动量守恒定律--弹簧模型的应用

合集下载

高三总复习物理课件 动量守恒中的三类典型模型

高三总复习物理课件 动量守恒中的三类典型模型
动量守恒中的三类典型模型
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A

弹簧类型题

弹簧类型题

弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。

动量守恒典型模型

动量守恒典型模型
动量守恒定律的典型模型及其应用
一、碰撞类。 二、子弹打木块类。 三、弹簧类。 四、人船模型类。
一、碰撞类(区分弹性碰撞和非弹性碰撞)
V1
' 1 1
V2=0 弹性碰撞
' 2 2
m1v1 m v m v
(m1 m2 ) v v1 m1 m2
' 1
1 1 1 2 '2 '2 m1v1 m1v1 m2v2 2 2 2
动能损失为
1 1 1 2 2 2 E= m1v10 m2 v 20 m1 m2 v 2 2 2 m1m1 2 v10 v20 2m1 m2
例1
如图所示,车厢长度L,质量为M,静止于光滑水平 面上,车厢内有一质量为m的物体以速度v向右运动, 与车厢壁来回碰撞n次后,静止于车厢中,这时车厢 的速度为:学.科.网 A v,水平向右 B 0 v C mv/(m+M),水平向右 D mv/(m-M),水平向右
学.科.网
θ
斜面和小物块组成的 系统在整个运动过程中都不受 水平方向外力,故系统在 水平方向上动量守恒。
1.如图所示:质量为m长为a的汽车由静止开始从 质量为M、长为b的平板车一端行至另一端时, 汽车和平板车的位移大小各为多少?(水平地面 光滑) M(b-a)/M+m; m(b-a)/M+m 2.质量为m半径为R的小球,放在半径2R、质 量相 同的大空心球壳内,小球开始静止在光滑 水平面上,当小球从图示位置无初速地沿内壁 滚到最低点时,大球移动的距离多大? R/3
v’2
m 2 (v0 2 gH ) 2 h 2 gM 2
二、滑块类
【例2】长木板质量为M, 有一质量为m的物块 (可以看作是质点)以水平速度v0从木板的左端 滑上。他们间的动摩擦因素为μ,当相对静止时, 物快仍在木板上. (M>m)

动量守恒定律的典型模型

动量守恒定律的典型模型
v0
M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2

2
解①、②两式得 x
Mv02

(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?

动量守恒定理应用之滑块子弹打木块模型

动量守恒定理应用之滑块子弹打木块模型

动量守恒定理应用之滑块子弹打木块模型动量守恒定理应用之滑块、子弹打木块模型动量守恒定理应用的几种模型分析动量守恒定律中常常涉及这样几种模型:人船模型,子弹打木块模型,滑块模型,弹簧模型等1人船模型:这是一种通过平均动量守恒来解决的问题。

解决问题时,画一个物体位移关系的草图,找出物体之间的位移关系。

【例1】质量为m的小船长为l浮在静水中。

开始时质量为m的人站在船头,人和船均处于静止状态。

若此人从船头走到船尾,不计水的阻力,则船将前进的距离为a、 ml/(m+m)b、ml/(m+m)c、ml/(m-m)d、ml/(m-m)【解析】以人和船组成的系统为研究对象,由于人从船头走向船尾,系统在水平方向上不受外力作用,所以水平方向动量守恒,人起步前人和船均静止系统的总动量为零。

以河岸为参考系有0=mv船→岸+mv人→岸人走船走人停船停。

整个过程中,每一时刻系统都满足动量守恒定律,位移x=v平均t,所以0=ml船→岸+ml人→岸,根据位移关系可知l=l 船→岸+l人→岸,解得l船→岸=ml/(m+m)【答案】a人船模型通常涉及速度。

在求解对象时,我们必须分析它与哪个参考系有关。

如果给定的速度不是相同的参考系,则必须将其转换为相同的参考系。

2.子弹击中木块模型:这类问题以系统为研究对象,水平方向满足动量守恒条件。

然而,由于摩擦,系统的机械能不守恒,损失的机械能等于摩擦和相对位移的乘积。

解决问题时最好画一个运动草图,物体位移之间的关系非常直观。

【例题2】:质量为m、长为l的木块静止在光滑水平面上,现有一质量为m的子弹以水平初速v0射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。

