2017四年级希望杯100题_32

合集下载

第十五届小学四年级希望杯全国数学邀请赛试题及答案资料

第十五届小学四年级希望杯全国数学邀请赛试题及答案资料
精品文档
第十五届小学“希望杯”全国数学邀请赛
四年级第1试试题
2017年3月19日上午8:30至10:00
以下每题6分,共120分。
1、计算:19×75+23×25 = .
2、定义新运算:,,如:,b)b(aba20)4(1babb414a。则按从左到右的顺序计算:.321448114
abcabcabc最小是则是奇数,是三位数,若且.是33、的倍数,a
精品文档.
精品文档
9、下图是由12个面积为1的方格组成,则图中和阴影梯形面积相同的长方形有个。
10、某学习小组数学成绩的统计图如下,该小组的平均成绩是分。
11、今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的 3倍。
12、10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是。
第15届“希望杯”数学邀请赛四年级1试参考答案
题号
1
2
3
4
5
6
7
8
9
10
答案
2000
21
102
15
9
4
336
13
10
90
题号
11
12
13
14
15
16
17
18
19
20
答案
8
6
40
15


144
6:13
118
15
;24
精品文档.
17、甲、乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米。

全国四年级希望杯数学竞赛全部试题与答案

全国四年级希望杯数学竞赛全部试题与答案

第一届小学“希望杯”数学邀请赛第1试四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个;2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷ ;3.观察1,2,3,6,12,23,44,x,164的规律,可知x = ;4.如图,将一个三角形有阴影的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍;5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是 ;6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是 ,温差最大的景区是 ;7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形;8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有 ,它们的和等于 ;9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲;这时四个组的书一样多;这说明甲组原来有书本;10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组;11.在 a=20032003×2002和 b=20022003×2003中,较大的数是 ,它比较小的数大 ;12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米;13.甲、乙、丙三人中只有1人会开汽车;甲说:“我会开;”乙说:“我不会开;”丙说:“甲不会开;”三人的话只有一句是真话;会开车的是 ;14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书;回校后,小明补给小光28元;小明、小光各带了元,每本书价元;15.长方形被分成了4个小长方形,图4中的数字是它们每个的面积,阴影部分的面积是 ;16.天气预报说:今天的降水概率是30%,明天的降水概率是50%,后天的降水概率是35%;下雨可能性最大的是天;17.如图,水平桌面桌面不反光上放有两个同样大小的足球M、N,每个足球的正上方悬挂有相同的灯泡;A灯泡位置比B灯泡位置低;当灯泡点亮时,受光照部分更多的是球;18.用20厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种;其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长______ 厘米,宽______ 厘米;19.