.如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③8.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.1010.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.1326二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:a3﹣9a=.12.不等式>+2的解是.13.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为cm.14.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.15.如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O 在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为.16.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣(2﹣)0+()﹣2.(2)解分式方程:+=4.18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表天数频数频率3 20 0.104 30 0.155 60 0.306 a 0.257 40 0.20A市七年级部分学生参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.19.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向,如图2.(1)求∠CBA的度数.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.22.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.23.对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.24.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).2019年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选,多选,错选,均不给分)1.﹣8的绝对值等于()A.8 B.﹣8 C.D.【考点】绝对值.【分析】根据绝对值的定义即可得出结果.【解答】解:﹣8的绝对值为8,故选A.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【考点】轴对称图形.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.4.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.【考点】几何体的展开图.【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B.5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【考点】概率公式.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.6.如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°【考点】圆周角定理.【分析】直接根据圆周角定理求解.【解答】解:连结OC,如图,∵=,∴∠BDC=∠AOB=×60°=30°.故选D.7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,② B.①,④ C.③,④ D.②,③【考点】平行四边形的判定.【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.8.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.【考点】解直角三角形.【分析】设BC=x,由含30°角的直角三角形的性质得出AC=2BC=2x,求出AB=BC= x,根据题意得出AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,由等腰三角形的性质得出AM=AD=x,在Rt△AEM中,由三角函数的定义即可得出结果.【解答】解:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD===;故选:B.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10【考点】二次函数的性质.【分析】根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.1326【考点】用数字表示事件.【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【解答】解:1×73+3×72+2×7+6=510,故选C.二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:a3﹣9a=a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).12.不等式>+2的解是x>﹣3.【考点】解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:3(3x+13)>4x+24,去括号,得:9x+39>4x+24,移项,得:9x﹣4x>24﹣39,合并同类项,得:5x>﹣15,系数化为1,得:x>﹣3,故答案为:x>﹣3.13.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为25cm.【考点】垂径定理的应用.【分析】设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,在RT△AOD 中利用勾股定理即可解决问题.【解答】解;如图,设圆的圆心为O,连接OA,OC,OC与AB交于点D,设⊙O半径为R,∵OC⊥AB,∵AD=DB=AB=20,在RT△AOD中,∵∠ADO=90°,∴OA2=OD2+AD2,∴R2=202+(R﹣10)2,∴R=25.故答案为25.14.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296元.【考点】一元一次方程的应用.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.15.如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为或.【考点】反比例函数与一次函数的交点问题;正方形的性质.【分析】根据点的选取方法找出点B、C、D的坐标,由两点间的距离公式表示出线段OA、OC的长,再根据两线段的关系可得出关于a的一元二次方程,解方程即可得出结论.【解答】解:依照题意画出图形,如图所示.∵点A的坐标为(a,﹣a)(a>0),∴点B(a,)、点C(﹣,)、点D(﹣,﹣a),∴OA==a,OC==.又∵原点O分对角线AC为1:2的两条线段,∴OA=2OC或OC=2OA,即a=2×或=2a,解得:a1=,a2=﹣(舍去),a3=,a4=﹣(舍去).故答案为:或.16.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为2或4﹣2.【考点】矩形的性质;翻折变换(折叠问题).【分析】当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF=DM解决问题,当直线l在直线EC下方时,由∠DEF1=∠BEF1=∠DF1E,得到DF1=DE,由此即可解决问题.【解答】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE、△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A、点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE﹣EM=2﹣2,∴DF=DM=4﹣2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF1=DE=2,综上所述DF的长为2或4﹣2.