【分析】:如图所示,子弹穿过木块的阻力为f,木块的速度为V,位移为为s,则子弹位移为(s+l)以子弹木块为系统,由动量守恒定律得:mv0=mv+mv(1)动能定理中的2L,对于子弹-f(s+L)=1mv2?1mv0(2)22v0vs对于木块FS=1mv2?0(3)2m2m2由①式得v=m(v0?v)代入③式有fs=1m?m2(v0?v)2④11111 M22② + ④ 得到FL=1mv0?mv2?mv2?mv0?{mv2?m[(v0?v)]2}222222m注意:这类问题存在临界条件,即子弹射出和留在滑块中。

动量守恒定律应用2:弹簧模型

动量守恒定律应用2:弹簧模型
F
VP>VQ 弹簧一直缩短
弹簧最短时 VP=VQ
弹簧原长时 弹性势能为零
变式训练
如图所示,位于光滑水平桌面上的小滑块P和Q都 可视为质点,质量相等,都为m。P、Q与轻质弹簧 相连,弹簧处于原长。设P静止, Q以初速度v0向 右运动,在弹簧拉伸过程中,弹簧具有的最大弹性 势能是多少?
V0
弹簧模型规律
1滑块和木板 2弹簧模型 3光滑1/4圆轨道轨道 (某一方向的动量守恒) 4人船模型 (平均动量守恒)
动量和机械能守恒情况常见模型图
m
v0
A
B
O
h
R
M
b
a
动量守恒定律
一、动量(P)
1、概念: 物体的质量m和速度v的乘积叫做动量。
2、定义式: P = m v
3、单位: 千克米每秒,符号是 kg ·m/s
m1=2kg的物块以v1=2m/s的初速冲向
质量为m2=6kg静止的光滑圆弧面斜
1
劈体,物块不会冲出斜劈。求:
1. 物块m1滑到最高点位置时,二者的速度 2. 物体上升的最大高度 3. 物块m1从圆弧面滑下后,二者速度 4. 若m1= m2物块m1从圆弧面滑下后,二者速度
动量和能量综合典型物理模型
弹簧最短时 VP=VQ
弹簧模型1
如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视为质点,质量相等,都为 m.Q 与轻质弹簧相 连.设 Q 静止, P 以初速度 v0 向 Q 运动并与弹簧发 生碰撞. (1)在整个碰撞过程中,弹簧具有的最大弹性势能是多 少? (2)弹簧再次恢复原长时,P 的动能是多少?
4、方向:与运动方向相同
(1)矢量性 (2)瞬时性
运算遵循平行四边形定则 是状态量。

高考物理一轮复习讲义:专题25 动量守恒定律及应用二“滑块-弹簧”模型

高考物理一轮复习讲义:专题25 动量守恒定律及应用二“滑块-弹簧”模型

高三一轮同步复习专题25 动量守恒定律及应用二——“滑块-弹簧”模型【模型归纳】【典例分析】例1、如图所示,一轻弹簧的两端与质量分别为m1和m2的两物块甲、乙连接,静止在光滑的水平面上。

现在使甲瞬时获得水平向右的速度v0=5m/s,当甲物体的速度减小到1m/s 时,弹簧最短。

下列说法正确的是()A.紧接着甲物体将开始做减速运动B.紧接着甲物体将开始做加速运动C.甲乙两物体的质量之比m1∶m2=1∶3D.甲乙两物体的质量之比m1∶m2=1∶4【变式训练1】如图所示,质量为m1=2 kg的小球P从离水平面高度为h=0.8m的光滑斜面上滚下,与静止在光滑水平面上质量为m Q=2kg的带有轻弹簧的滑块Q碰撞,g=10m/s2,下列说法正确的是()A.P球与滑块Q碰撞前的速度为5m/sB.P球与滑块Q碰撞前的动量为16kg·m/sC.它们碰撞后轻弹簧压缩至最短时的速度为2m/sD.碰撞过程中动能守恒【变式训练2】如图甲所示,一轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上。