在一个正方形水池的四周,环绕着一条宽2米的路如图,这条路的面积是120平方米,那么水池的面积是______ 平方米;20.下边是一个六位数乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ ;21.甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇;A、B两地相距______ 千米;22.小琴、小惠、小梅三人报名参加运动会的跳绳,跳高和短跑这三个项目的比赛,每人参加一项,报名的情况有______ 种;23.下图是一个正方体木块;M是AB的中点,N是AD的中点;用一把锋利的锯,过M、N、G三个点将木块锯成两块,使截面是平的,这个截面是______ 边形;24.师生共52人外出春游,到达后,班主任要给每人买一瓶矿泉水,给了班长买矿泉水的钱;班长到商店后,发现商店正在进行促销活动,规定每5 个空瓶可换1瓶矿泉水;班长只要买______ 瓶矿泉水,就可以保证每人一瓶;25.下图是一所小学的科技数,它有4层,正面每层的三个圆形窗户由左向右表示一个三位数,这些三位数是:837、571、206、439,但是不知道这四个数和哪一层的窗户对应,请你观察一下,然后画出表示2008的四个窗户 ;第一届小学“希望杯”数学邀请赛第2试四年级第2试1.计算:3×2÷2-2×6÷3÷2+5-3=________ ;2.观察右面的五个数:19、37、55、a 、91排列的规律,推知a =________ ;3.小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳绳;用圆A、圆B分别表示小明、小英的爱好,如图1所示,则图中阴影部分表示________;4.玩具店的玩具每卖出一半,就补充20个,到第十次卖出一半后恰好余下20个,则玩具店原有玩具________个;5.计算:6.将边长为a的正方形各边的中点连结成第二个正方形,再将第二个正方形各边的中点连结成第三个正方形,依此规律,继续下去,得到下图;那么,边长为a的正方形面积是图中阴影部分面积的________ 倍;7.●表示实心圆,○表示空心圆,若干个实心圆与空心圆排成一行如下:○●○●●○●●●○●○●●○●●●○●○●●○●●●……在前200个圆中有 ________个实心圆;8.过节了,爸爸妈妈给小光和小强每人买了一盒弹子数目相同,打开后发现,小光的弹子全是红的,而小强的弹子全是绿的;第一天玩弹子时,小光输了10枚弹子;第二天小光又同小强玩弹子,结果小光赢了10枚弹子;这时,是小光盒里的绿弹子多,还是小强盒里的红弹子多答________ ;9.下图是王超同学为“环境保护专栏”设计的一个报头,用到基本的几何图形:线段、三角形、四边形、圆、圆弧,其中用得最多的一种图形是________ ;10.数一数:图中共有________ 个正方形;11.星期天,妈妈从超市买了4支小梦龙和3支可爱多冰淇淋,用去24元钱;妈妈对小丽说:“上星期天我买了3支小梦龙和5支可爱多冰淇淋用去29元钱,你算一算,小梦龙每支________元,可爱多冰淇淋每支________ 元;”12.一次口算比赛,规定:答对一题得8分,答错一题扣5分;小华答了18道题,得92分,小华在此次比赛中答错了________ 道题;13.下图表示正方体的展开图,将它折叠成正方体,可能的图形是 ;填A、B、C、D之一;14.用直线把图6分成面积相等的两部分,与原稿不同,其中正确的有________个;图615.在计算机中,对于图1、图2中的数据或运算的读法规则是:先读第一分支圆圈中的,再读与它相连的第二分支左边的圆圈中的,最后读与它相连的第二分支右边的圆圈中的,也就是说,对于每一个圆圈中的数据或运算都是按“中→左→右”的顺序;如:图1表示:2+3,图2表示:2+3×2- 1;则图3表示的式子的运算结果是________ ;16.甲、乙、丙、丁四人做游戏,丁对甲、乙、丙说:“无论你们三人每人给出的整数是什么,我有一个结论总成立;”甲、乙、丙三人半信半疑,经三人多次验证,结果都正确;请写出丁可能给的结论,并说明理由;17.如果a、b 、c 是3个整数,则它们满足加法交换律和结合律,即1a+b=b+a ;2a+b+c=a+b+c;现在规定一种运算"",它对于整数a、 b、c 、d 满足:a,bc,d=a×c+b×d,a×c-b×d;例:4,37,5=4×7+3×5,4×7-3×5=43,13请你举例说明,“”运算是否满足交换律、结合律;18.