故答案为2或4﹣2.三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:﹣(2﹣)0+()﹣2.(2)解分式方程:+=4.【考点】实数的运算;解分式方程.【分析】(1)本题涉及二次根式化简、零指数幂、负整数指数幂3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)观察可得方程最简公分母为(x﹣1),将方程去分母转化为整式方程即可求解.【解答】解:(1)﹣(2﹣)0+()﹣2=﹣1+4=+3;(2)方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表天数频数频率3 20 0.104 30 0.155 60 0.306 a 0.257 40 0.20A市七年级部分学生参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)利用表格中数据求出总人数,进而利用其频率求出频数即可,再补全条形图;(2)利用样本中不少于5天的人数所占频率,进而估计该市七年级学生参加社会实践活动不少于5天的人数.【解答】解:(1)由题意可得:a=20÷01×0.25=50(人),如图所示:;(2)由题意可得:20000×(0.30+0.25+0.20)=15000(人),答:该市七年级学生参加社会实践活动不少于5天的人数约为15000人.19.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.【考点】一次函数的应用.【分析】(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.【解答】解:(1)暂停排水需要的时间为:2﹣1.5=0.5(小时).∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,∴排水孔排水速度是:900÷3=300m3/h;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,∴(2,450)在直线Q=kt+b上;把(2,450),(3.5,0)代入Q=kt+b,得,解得,∴Q关于t的函数表达式为Q=﹣300t+1050.20.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60m到达C点,测得点B在点C的北偏东60°方向,如图2.(1)求∠CBA的度数.(2)求出这段河的宽(结果精确到1m,备用数据≈1.41,≈1.73).【考点】解直角三角形的应用-方向角问题.【分析】(1)根据三角形的外角的性质、结合题意计算即可;(2)作BD⊥CA交CA的延长线于D,设BD=xm,根据正切的定义用x表示出CD、AD,根据题意列出方程,解方程即可.【解答】解:(1)由题意得,∠BAD=45°,∠BCA=30°,∴∠CBA=∠BAD﹣∠BCA=15°;(2)作BD⊥CA交CA的延长线于D,设BD=xm,∵∠BCA=30°,∴CD==x,∵∠BAD=45°,∴AD=BD=x,则x﹣x=60,解得x=≈82,答:这段河的宽约为82m.21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【考点】二次函数的应用.【分析】(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.22.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.【考点】全等三角形的应用;二元一次方程组的应用;三角形三边关系.【分析】(1)相等.连接AC,根据SSS证明两个三角形全等即可.(2)分两种情形①当点C在点D右侧时,②当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.23.对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.【考点】几何变换综合题.【分析】(1)根据平移的性质得出点A平移的坐标即可;(2)①连接CM,根据中心和轴对称的性质和直角三角形的判定解答即可;②延长BC交x轴于点E,过C点作CF⊥AE于点F,根据待定系数法得出直线的解析式进而解答即可.【解答】解:(1)∵点P(2,3)经1次斜平移后的点的坐标为(3,5),点A的坐标为(1,0),∴点A经1次平移后得到的点的坐标为(2,2),点A经2次平移后得到的点的坐标(3,4);(2)①连接CM,如图1:由中心对称可知,AM=BM,由轴对称可知:BM=CM,∴AM=CM=BM,∴∠MAC=∠ACM,∠MBC=∠MCB,∵∠MAC+∠ACM+∠MBC+∠MCB=180°,∴∠ACM+∠MCB=90°,∴∠ACB=90°,∴△ABC是直角三角形;②延长BC交x轴于点E,过C点作CF⊥AE于点F,如图2:∵A(1,0),C(7,6),∴AF=CF=6,∴△ACF是等腰直角三角形,由①得∠ACE=90°,∴∠AEC=45°,∴E点坐标为(13,0),设直线BE的解析式为y=kx+b,∵C,E点在直线上,可得:,解得:,∴y=﹣x+13,∵点B由点A经n次斜平移得到,∴点B(n+1,2n),由2n=﹣n﹣1+13,解得:n=4,∴B(5,8).24.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).【考点】四边形综合题.【分析】(1)根据坐标轴上点的坐标特征可求直线l1与x轴,直线l2与AB的交点坐标;(2)分三种情况:①若点A为直角顶点时,点M在第一象限;若点P为直角顶点时,点M在第一象限;③若点M为直角顶点时,点M在第一象限;进行讨论可求点M的坐标;(3)根据矩形的性质可求N点的横坐标x的取值范围.【解答】解:(1)直线l1:当y=0时,2x+3=0,x=﹣则直线l1与x轴坐标为(﹣,0)直线l2:当y=3时,2x﹣3=3,x=3则直线l2与AB的交点坐标为(3,3);(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M1(x,2x﹣3),过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x≤2.2019年7月12日。
2019年浙江省绍兴市中考数学试卷及答案

2019年浙江省绍兴市中考数学试卷及答案2019年浙江省绍兴市中考数学试卷⼀、选择题(本⼤题有10⼩题,每⼩题4分,共40分.)1.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣2.某市决定为全市中⼩学教室安装空调,今年预计投⼊资⾦126000000元,其中数字126000000⽤科学记数法可表⽰为()A.12.6×107B.1.26×108C.1.26×109D.0.126×10103.如图的⼏何体由六个相同的⼩正⽅体搭成,它的主视图是()A.B.C.D.4.为了解某地区九年级男⽣的⾝⾼情况,随机抽取了该地区100名九年级男⽣,他们的⾝⾼x(cm)统计如下:根据以上结果,抽查该地区⼀名九年级男⽣,估计他的⾝⾼不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.15 5.如图,墙上钉着三根⽊条a,b,C,量得∠1=70°,∠2=100°,那么⽊条a,b所在直线所夹的锐⾓是()A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a,10)在同⼀直线上,则a的值等于()A.﹣1 B.0 C.3 D.47.在平⾯直⾓坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()A.πB.πC.2πD.2π9.正⽅形ABCD的边AB上有⼀动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A 移动到点B的过程中,矩形ECFG的⾯积()A.先变⼤后变⼩B.先变⼩后变⼤C.⼀直变⼤D.保持不变10.如图1,长、宽均为3,⾼为8的长⽅体容器,放置在⽔平桌⾯上,⾥⾯盛有⽔,⽔⾯⾼为6,绕底⾯⼀棱进⾏旋转倾斜后,⽔⾯恰好触到容器⼝边缘,图2是此时的⽰意图,则图2中⽔⾯⾼度为()A.B.C.D.⼆、填空题(本⼤题有6⼩题,每⼩题5分,共30分)11.