现使A瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得()A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都处于伸长状态B.从t3到t4时刻弹簧由伸长状态恢复到原长C .两物体的质量之比为12:1:3m m =D .在t 2时刻A 与B 的动能之比为12:1:8k kE E =【变式训练3】如图所示,质量为m 1=0.95kg 的小车A 静止在光滑地面上,一质量为m 3=0.05kg 的子弹以v 0=100m/s 的速度击中小车A ,并留在其中,作用时间极短。

一段时间后小车A 与另外一个静止在其右侧的,质量为m 2=4kg 的小车B 发生正碰,小车B 的左侧有一固定的轻质弹簧,碰撞过程中,弹簧始终未超弹性限度,则下列说法错误的是( )A .小车A 与子弹的最终速度大小为3m/sB .小车B 的最终速度大小为2m/sC .弹簧最大的弹性势能为10JD .整个过程损失的能量为240J【变式训练4】如图所示,质量M=4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L=0.5m 这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑。

在四种常见模型中应用动量守恒定律(解析版)

在四种常见模型中应用动量守恒定律(解析版)

在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。

2如图所示,滑块和小球的质量分别为M 、m 。

滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。

开始时,轻绳处于水平拉直状态,小球和滑块均静止。

现将小球由静止释放,下列说法正确的是( )。

A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。

动量守恒之弹簧物块连接模型 高三物理一轮复习专题

动量守恒之弹簧物块连接模型 高三物理一轮复习专题
图3
(1)当弹簧的弹性势能最大时,物块A的速度为多大?
(2)系统中弹性势能的最大值是多少?
答案(1)3 m/s(2)12 J
解析(1)弹簧压缩至最短时,弹性势能最大,
由动量守恒定律得:(mA+mB)v=(mA+mB+mC)vA
解得vA=3 m/s
(2)B、C碰撞过程系统动量守恒
mBv=(mB+mC)vC
5(2021湖南卷8,5分).如图(a),质量分别为mA、mB的A、B两物体用轻弹簧连接构成一个系统,外力 作用在A上,系统静止在光滑水平面上(B靠墙面),此时弹簧形变量为 。撤去外力并开始计时,A、B两物体运动的 图像如图(b)所示, 表示0到 时间内 的 图线与坐标轴所围面积大小, 、 分别表示 到 时间内A、B的 图线与坐标轴所围面积大小。A在 时刻的速度为 。下列说法正确的是( )
故vC=2 m/s
碰后弹簧压缩到最短时弹性势能最大,
故Ep= mAv2+ (mB+mC)v - (mA+mB+mC)v =12 J
三.举一反三,巩固练习
1.(2021全国乙卷14,6分)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )
C.小车C先向左运动后向右运动
D.小车C一直向右运动直到静止
答案D
解析A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,因mA∶mB=1∶2,由摩擦力公式Ff=μFN=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B两物体组成的系统合外力不为零,A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因滑动摩擦力做负功,则系统的机械能不守恒,最终整个系统将静止,故A、B、C错误,D正确.

动量守恒定律的应用弹簧问题

动量守恒定律的应用弹簧问题
注意:状态的把握
由于弹簧的弹力随形变量变化,所以弹簧弹力联系的“两体模型”一般都是作加速度变化 的复杂运动,所以通常需要用“动量关系”和“能量关系”分析求解。复杂的运动过程不 容易明确,特殊的状态必须把握:弹簧最长(短)时两体的速度相同;弹簧自由时两体的 速度最大(小)。
题型二、两个物体的问题
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
则下列说法错误的( )
A
A.若A、B与平板车上表面间的动摩擦因数相同,A、B
组成系统的动量守恒
B.若A、B与平板车上表面间的动摩擦因数相同,A、B
、C组成系统的动量守恒
C.若A、B所受的摩擦力大小相等,A、B、C组成系统
的动量守恒
D.若平板车足够长,
A
B
最终A、B、C将静止。
弹簧弹力联系的“两体模型”
压缩,当撤去外力后,下列说法正确的是(BC)
A.a尚未离开墙壁前,a和b组成的系统动量守恒
B.a尚未离开墙壁前,a和b组成的系统动量不守恒
C.a离开墙壁后,a和b组成的系统动量守恒
D.a离开墙壁后,a和b组成的系统动量不守恒
a
F b
2.原来静止在平板小车C上,A、B间有一根被压缩的弹
簧,地面光滑,A的质量是B的2倍,当弹簧突然释放后,
[解析] 设碰后 A、B 和 C 的共同速度大小为 v,由动量守
恒有 mv0=3mv