一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差;19.将边长为正整数n的正方形平均分成个小正方形,每个小正方形的顶点称为格点;例如:图10中的黑点是边长为2的正方形的格点;如图11,在边长为12的正方形中有四个完全相同的直角三角形;如果三角形的一条直角边是3,那么这四个三角形各边共经过多少个格点每个格点只计一次第二届小学“希望杯”数学邀请赛第1试四年级第1试一、填空题1.计算:234+432-4×8+330÷5= ;2.如果&=+÷10,那么2&5= ;3.某校四年级有两个班,其中甲班有人,乙班比甲班多3人,则该校四年级共有学生人 ;4.将数16表示成两个自然数的和的形式,则所表示成的两个数的最大乘积是 ;5.在括号内填上两个相邻的整数,使等式=成立;6.在月球表面,白天阳光垂直照射的地方的温度高达127℃,夜晚的温度下降到零下183℃,则月球表面昼夜温差最高与最低温度的差是℃;7.北京到西安的飞机票价是每张960元;张老师想从网上订购一张从北京到西安的飞机票;海蓝票务中心的机票以九五折出售,但每张票要加收30元送票费;云天票务中心的机票不打折,但免费送票;张老师从票务中心购买飞机票更省钱;填“海蓝”或“云天”8.一个数除以3的余数是2,除以5的余数是1,则这个数除以15的余数是 ;9.如果,=2×2,……,=25×25,且+……+=5525,那么++……+= ;10.如图,有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米;当甲第一次追上乙时,甲跑了圈;11.三个不同的一位数的和等于10,用这三个一位数组成三位数,其中最大的是 ;12.把一个边长为的正方形分成两个完全相同的长方形,则这两个长方形的周长的和是 ;13.把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有人;14.如图,用火柴棍摆出一系列三角形图案,按这种方式摆下去,当N=5时,共需要火柴棍根;15.如图,∠1=∠2,∠3=∠4,∠5=130度,那么∠A=度;16.已知图中正方体相对的两个面上的数字之和是10,则未标出的三个数的乘积是 ;17.下图中有个平行四边形;18.有四个数,用其中三个数的平均数,再加上另外的一个数,按这样的方法计算,分别得到:28,36,42,46,那么原来四个数的平均数是 ;19.如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号;20.一块长方形玻璃,长截去5分米,宽截去3分米,剩下的部分是正方形;已知截去的面积是71平方分米,那么剩下的正方形的面积是平方分米;21.有一个正方形纸板如图甲,用它可以盖住日历上的九个日期,并能看到其中的一个日期,现在将它放在2004年3月的日历上的如图乙,则纸板盖住的另外八个日期中最大的是 ;22.如图,阴影部分是一个长方形,它的四周是四个正方形,如果这四个正方形的周长的和是240厘米,面积的和是1000平方厘米,那么阴影部分的面积是平方厘米;23.商场里有三种价格分别是3元,4元,6元的杯子;妈妈让小明去买杯子,小明付款30元,找回5元;小明买了个4元的杯子;24.某班有46人,其中有40人会骑自行车,38人会打乒乓球,35人会打羽毛球,27人会游泳,则该班这四项运动都会的至少有人;第二届小学“希望杯”数学邀请赛第2试四年级第2试一、填空题1. ;2.最新的科学探测表明:火星表面的最高温度约为5℃,最低温度约为零下15℃,则火星表面的温差最高与最低温度的差约为___________℃;3.3+12,6+10,12+8,24+6,48+4,……是按一定规律排列的一串算式,其中第六个算式的计算结果是__________;4.把2、4、6、8、10、12这六个数字依次写在一个立方体的正面、背面、两个侧面以及两个底面上,然后把立方体展开,如图,最左边的正方形上的数字是12,则最右边的正方形上的数字是__________;5.将一张长方形纸对折再对折如图,然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是__________;填“三角形”、“长方形”、“梯形”或“菱形”6.