因式分解:x2﹣1=.12.不等式3x﹣2≥4的解为.13.我国的《洛书》中记载着世界上最古⽼的⼀个幻⽅:将1~9这九个数字填⼊3×3的⽅格内,使三⾏、三列、两对⾓线上的三个数之和都相等.如图的幻⽅中,字母m所表⽰的数是.14.如图,在直线AP上⽅有⼀个正⽅形ABCD,∠PAD=30°,以点B为圆⼼,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆⼼,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE 的度数为.15.如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD 的函数表达式是.16.把边长为2的正⽅形纸⽚ABCD分割成如图的四块,其中点O为正⽅形的中⼼,点E,F分别为AB,AD的中点.⽤这四块纸⽚拼成与此正⽅形不全等的四边形MNPQ(要求这四块纸⽚不重叠⽆缝隙),则四边形MNPQ的周长是.三、解答题(共8⼩题,第17~20⼩题每⼩题8分,第21⼩题10分,第22,23⼩题每⼩题8分,第24⼩题14分,共80分.)17.(8分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x为何值时,两个代数式x2+1,4x+1的值相等?18.(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千⽡时)关于已⾏驶路程x(千⽶)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千⽡时时汽车已⾏驶的路程.当0≤x≤150时,求1千⽡时的电量汽车能⾏驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已⾏驶180千⽶时,蓄电池的剩余电量.19.(8分)⼩明、⼩聪参加了100m跑的5期集训,每期集训结束时进⾏测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?⼩聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两⽅⾯,说说你的想法.20.(8分)如图1为放置在⽔平桌⾯l上的台灯,底座的⾼AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同⼀平⾯上.(1)转动连杆BC,CD,使∠BCD成平⾓,∠ABC=150°,如图2,求连杆端点D离桌⾯l的⾼度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌⾯l的⾼度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)21.(10分)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张⽼师要求添加条件后,编制⼀道题⽬,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是⼩明、⼩聪的对话:⼩明:我加的条件是BD=1,就可以求出AD的长⼩聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制⼀道题⽬(可以添线添字母),并解答.22.(12分)有⼀块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取⼀块矩形材料,其中⼀条边在AE上,并使所截矩形材料的⾯积尽可能⼤.(1)若所截矩形材料的⼀条边是BC或AE,求矩形材料的⾯积.(2)能否截出⽐(1)中更⼤⾯积的矩形材料?如果能,求出这些矩形材料⾯积的最⼤值;如果不能,说明理由.23.(12分)如图1是实验室中的⼀种摆动装置,BC在地⾯上,⽀架ABC是底边为BC的等腰直⾓三⾓形,摆动臂AD可绕点A 旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同⼀直线上时,求AM的长.②当A,D,M三点为同⼀直⾓三⾓形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.24.(14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F 分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最⼤值和最⼩值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.2019年浙江省绍兴市中考数学试卷答案1.A.2.B.3.A.4.D.5.B.6.C.7.B.8.A.9.D.10.A.11.(x+1)(x﹣1).12.x≥2.13.414.15°或45°.15.y=x.16.6+2或10或8+2.17.解:(1)原式=4×+1﹣4﹣2=﹣3;(2)x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x1=0,x2=4.18.解:(1)由图象可知,蓄电池剩余电量为35千⽡时时汽车已⾏驶了150千⽶.1千⽡时的电量汽车能⾏驶的路程为:千⽶;(2)设y=kx+b(k≠0),把点(150,35),(200,10)代⼊,得,∴,∴y=﹣0.5x+110,当x=180时,y=﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已⾏驶180千⽶时,蓄电池的剩余电量为20千⽡时.19.解:(1)这5期的集训共有:5+7+10+14+20=56(天),⼩聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,⼩聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前⾯两期相⽐;从测试成绩看,两⼈的最好成绩是都是在第4期出现,建议集训时间定为14天.20.解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD?sin60°=20(cm),∴DF=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降⾼度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10=3.2(cm).21.解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.22.解:(1)①若所截矩形材料的⼀条边是BC,如图1所⽰:过点C作CF⊥AE于F,S1=AB?BC=6×5=30;②若所截矩形材料的⼀条边是AE,如图2所⽰:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直⾓三⾓形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE?AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直⾓三⾓形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最⼤值为30.25.23.解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直⾓.当∠AMD为直⾓时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满⾜条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==30,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.24.解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正⽅形,∴FH=AB,MQ=BC,∵AB=CB,∴EH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤a,a≤EF≤a,∴当MN的长取最⼤时,EF取最短,此时k的值最⼤最⼤值=,当MN的最短时,EF的值取最⼤,此时k的值最⼩,最⼩值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE=m,∴HC=PH+PC=13m,∴tan∠HCE===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴==2,∴===,综上所述,a:b的值为或.。