设 C 离开弹簧时,A、B 的速度大小为 v1,由动量守恒有
3mv=2mv1+mv0

设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过

微专题一动量守恒之弹簧模型

微专题一动量守恒之弹簧模型
微专题一动量守恒之弹簧模型
一、弹簧模型
1.对于光滑水平面上的弹簧类问题,在作用过程中,系统所受合外力为零,
满足动量守恒条件;
2.系统只涉及弹性势能、动能,因此系统机械能守恒;
3.弹簧压缩至最短或拉伸到最长时,弹簧连接的两物体共速,此时弹簧的弹
性势能最大。
4.弹簧从原长到最短或最长相当于完非,从原长再到原长相当于完弹。
1
解得 v3= v1=1 m/s
6
由机械能守恒定律有
1
1
2
Ep=2(mA+mB)v2 -2(mA+mB+mC)v32
解得Ep=3 J
被压缩弹簧再次恢复自然长度时,滑块C脱离
弹簧,设此时滑块A、B的速度为v4,滑块C的
速度为 v5 ,由动量守恒定律和机械能守恒定
律有
(mA+mB)v2=(mA+mB)v4+mCv5
5.具体过程及规律如下:
vB′是滑块B全程最大的速度,若A未与弹簧连接,则3状态是滑块A脱离弹
簧的时刻,脱离时的速度为vA′,其大小方向如何由mA、mB决定。
6.A、B运动过程的v-t图像如图所示。
1.A、B 两小球静止在光滑水平面上,用轻质弹簧相连接,A、B 两球
的质量分别为 mA 和 mB(mA <mB)。若使A球获得初速度 v (图甲),弹
C.两物块的质量之比为m1∶m2=1∶2
D.在t2时刻A与B的动能之比Ek1∶Ek2=1∶8
3.如图所示,质量为2m的小球B与轻质弹簧连接后静止于光滑水平面上,质量为m的小球A
以初速度v0向右运动逐渐压缩弹簧,A,B通过弹簧相互作用一段时间后A球与弹簧分离。若
以水平向右为正方向,且A球与弹簧分离时A,B小球的动量分别为pA和pB,运动过程中弹簧

专题21动量守恒定律(弹簧模型)-2019高考物理一轮复习专题详解(解析版)

专题21动量守恒定律(弹簧模型)-2019高考物理一轮复习专题详解(解析版)

1.动量守恒条件.(1)系统不受外力或合外力为零时,动量守恒.(2)若在某一方向合外力为0,则该方动量守恒.2.规律方法应用动量守恒定律解题的基本思路(1)分析题意,明确研究对象,确定所研究的系统是由哪些物体组成的.(2)对各阶段所选系统内的物体进行受力分析,区分系统内力和外力,在受力分析的基础上根据动量守恒定律条件判断能否应用动量守恒定律.(3)明确所研究物体间的相互作用的过程,确定过程的初、末状态,即系统内各个物体的初动量和末动量.(4)规定正方向,确定初、末状态的动量的正、负号,根据动量守恒定律列方程求解.3.在一个多过程、或者比较复杂的运动中,可能存在着同时满足动量守恒和能量守恒以及机械能守恒的问题,那么我们要根据题中的条件判断是否符合动量守恒和机械能守恒的条件,然后利用公式解题。