(高清版)2019年浙江省绍兴市中考数学试卷

如果您喜欢这份文档,欢迎下载!祝成绩进步,学习愉快!数学试卷第1页(共26页)数学试卷第2页(共26页)如果您喜欢这份文档,欢迎下载!祝成绩进步,学习愉快!绝密★启用前浙江省绍兴市2019年中考试卷数学(本试卷满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭.卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,多选、错选,均不给分)1.5-的绝对值是()A .5B .5-C .15D .15-2.某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A .712.610⨯B .81.2610⨯C .91.2610⨯D .100.12610⨯3.如图的几何体由六个相同的小正方体搭成,它的主视图是()第3题图ABCD4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:组别(cm )160x <160170x ≤<170180x ≤<180x ≥人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是()A .0.85B .0.57C .0.42D .0.155.如图,墙上钉着三根木条a ,b ,C ,量得170∠︒=,2100∠︒=,那么木条a ,b 所在直线所夹的锐角是()第5题图A .5︒B .10︒C .30︒D .70︒6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于()A .1-B .0C .3D .47.在平面直角坐标系中,抛物线()()53y x x +-=经变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是()A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位8.如图,ABC △内接于⊙O ,65B ∠︒=,70C ∠︒=.若BC =则»BC的长为()第8题图A .πB .C .2πD .9.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积()毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共26页)数学试卷第4页(共26页)第9题图A .先变大后变小B .先变小后变大C .一直变大D .保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()图1图2第10题图A .245B .325CD卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:21x -=.12.不等式324x -≥的解为.13.我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m 所表示的数是.第13题图14.如图,在直线AP 上方有一个正方形ABCD ,30PAD ∠︒=,以点B 为圆心,AB 长为半径作弧,与AP 交于点A ,M ,分别以点A ,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则ADE ∠的度数为.题14题图15.如图,矩形ABCD 的顶点A ,C 都在曲线ky x =(常数0k >,0x >)上,若顶点D的坐标为(5,3),则直线BD 的函数表达式是.第15题图16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E ,F 分别为AB ,AD 的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是.第16题图三、解答题(本大题共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:214sin 60(2)122π-︒⎛⎫+---- ⎪⎝⎭如果您喜欢这份文档,欢迎下载!祝成绩进步,学习愉快!数学试卷第5页(共26页)数学试卷第6页(共26页)(2)x 为何值时,两个代数式21x +,41x +的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0150x ≤≤时,求1千瓦时的电量汽车能行驶的路程;(2)当150200x ≤≤时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.第18题图19.小明、小聪参加了100 m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.第19题图根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.(1)转动连杆BC ,CD ,使BCD ∠成平角,150ABC ∠︒=,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 再绕点C 逆时针旋转,使165BCD ∠︒=,如图3,问此时连杆端点D 离桌面l 的高度是增加还是减少?增加或减少了多少?(精确到0.1cm ,2 1.41≈3 1.73≈)图1图2图3第20题图21.在屏幕上有如下内容:如图,ABC △内接于⊙O ,直径AB 的长为2,过点C 的切线交AB 的延长线于点D .张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件30D ∠︒=,求AD 的长.请你解答.(2)以下是小明、小聪的对话:-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7页(共26页)数学试卷第8页(共26页)小明:我加的条件是1BD =,就可以求出AD 的长小聪:你这样太简单了,我加的是30A ∠︒=,连结OC ,就可以证明ACB V 与DCO V 全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.第21题图22.有一块形状如图的五边形余料ABCDE ,6AB AE ==,5BC =,90A B ︒∠=∠=,135C ∠︒=,90E ∠︒>,要在这块余料中截取一块矩形材料,其中一条边在AE 上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.第22题图23.(12分)如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC的等腰直角三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD =,10DM =.(1)在旋转过程中,①当A ,D ,M 三点在同一直线上时,求AM 的长.②当A ,D ,M 三点为同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由ABC △外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠︒=,260CD =,求2BD 的长.图1图2第23题图24.如图,矩形ABCD 中,AB a =,BC b =,点M ,N 分别在边AB ,CD 上,点E ,F分别在边BC ,AD 上,MN ,EF 交于点P ,记k MN EF =:.(1)若:a b 的值为1,当MN EF ⊥时,求k 的值.(2)若:a b 的值为12,求k 的最大值和最小值.(3)若k 的值为3,当点N 是矩形的顶点,60MPE ∠︒=,3MP EF PE ==时,求:a b 的值.第24题图如果您喜欢这份文档,欢迎下载!祝成绩进步,学习愉快!数学试卷第9页(共26页)数学试卷第10页(共26页)浙江省绍兴市2019年中考试卷数学答案解析卷Ⅰ(选择题)一、选择题1.【答案】A【解析】根据绝对值的性质求解.解:根据负数的绝对值等于它的相反数,得|5|5-=.故选:A.【考点】绝对值2.【答案】B【解析】科学记数法的表示形式为10na ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.