动量守恒的条件:系统不受外力或者所受合外力为零,则系统机械能是守恒的机械能守恒的条件:只有重力或系统内弹力做功,系统的机械能是守恒的。

动量守恒可以说某个方向上守恒,但机械能守恒不能说某个方向上守恒。

解动力学问题的三个基本观点(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题利用动量和能量的观点解题的技巧(l )若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理(3)因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显示出它们的优越性例题分析典例 1 如图所示,轻弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为m 的小物块从槽高h 处开始自由下滑,下列说法正确的是()A .在下滑过程中,物块的机械能守恒B .在下滑过程中,物块和槽的动量守恒C .物块被弹簧反弹后,做匀速直线运动D.物块被弹簧反弹后,能回到槽高h 处【答案】C典例 2. 如图所示,木块 A 和 B 质量均为 2 kg,置于光滑水平面上. B 与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当 A 以 4 m/s的速度向 B 撞击时,A、B 之间由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为( )A. 4 J B.8 J C.16 J D.32 J【答案】B【解析】 A 与 B 碰撞过程动量守恒,有m A v A=(m A+m B)v AB,所以v AB==2 m/s.当弹簧被压缩到最短时,A、B 的动能完全转化成弹簧的弹性势能,所以E p=(m A+m B)v =8 J.典例 3 如图所示,物体 A 静止在光滑的水平面上, A 的左边固定有轻质弹簧,与 A 质量相等的物体 B 以速度v 向 A 运动并与弹簧发生碰撞,A、B 始终沿同一直线运动,则A、B 组成的系统动能损失最大的时刻是( )A . A 开始运动时B. A 的速度等于v 时C. B 的速度等于零时D . A 和 B 的速度相等时答案】D【解析】当 B 触及弹簧后减速, 而物体 A 加速, 当 A 、B 两物体速度相等时, A 、B 间距离最小, 弹簧 压缩量最大, 弹性势能最大, 由能的转化与守恒定律可知系统损失的动能最多, 故只有 D 正确 典例 4 (多选)如图甲所示,一轻弹簧的两端与质量分别为m 1和 m 2的两物块 A 、B 相连接,并静止在光滑的水平面上.现使 B 瞬时获得水平向右的速度 3 m/s ,以此刻为计时起点,两物块的速度随时间变化的规律如 图乙所示,从图象信息可得 ( )A . 在 t 1、t 3时刻两物块达到共同速度 1 m/s ,且弹簧都处于伸长状态B . 从 t 3到 t 4时刻弹簧由压缩状态恢复到原长C . 两物体的质量之比为 m 1∶ m 2=1∶2D . 在 t 2时刻 A 与 B 的动能之比为E k1∶E k2=8∶1【答案】 BD专题练习1 (多选 )如图所示, 两物块质量关系为 m 1=2m 2;两物块与水平面间的动摩擦因数 μ2= 2μ1,两物块原来静止,轻质弹簧被压缩,若烧断细线后,弹簧恢复到原长时,两物块脱离弹簧且速率均不为零,则 ( )A .两物块在脱离弹簧时速率最大C .两物块的速率同时达到最大D .两物体在弹开后同时达到静止【答案】 BCDB .两物块在刚脱离弹簧时速率之比为 v 1 1v 2=2【分析】 烧断细线后,对 m 1、m 2及弹簧组成的系统,在 m 1、m 2 运动过程中,都受到滑动摩擦力的作用, 其中 F 1= μ1m 1g ,F 2=μ2m 2g ,根据题设条件,两摩擦力大小相等,方向相反,系统所受外力的合力为零,动 量守恒.两物块未脱离弹簧时,在水平方向各自受到弹簧弹力和地面对物体的摩擦力作用,其运动过程分 为两个阶段:先是弹簧弹力大于摩擦力,物块做变加速运动,直到弹簧弹力等于摩擦力时,物块速度达到 最大,此后弹簧弹力小于摩擦力,物块做变减速运动,弹簧恢复原长时,两物块与弹簧脱离.脱离弹簧后, 物块在水平方向只受摩擦力作用,做匀减速运动,直到停止.【点评】 对于所研究的系统,只要所受外力的合力为零,无论有多少个过程,无论系统内各物体是否接 触,也无论系统内物体间相互作用力的性质如何,动量守恒定律都适用.解题中既可以。

动量守恒定律的典型模型及其应用+课件

动量守恒定律的典型模型及其应用+课件

动能损失为
E=12m1v12012m2v22012 m1m2v2
m1m1
2m1 m2
v10v20 2
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则
二. 能量不增加的原则
三. 物理情景可行性原则
例如: 追赶碰撞:
碰撞前: V追赶 V被追
碰撞后:
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
2 特例: 质量相等的两物体发生弹性正碰
v1
m1 m2 v10 2m2v20 m1 m2
v2
m2 m1 v20 2m1v10 m1 m2
碰后实现动量和动能的全部转移 (即交换了速度) 第219页2题
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m 1 v 1 0 m 2 v 2 0 m 1 m 2 v
ABD
• 图中,轻弹簧的一端固定,另一端与滑块B相连,B静 止在水平直导轨上,弹簧处在原长状态。另一质量与B 相同滑块A,从导轨上的P点以某一初速度向B滑行,当 A滑过距离l1时,与B相碰,碰撞时间极短,碰后A.B紧
贴在一起运动,但互不粘连。已知最后A恰好返回出发
点P并停止,滑块A和B与导轨的滑动摩擦因数都为
高三物理重点专题
动量守恒定律的典型模型 及其应用
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)反冲运动、爆炸模型
(三)子弹打木块类的问题:
(四)人船模型: 平均动量守恒
• (1)在弹性形变增大的过程中,系统中两物 体的总动能减小,弹性势能增大,在系统形变 量最大时,两物体速度相等. 在形变减小(恢 复)的过程中,系统的弹性势能减小,总动能 增大.

【高中物理】动量守恒定律的应用之弹簧类问题 课件 高二物理人教版(2019)选择性必修第一册

【高中物理】动量守恒定律的应用之弹簧类问题 课件 高二物理人教版(2019)选择性必修第一册
D. S1 -S2=S3
5.如图,在光滑水平面上放着质量分别为m和2m的A、B两个物块,现用
外力缓慢向左推B使弹簧压缩,此过程中推力做功W。然后撤去外力,
则( CD )
A.从开始到A离开墙面的过程中,墙对A的冲量为0
B.当A离开墙面时,B的动量大小为

C. A离开墙面后,弹簧的最大弹性势能为
接在一起,竖直放置在水平地面上,物体A处于静止状态,在A的正上方
h高处有一质量也为m的小球C。现将小球C由静止释放,C与A发生碰撞
后立刻粘在一起,弹簧始终在弹性限度内,忽略空气阻力,重力加速度
为g。要使碰后物体B被拉离地面,h至少为多大?
解析:对 C 自由下落过程,由机械能守恒得:
1
mgh= mv02,解得:v0= 2gh
在钢板上并与钢板一起向下运动 x0 后到达最低点 Q。
下列说法正确的是( BC )
A.物块与钢板碰后的速度为 2gh
2gh
B.物块与钢板碰后的速度为
2
h
C.从 P 到 Q 的过程中,弹性势能的增加量为 mg(2x0+ )
2
D.从 P 到 Q 的过程中,弹性势能的增加量为 mg(2x0+h)
10.如图所示,质量均为m的A、B两物体通过劲度系数为k的轻质弹簧拴
*11.(2022全国乙卷)如图(a),一质量为m的物块A与轻质弹簧连接,静
止在光滑水平面上:物块B向A运动,t=0时与弹簧接触,到t=2t0时与弹簧分
离,第一次碰撞结束,A、B的v-t图像如图(b)所示。已知从t=0到t=t0时间
内,物块A运动的距离为0.36v0t0。A、B分离后,A滑上粗糙斜面,然后滑
v
t
请你在同一幅图中画出两者的速度时间图像

弹簧模型(解析版)-高中物理动量守恒的十种模型

弹簧模型(解析版)-高中物理动量守恒的十种模型

动量守恒的十种模型模型一弹簧模型模型解读【典例分析】1(2024高考辽吉黑卷)如图,高度h=0.8m的水平桌面上放置两个相同物块A、B,质量m A=m B=0.1kg。