解:数字126000000科学记数法可表示为81.2610⨯元.故选:B.【考点】科学计数法3.【答案】A【解析】根据从正面看得到的视图是主视图,可得答案.解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意,故选:A.【考点】三视图4.【答案】D【解析】先计算出样本中身高不低于180 cm 的频率,然后根据利用频率估计概率求解.解:样本中身高不低于180 cm 的频率150.15100==,所以估计他的身高不低于180 cm 的概率是0.15.故选:D.【考点】统计,等可能事件的概率5.【答案】B【解析】根据对顶角相等求出3∠,根据三角形内角和定理计算,得到答案.解:32100∠∠︒==,∴木条a ,b 所在直线所夹的锐角1801007010︒︒︒︒=--=,故选:B.【考点】对顶角相等,三角形内角和为180°6.【答案】C【解析】利用()1,4,()2,7两点求出所在的直线解析式,再将点(,10)a 代入解析式即可;解:设经过()1,4,()2,7两点的直线解析式为y kx b +=,∴472k bk b =+⎧⎨=+⎩∴31k b =⎧⎨=⎩,∴31y x +=,数学试卷第11页(共26页)数学试卷第12页(共26页)将点(,10)a 代入解析式,则3a =;故选:C.【考点】一次函数及其图象,待定系数法7.【答案】B【解析】根据变换前后的两抛物线的顶点坐标找变换规律.解:2(5)(3)(1)16y x x x =+-=+-,顶点坐标是(1,16)--.2(3)(5)(1)16y x x x =+-=--,顶点坐标是(1,16)-.所以将抛物线(5)(3)y x x =+-向右平移2个单位长度得到抛物线(3)(5)y x x =+-,故选:B.【考点】二次函数及其图象,图形的平移8.【答案】A【解析】连接OB ,OC .首先证明OBC △是等腰直角三角形,求出OB 即可解决问题.解:连接OB ,OC.∵180180657045A ABC ACB ∠=-∠-∠=-︒-︒=︒︒︒,∴90BOC ︒∠=∴BC =∴2OB OC ==∴»BC的长为2902360ππ⋅⋅=,故选:A.【考点】三角形内角和,圆周角,圆心角,弧长公式9.【答案】D【解析】由BCE FCD △∽△,根据相似三角形的对应边成比例,可得CF CE CD BC ⋅⋅=,即可得矩形ECFG 与正方形ABCD 的面积相等.解:∵正方形ABCD 和矩形ECFG 中,90DCB FCE ︒∠=∠=,90F B ︒∠=∠=,∴DCF ECB ∠=∠,∴BCE FCD △∽△,∴CF CDCB CE=,∴CF CE CB CD ⋅⋅=,∴矩形ECFG 与正方形ABCD 的面积相等.故选:D.【考点】正方形,矩形,相似三角形10.【答案】A【解析】设DE x =,则8AD x -=,由长方体容器内水的体积得出方程,解方程求出DE ,再由勾股定理求出CD ,过点C 作CF BG ⊥于F ,由CDE BCF △∽△的比例线段求得结果即可.解:过点C 作CF BG ⊥于F,如图所示:设DE x =,则8AD x -=,根据题意得:1(88)333362x -+⨯⨯=⨯⨯,解得:=4x ,∴=4DE ,∵90E ∠=︒,由勾股定理得:5CD ==,∵90BCE DCF ∠=∠=︒,∴DCE BCF ∠=∠,∵90DEC BFC ∠=∠=︒,∴CDE BCF △∽△,如果您喜欢这份文档,欢迎下载!祝成绩进步,学习愉快!数学试卷第13页(共26页)数学试卷第14页(共26页)∴CE CDCF CB =,即358CF =,∴245CF =.故选:A.【考点】E 角形面积,勾股定理,相似三角形卷Ⅱ(非选择题)二、填空题11.【答案】(1)(1)x x +-【解析】原式利用平方差公式分解即可.解:原式(1)(1)x x =+-.故答案为:(1)(1)x x +-.【考点】因式分解,平方差公式12.【答案】2x ≥【解析】先移项,再合并同类项,把x 的系数化为1即可.解:移项得,342x +≥,合并同类项得,36x ≥,把x 的系数化为1得,2x ≥.故答案为:2x ≥.【考点】一元一次不等式13.【答案】4【解析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15258--=,∴15834m =--=.故答案为:4【考点】一元一次方程14.【答案】15°或45°【解析】分点E 与正方形ABCD 的直线AP 的同侧、点E 与正方形ABCD 的直线AP 的两侧两种情况,根据正方形的性质、等腰三角形的性质解答.解:∵四边形ABCD 是正方形,∴AD AE =,90DAE ∠=︒,∴180903060BAM ∠=︒-︒-︒=︒,AD AB =,当点E 与正方形ABCD 的直线AP 的同侧时,由题意得,点E 与点B 重合,∴45ADE ∠=︒,当点E 与正方形ABCD 的直线AP 的两侧时,由题意得,E A E M '=',∴AE M '△为等边三角形,∴60E AM ∠'=︒,∴36012090150DAE ∠'=︒-︒-︒=︒,∵AD AE =',∴15ADE ∠'=︒,故答案为:15°或45°.【考点】正方形,等腰三角形,等边三角形,圆15.【答案】35y x =【解析】利用矩形的性质和反比例函数图象上点的坐标特征得到,33k A ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫ ⎪⎝⎭,所以,35k k B ⎛⎫ ⎪⎝⎭,然后利用待定系数法求直线BD 的解析式.数学试卷第15页(共26页)数学试卷第16页(共26页)解:∵(5,3)D ,∴,33kA ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫ ⎪⎝⎭,∴,35k k B ⎛⎫ ⎪⎝⎭,设直线BD 的解析式为y mx n =+,把(5,3)D ,,35k k B ⎛⎫⎪⎝⎭代入得5335n k k m n π+=⎧⎪⎨+=⎪⎩,解得350m n ⎧=⎪⎨⎪=⎩,∴直线BD 的解析式为35y x =.故答案为35y x =.【考点】反比例函数及其图象,矩形,一次函数及其图象,待定系数法,整体思想16.【答案】6+或10或8+【解析】先根据题意画出图形,再根据周长的定义即可求解.解:如图所示:图1的周长为1236+++=+;图2的周长为141410+++=;图3的周长为358++=+故四边形MNPQ的周长是6+或10或8+故答案为:6+或10或8+【考点】等腰直角三角形,平行四边形,矩形,图形的整合三、解答题17.【答案】解:(1)原式341432=⨯+--=-.(2)2141x x +=+,240x x -=,(4)0x x -=,10x =,24x =.【解析】(1)根据实数运算法则解答;(2)利用题意得到2141x x +=+,利用因式分解法解方程即可.【考点】锐角三角函数,零指数幂,负整数指数幂,二次根式化简,解一元二次方程,因式分解18.【答案】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15066035=-千米;(2)设()0y kx b k =+≠,把点(150,35),(200,10)代入,得1503520010k b k b +=⎧⎨+=⎩,∴k 0.5b 110=-⎧⎨=⎩,∴0.5110y x =-+,当180x =时,0.518011020y =-⨯+=,答:当150200x ≤≤时,函数表达式为0.5110y x =-+,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【解析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把180x =代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【考点】一次函数及其图象,待定系数法如果您喜欢这份文档,欢迎下载!祝成绩进步,学习愉快!数学试卷第17页(共26页)数学试卷第18页(共26页)19.【答案】(1)这5期的集训共有:5710142056++++=(天),小聪5次测试的平均成绩是:(11.8811.7611.6111.5311.62)511.68++++÷=(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好成绩是都是在第4期出现,建议集训时间定为14天.【解析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【考点】条形统计图,折线统计图,平均数,数据的分析20.【答案】(1)如图2中,作BO DE ⊥于O.图2∵90OEA BOE BAE ∠=∠=∠=︒,∴四边形ABOE 是矩形,∴90OBA =︒∠,∴1509060DBO ∠=︒-︒=︒,∴sin 60OD BD ︒=⋅=,∴539.6(cm)DF OD OE OD AB =+=+=≈.(2)作DF l ⊥于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG是矩形,图3∵60CBH ∠=︒,90CHB ∠=︒,∴30BCH ∠=︒,∵165BCD ∠=︒,45DCP ∠=︒,∴sin 60CH BC ︒=⋅=,sin 45DP CD ︒=⋅=,∴5)(cm)DF DP PG GF DP CH AB =++=++=,∴下降高度:55 3.2(cm)DE DF ⋅=-=.【解析】(1)如图2中,作BO DE ⊥于O .解直角三角形求出OD 即可解决问题.(2)作DF l ⊥于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG是矩形,求出DF ,再求出DF -DE 即可解决问题.【考点】:锐角三角函数,解直角三角形,矩形21.【答案】(1)连接OC ,如图,∵CD 为切线,∴OC CD ⊥,∴90OCD ︒∠=∵30D ︒∠=∴22OD OC ==∴123AD AO OD =+=+=(2)添加30DCB ∠=︒,求AC 的长,解:∵AB 为直径,∴90ACB ∠=︒∵90ACB OCB ∠+∠=︒,90OCB DCB ∠+∠=︒数学试卷第19页(共26页)数学试卷第20页(共26页)∴ACO DCB ∠=∠∵ACO A ∠=∠∴30A DCB ∠=∠=︒在Rt ACB △中,112BC AB ==,∴AC ==.【解析】(1)连接OC ,如图,利用切线的性质得90OCD ∠=︒,再根据含30度的直角三角形三边的关系得到2OD =,然后计算OA OD +即可;(2)添加30DCB ∠=︒,求AC 的长,利用圆周角定理得到90ACB ∠=︒,再证明30A DCB ∠=∠=︒,然后根据含30度的直角三角形三边的关系求AC 的长.【考点】直线与圆相切,解直角三角形,线段、角度的和差,相似三角形等22.【答案】(1)①若所截矩形材料的一条边是BC ,如图1所示:过点C 作CF AE ⊥于F ,16530S AB BC =⋅=⨯=;②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点C 作CH FG ⊥于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,∵135C ∠=︒,∴45FCH ∠=︒,∴CHF △为等腰直角三角形,∴6AE FG ==,5HG BC ==,BG CH FH ==,∴651BG CH FH FG HG ===-=-=,∴615AG AB BG =-=-=,∴*26530S AE AG ==⨯=;(2)能;理由如下:在CD 上取点F ,过点F 作FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM ⊥于G ,则四边形ANFM 为矩形,四边形BCGM 为矩形,∵135C ∠=︒,∴45FCG ∠=︒,∴CGF △为等腰直角三角形,∴5MG BC ==,BM CG =,FG DG =,设AM x =,则6BM x =-,∴11FM GM FG GM CG BC BM x =+=+=+=-,∴22(11)11( 5.5)30.25S AM FM x x x x x =⨯=-=-+=-+∴当 5.5x =时,S 的最大值为30.25.图1图2图3【解析】(1)①若所截矩形材料的一条边是BC ,过点C 作CF AE ⊥于F ,得出16530S AB BC =⋅=⨯=;②若所截矩形材料的一条边是AE ,过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点C 作CH FG ⊥于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,证出CHF △为等腰三角形,得出6AE FG ==,5HG BC ==,BG CH FH ==,求出1BG CH FH FG HG ===-=,5AG AB BG =-=,得出26530S AE AG =⋅=⨯=;(2)在CD 上取点F ,过点F 作FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM⊥于G ,则四边形ANFM 为矩形,四边形BCGM 为矩形,证出CGF △为等腰三角形,得出5MG BC ==,BM CG =,FG DG =,设AM x =,则6BM x =-,11FM GM FG GM CG BC BM x=+=+=+=-,得出21111S AM FM x x x x =⨯=-=-+(),由二次函数的性质即可得出结果.【考点】矩形,等腰直角三角形,二次函数最值问题,构造函数思想如果您喜欢这份文档,欢迎下载!祝成绩进步,学习愉快!数学试卷第21页(共26页)数学试卷第22页(共26页)23.【答案】解:(1)①40AM AD DM =+=,或20.AM AD DM =-=②显然MAD ∠不能为直角.当AMD ∠为直角时,222223010800AM AD DM =-=-=,∴AM =或(-舍弃).当90ADM ∠=︒时,2222230101000AM AD DM =+=+=,∴AM =-.综上所述,满足条件的AM的值为.(2)如图2中,连接CD.由题意:1290D AD ∠=︒,1230AD AD ==,∴2145AD D ︒∠=,12D D =,∵2135AD C ︒∠=,∴1290CD D ︒∠=,∴1CD ==∵2190BAC A AD ∠=∠=︒,∴2212BAC CAD D AD CAD ∠-∠=∠-∠,∴12BAD CAD ∠=∠,∵AB AC =,21AD AD =,∴21()BAD CAD SAS V V ≌,∴21BD CD ==【解析】(1)①分两种情形分别求解即可.②显然MAD ∠不能为直角.当AMD ∠为直角时,根据222AM AD DM =-,计算即可,当90ADM ∠=︒时,根据222AM AD DM =+,计算即可.(2)连接CD .首先利用勾股定理求出1CD ,再利用全等三角形的性质证明21BD CD =即可.【考点】线段、角的和差,勾股定理,等腰直角三角形,全等三角24.【答案】(1)如图1中,图1作EH BC ⊥于H ,MQ CD ⊥于Q ,设EF 交MN 于点O .∵四边形ABCD 是正方形,∴FH AB =,MQ BC =,∵AB CB =,∴EH MQ =,∵EF MN ⊥,∴90EON ∠=︒,∵90ECN ∠=︒,∴1+80MNQ CEO ∠∠=︒,1+80FEH CEO ∠∠=︒,∴FEH MNQ ∠=∠,∵90EHF MQN ∠=∠=︒∴()FHE MQN ASA V V ≌∴MN EF =∴k MN =,1EF =.(2)∵:1:2a b =,数学试卷第23页(共26页)数学试卷第24页(共26页)∴2b a =,由题意:2a MN,a EF ,∴当MN 的长取最大时,EF 取最短,此时k的值最大,最大值=,当MN 的最短时,EF 的值取最大,此时k.(3)连接FN ,ME .∵3k =,3MP EF PE ==,∴3MN EFPM PE ==,∴2PN PFPM PE==,∵FPN EPM ∠=∠,∴PNF PME V V ∽,∴2NF PNME PM==,//NF ME 设2PE m =,则4PF m =,6MP m =,12NP m =,①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.作FH BD ⊥于H.图2∵60MPE FPH ∠=∠=︒,∴2PH m =,FH =,10PH m =,∴5a AB FHb AD HD ===②如图3中,当点N 与C 重合,作EH MN ⊥于H .则PH m =,HE =,图3∴13HC PH PC m =+=,∴tan 13MB HE HCE BC HC ∠=--,∵ME FC ∥,∴MEB FCB CFD ∠=∠=∠,∵B D ∠=∠,∴MEB CFD V V ≌,∴2CD FCMB ME==,∴213a CD MBb BD BC ---,综上所述,:a b 的值为35或2313.【解析】(1)作EH BC ⊥于H ,MQ CD ⊥于Q ,设EF 交MN 于点O .证明FHE MQN ASA △≌△(),即可解决问题.