A、B间夹一压缩量Δx=0.1m的轻弹簧,弹簧与A、B不栓接。

同时由静止释放A、B,弹簧恢复原长时A恰好从桌面左端沿水平方向飞出,水平射程x A=0.4m;B脱离弹簧后沿桌面滑行一段距离x B=0.25m后停止。

A、B均视为质点,取重力加速度g=10m/s2。

求:(1)脱离弹簧时A、B的速度大小v A和v B;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能ΔE p。

【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J(1)对物块A,由平抛运动规律,h=12gt2,x A=v A t,联立解得:v A=1m/s弹簧将两物块弹开,由动量守恒定律,m A v A=m B v B,解得v B=v A=1m/s(2)对物块B,由动能定理,-μm B g x B=0-12m B v B2解得:μ=0.2(3)由能量守恒定律,整个过程中,弹簧释放的弹性势能△E p=μm B g×12△x+μm A g×12△x+12m A v A2+12m B v B2=0.12J【针对性训练】1(2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A、B两物块,质量分别为2kg、6kg,B的左端拴接着一劲度系数为2003N/m的水平轻质弹簧,它们的中心在同一水平线上。

A以速度v0向静止的B方向运动,从A接触弹簧开始计时至A与弹簧脱离的过程中,弹簧长度l与时间t的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能E p=12kx2(x为弹簧的形变量),则()A.在0~2t0内B物块先加速后减速B.整个过程中,A、B物块构成的系统机械能守恒C.v0=2m/sD.物块A在t0时刻时速度最小【答案】C【解析】在0~2t0内,弹簧始终处于压缩状态,即B受到的弹力始终向右,所以B物块始终做加速运动,故A错误;整个过程中,A、B物块和弹簧三者构成的系统机械能守恒,故B错误;由图可知,在t0时刻,弹簧被压缩到最短,则此时A、B共速,此时弹簧的形变量为x=0.4m-0.1m=0.3m则根据A、B物块系统动量守恒有m1v0=(m1+m2)v根据A、B物块和弹簧三者构成的系统机械能守恒有1 2m1v20=12(m1+m2)v2+E pv0=2m/s故C正确;在0~2t0内,弹簧始终处于压缩状态,即A受到弹力始终向左,所以A物块始终做减速运动,则物块A在2t0时刻时速度最小,故D错误。

弹簧模型动量守恒定律应用PPT课件

弹簧模型动量守恒定律应用PPT课件

水平向右为正方向,有Ep=
1 2
mBv12
I=mBvB-mBv1
代入数据得I=-4 N·s,其大小为4 N·s
(3)设绳断后A的速度为vA,取水平向右为正方
向,有mBv1=mBvB+mAvA
W= 1
2
mAvA2
代入数据得W=8 J
答案 (1)5 m/s (2)4 N·s (2)8 J
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
SUCCESS
THANK YOU
2019/8/24
选修3-5 动量 近代物理初步
解析 (1)设B在绳被拉断后瞬间的速度为vB, 到达12 Cm点BvB时2=的12 速mBv度C2为+2vmCB,g有R mB代g=入mB数vRc2据得vB=5 m/s (2)设弹簧恢复到自然长度时B的速度为v1,取
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
第一讲 动量 动量守恒定律
第7课 弹簧模型
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv
N
F弹F弹GG Nhomakorabea两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转

由①②③式得弹簧所释放的势能为 Ep=13mv0 2
[答案]
1 3mv0
2
选修3-5 动量 近代物理初步
1.如图所示,光滑轨道上,小车A、B用轻弹 簧连接,将弹簧压缩后用细绳系在A、B上, 然后使A、B以速度v0沿轨道向右运动,运动 中细绳突然断开, 当弹簧第一次恢复到自 然长度时, A的速度刚好为0 ,已知A、B的 质量分别为mA、mB,且mA<mB ,求:被压缩的弹 簧具有的弹性势能Ep.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档