(2)由题意:2a MN ≤,a EF ≤,当MN 的长取最大时,EF 取最短,此时k的值最大最大值,当MN 的最短时,EF 的值取最大,此时k 的值最小,最小值为255.(3)连接FN ,ME .由3k =,3MP EF PE ==,推出=3MN EF PM PE -,推出2PN PFPM PE==,由PNF PME △∽△,推出2NF PNME PM==,ME NF ∥,设2PE m =,则4PF m =,6MP m =,12NP m =,接下来分两种情形①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.②如图3中,当点N 与C 重合,分别求解即可.如果您喜欢这份文档,欢迎下载!祝成绩进步,学习愉快!【考点】全等三角形,勾股定理,平行线之间距离,锐角三角函数,解直角三角形,相似三角形数学试卷第25页(共26页)数学试卷第26页(共26页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年浙江省绍兴市初中毕业、升学考试数学(满分150分,考试时间120分钟)(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1.(2019年浙江省绍兴市,第1题,4分)5-的绝对值是 A.5 B.-5 C.51 D.51- 【答案】A【解析】根据绝对值可知,-5的绝对值是5,故选A . 【知识点】绝对值2.(2019年浙江省绍兴市,第2题,4分 )某市决定为全市中小学生教室安装空调,今年预计投入资金126 000000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯ 【答案】B【解析】数字126000000用科学记数法表示,正确的是1.26×108.故选:B . 【知识点】科学记数法3.(2019年浙江省绍兴市,第3题,4分 ) 如图的几何体由6个相同的小正方体搭成,它的主视图是【答案】A【解析】从正面看易得第一层有2个正方形,第二层有3个正方形.故选:A . 【知识点】三视图4.(2019年浙江省绍兴市,第4题,4分 ) 为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是 A.0.85 B. 0.57 C. 0.42 D.0.15【答案】D【解析】结合表格,根据频率=频数÷样本容量,即身高不低于180cm 的频率是15÷100=0.15,再用频率估计概率进行解答。
【知识点】用频率估计概率5.(2019年浙江省绍兴市,第5题,4分 )如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°【答案】B【解析】将木条a 和b 延长交于一点P ,构造一个三角形,由三角形的内角和定理可知∠P =180°-100°-70°=10°。
【知识点】对顶角和三角形内角和定理6.(2019年浙江省绍兴市,第6题,4分 ) 若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 4 【答案】C【解析】设直线的解析式为y=kx+b (k≠0),A (1,4)、B (2,7),得472k b k b =+⎧⎨=+⎩,解得31k b =⎧⎨=⎩,得直线的解析式为y=3x+1,把点C (a ,10)代入中,得a=3,故选C 。
【知识点】一次函数图象上点的坐标特征,待定系数法,7.(2019年浙江省绍兴市,第8题,4分 )在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位 【答案】B【解析】y =(x +5)(x ﹣3)=(x +1)2﹣16,顶点坐标是(﹣1,﹣16).y =(x +3)(x ﹣5)=(x ﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y =(x +5)(x ﹣3)向右平移2个单位长度得到抛物线y =(x +3)(x ﹣5),故选:B . 【知识点】二次函数图象与几何变换8.(2019年浙江省绍兴市,第题,4分 )如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为A.πB.π2C.π2D.π22【答案】A【思路分析】先求出∠A 的度数为45°,连接OB ,OC ,根据圆周角定理求出∠BOC =2∠A =90°,根据勾股定理可求半径为2,继而运用弧长公式求出弧BC 的长度. 【解题过程】在△ABC 中,得∠A =180°-∠B-∠C =45°, 连接OB ,OC ,则∠BOC =2∠A =90°, 设圆的半径为r ,由勾股定理,得22r r +=(22)2,解得r=2, 所以弧BC 的长为902180π⨯=π. 【知识点】圆周角定理;勾股定理;弧长的计算9.(2019年浙江省绍兴市,第9题,4分)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积 A.先变大后变小 B.先变小后变大 C.一直变大 D.保持不变【答案】D【思路分析】易证∠B=∠F ,∠BCE=∠FCD ,以及有两个角对应相等可得△BCE ∽△FCD ,依据相似三角形的性质可以的到AB•CD=FC•CE ,即可证得矩形ECFG 与矩形ABCD 的面积相等. 【解题过程】∵四边形ABCD 和四边形ECFG 是矩形,∴∠B=∠F=∠BCD=∠ECF=90°,又∵∠BCE+∠ECD=∠ECD+∠FCD=90°, ∴∠BCE=∠FCD ,∴△BCE ∽△FCD ;∴BC CFEC CD=,∴BC•CD=FC•CE ,∴矩形AEFG 与矩形ABCD 的面积相等,故选D 【知识点】矩形的性质及相似三角形的综合应用.10.(2019年浙江省绍兴市,第10题,4分 )如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为 A.524 B.532C.173412D.173420【答案】A【思路分析】设DM=x ,则CM=8-x ,由长方体容器内水的体积得出方程,解方程求出DM ,再由勾股定理求出BM ,再利用相似三角形的性质可求出水平高度. 【解题过程】如图所示:设DM =x ,则CM =8﹣x , 根据题意得:(8﹣x +8)×3×3=3×3×5, 解得:x =4,∴DM =6,∵∠D =90°,由勾股定理得:BM 222243BD DM +=+=5, 过点B 作BH ⊥AH ,∵∠HBA+∠ABM =∠ABM+∠ABM =90°, ∴∠HBA+=∠ABM ,所以Rt △ABH ∽△MBD , ∴BH BD AB BM =,即385BH =,解得BH =524,即水面高度为524.【知识点】勾股定理,相似三角形的应用二、填空题(本大题有6个小题,每小题5分,共30分)11.(2019年浙江省绍兴市,第11题,5分 )因式分解:=-12x ▲ . 【答案】(x+1)(x-1)【解析】利用平方差公式分解得,原式=(x+1)(x-1). 故答案为:(x+1)(x-1). 【知识点】因式分解-运用公式法12.(2019年浙江省绍兴市,第12题,5分 )不等式423≥-x 的解为 ▲ . 【答案】x≥2【解析】移项得3x≥6,解得x≥2 【知识点】解一元一次不等式13.(2019年浙江省绍兴市,第13题,5分)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是▲ .【答案】4【解析】根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,∴m=15﹣8﹣3=4.故答案为:4【知识点】有理数的加减法14.(2019年浙江省绍兴市,第14题,5分)如图,在直线AP上方有一个正方形ABCD,∠PAD=30°,以点B为圆心,AB为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为▲ .【答案】15°或45°【解析】因为∠PAD=30°,以点B为圆心,AB为半径作弧,与AP交于点A,M,而∠BAM=60°,所以△BAM 是等边三角形;又以点A,M为圆心,AM长为半径作弧,交点有两个E或B有两种情况:①由题意△AME是等边三角形,所以∠EAM=60°,所以∠DAE=30°+120°=150°,又AD=AM=AE,所以∠ADE=∠AED=12(180°-150°)=15°;②点E与B重合,所以∠ADB(E)=45°. 【知识点】等边三角形,正方形等15.(2019年浙江省绍兴市,第15题,5分)如图,矩形ABCD的顶点A,C都在曲线kyx(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是▲ .【答案】y=3 5 x【解析】设A (m ,3),C (5,n ),则B (m ,n ),∵点A 、C 在双曲线xky =上,∴3m=5n ,即35n m =;设直线BD 的解析式为y=kx+b (k≠0),则有35k b n mk b=+⎧⎨=+⎩,则(m-5)k=n-3,则k=333555m n m m --==-- 3(5)55m m --=35,把k=35代入5k+b=3中,得b=0,故直线BD 的函数表达式是y=35x . 【知识点】反比例函数与几何图形,反比例函数的解析式,一次函数的解析式。
16.(2019年浙江省绍兴市,第16题,5分 ).把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .【答案】10或8+22或6+22【解析】通过动手操作可得如图所示,再根据周长的定义即可求解.图1的周长为1+2+3+22=6+22;图2的周长为1+4+1+4=10; 图3的周长为3+5+2+=2.故四边形MNPQ 的周长是210或2. 故答案为:2或10或2.【知识点】正方形,勾股定理,平面镶嵌(密铺)三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程) 17.(2019年浙江省绍兴市,第17题,8分 ) (1)计算:12)21()2(60sin 42----+︒-π【思路分析】直接利用特殊角的三角函数值以及负指数幂的性质和零指数幂的性质分别化简得出答案.【解题过程】【知识点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值 (2)x 为何值时,两个代数式14,12++x x 的值相等? 【思路分析】通过题目中的等量关系列方程,解方程即可.【解题过程】【知识点】解一元二次方程-因式分解法18.(2019年浙江省绍兴市,第18题,8分 )如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【思路分析】(1)由图象可知:汽车行驶150千米,剩余电量35千瓦时,耗电量为(60-35)千瓦时,从而可求出1千瓦时的电量汽车能行驶的路程;(2)设y =kx +b (k ≠0),把(150,35),(200,100)坐标代入可得:k =﹣0.5,b =110,求出解析式;再求x =180时,可得y 的值. 【解题过程】【知识点】一次函数的应用.19.(2019年浙江省绍兴市,第19题,8分)小明、小聪参加了100m跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【思路分析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【解题过程】【知识点】折线统计图;条形统计图;算术平均数.20.(2019年浙江省绍兴市,第20题,8分 如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.(1)转动连杆BC ,CD ,使∠BCD 成平角,∠ABC =150°,如图2,求连杆端点D 离桌面l 的高度DE . (2)将(1)中的连杆CD 再绕点C 逆时针旋转,使∠BCD =165°,如图3,问此时连杆端点D 离桌面l 的高度是增加还是减少?增加或减少了多少?(精确到0.1cm ,参考数据:73.13,41.12≈≈)【思路分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF ﹣DE 即可解决问题. 【解题过程】【知识点】解直角三角形及其应用.21.(2019年浙江省绍兴市,第21题,10分)在屏幕上有如下内容:如图,△ABC内接于圆O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答0(1)在屏幕内容中添加条件∠D=30°,求AD的长,请你解答.(2)以下是小明,小聪的对话:参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.【思路分析】(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30度的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;(2)添加∠DCB=30°,求AC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30度的直角三角形三边的关系求AC的长.【解题过程】【知识点】全等三角形的判定;圆周角定理;切线的性质.22.(2019年浙江省绍兴市,第22题,12分).有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°.要在这块余料中截取一块矩形材料,其中一边在AE上,并使所截矩形的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.【思路分析】(1)①以BC为边向CF⊥AE,如图1,可求出AB和BC的长,从而可求出所截矩形材料的面积;②以AE为矩形边,作EF⊥AE交CD于F,再过F作FG⊥AB交AB于G,如图2,要求AG的长,可过C作CH⊥FG,得四边形BCHG是矩形,△CFH是等腰三角形,根据题意可求出BG,即可求出AG的长,从而可求出矩形材料AGFE的面积;(2)假设能截出,可在CD上取点F,过点F作FM⊥AB交于点M,FN⊥AE交于点N,再过点C作CG⊥FM,如图3,从而可得四边形AMFN,BCGM为矩形,△CGF为等腰直角三角形;根据题意可设AM=x,则BM=6-x,从而可用含x的式子表示出FM的长,再利用矩形的面积建立二次函数关系,再利用二次函数的性质进行解答即可.【解题过程】【知识点】四边形的综合应用及二次函数的应用23.(2019年浙江省绍兴市,第题,4分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂长AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中:①当A,D,M三点在同一直线上时,求AM的长;②当A,D,M三点在同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【思路分析】(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2﹣DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.【解题过程】【知识点】等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识24.(2019年浙江省绍兴市,第24题,14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD 上,点E,F分别在BC,AD上,MN,EF交于点P,记k=MN∶EF.(1)若a∶b的值是1,当MN⊥EF时,求k的值.(2)若a ∶b 的值是21,求k 的最大值和最小值. (3)若k 的值是3,当点N 是矩形的顶点,∠MPE=60°,MP=EF=3PE 时,求a ∶b 的值.【思路分析】(1)因为a ∶b 的值是1,从而可得四边形ABCD 是正方形;可过M 作MQ ⊥CD ,FH ⊥BC ,由题意可证明△FHE ≌△MQN ,从而可得MN =EF ,从而可求出k 的值.(2)由a ∶b 的值是21,可得b=2a ,要求k 的最大值和最小值,只要求出MN 和EF 的取值范围,由题意可知MN 的取值范围是2a≤MN≤5a ,EF 的取值范围是a≤EF≤5a .所以要求k 的最大值,则MN 取最长,EF 最短;要求k 的最小值,则MN 取最短,EF 最长从而可求出k 的最大值和最小值.(3)连接FN ,ME .由k =3,MP =EF =3PE ,得MN EF PM PE =3,得PN PM =PF PE =2,由△PNF ∽△PME ,得PN PM=PF PE =2,ME ∥NF ,设PE =2m ,则PF =4m ,MP =6m ,NP =12m ,再分两种情形:①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.②如图3中,当点N 与C 重合,分别求解即可.【解题过程】【知识点】正方形和矩形的有关性质;相似三角形的判定和性质等。