四1班有46人,其中会弹钢琴的有30人,会拉小提琴的有28人,则这个班既会弹钢琴又会拉小提琴的至少有_________人;7.请你任意写出5个真分数_________;8.两个正整数♀、♂满足:♀=♂×♂+2×♂+1;例如:当♂=3时,♀=3×3+2×3+1=16;那么,当♀=36时,♂=_________;9.下列各图中,阴影部分面积与整个图形面积的比值最大的是图_______;10、把一堆糖果分给几位小朋友,若每人2块,将剩余12块;每人3块,将缺少5块,那么小朋友共_________位;11、如果一个数的所有数位上的数字的和是10,那么满足条件的最小的四位数是_________;12、数一数,图中有_________个三角形;13、将一个三角形的三条边同时扩大相同的倍数,如图,得到的新三角形的面积变为原三角形面积的9倍,则新三角形的周长是原三角形的周长的_________倍;14、如图所示,在2×2方格中,画一条直线最多穿过3个方格;在3×3方格中,画一条直线最多穿过5个方可知;那么在5×5方格中,画一条直线,最多穿过_________个方格;15、小朋友们做游戏,若3人分成一组,则最后余下2人;若4人分成一组,则最后余下3人;若5人分成一组,则最后余下4人;那么一起做游戏的小朋友至少有______人;二、解答题16、用表示的小数部分,表示不超过的最大整数;例如:=0.3,0.3=0;=0.5;4.5=4;记,请计算,;,的值;17、甲有桌子若干张,乙有椅子若干把;如果乙用全部椅子换回相同数量的桌子,那么需要补给甲320元;如果乙不补钱,就会少换回5张桌子;已知3张桌子比5把椅子的价钱少48元;求乙原有椅子多少把18、两列相同而行的火车恰好在某站台相遇;如果甲列车长225米,每秒行驶25米,乙列车每秒行驶20米,甲、乙两列车错车时间是9秒;求:1乙列车长多少米2甲列车通过这个站台用多少秒3坐在甲列车上的小明看到乙列车通过用了多少秒19、将若干个边长为1的正六边形即单位六边形拼接起来,得到一个拼接图形;例如:那么,要拼接成周长等于18的拼接图形,需要多少个单位六边形画出对应的一种图形;第三届小学“希望杯”数学邀请赛第1试四年级第1试1.计算:100-99+98-97+96-95+……+4-3+2-1=________;2.如果○+□=6,□=○+○,那么□-○=_______;3.从1开始的奇数:1,3,5,7,……其中第100个奇数是_____;4.一个数除以9,商和余数相同,这个数最小是______;5.从1开始的前2005个整数的和是______数填:“奇”或“偶”;6.由四张数字卡片:0,2,4,6可以组成 _____个不同的三位数;7.某校四年级一班参加兴趣小组的人数统计如图所示,其中,参加_____小组的人数最多;8.如图,以A,B,C,D,E依次表示左手的大拇指,食指,中指,无名指, 小拇指, 若从大拇指开始数数, 按ABCDEDCBABCDEDCBA……的顺序数,数到“112”时,是_____;9.直线AB、CD相交,若∠1、∠2和∠3的关系如图所示;则∠3-∠1=______ ;10.图中的“我爱希望杯”有_______种不同的读法;11.计算机存储容量的基本单位是字节,用B表示,一般用KB、MB、GB作为存储容量的单位,它们之间的关系是1KB=B,1MB=KB,1GB=MB;小明新买了一个MP3播放器,存储容量为256MB,它相当于_____B;12.往一个篮子里放鸡蛋,假定篮子里的鸡蛋数目每分钟增加1倍,这样放下去,10分钟时,篮子放满了;那么,____分钟时恰好放入半篮子鸡蛋;13.下图是一块带有圆形空洞和方形空洞的小木板;下列物体中既能堵住圆形空洞,又能堵住方形空洞的是______;14.过年了,小刚想将自己的光盘整理一下;若每盒5片,则有一盒少了1片;若每盒6片,则恰好少用一个盒子;小刚的光盘一共有______片;15.小龙5次测验每次都得84分,小海前4次测验分别比小龙多出1分、2分、3分、4分,那么小海第五次测验至少应得_____分,才能确保5次测验平均成绩高于小龙至少3分;16.两只食量相同的猴子抢一堆桃子吃,吃完后,一只猴子还差1个桃子吃饱,另一只还差5个吃饱;如果这堆桃子都给一只猴子吃,它仍不会吃饱,那么一只猴子一共需要_____个桃子才能吃饱;17.小明的家在学校东400米处,小红的家在小明家的西200米处,那么小红的家距离学校_____米;18.小华和爸爸分享“红、黑甜品”红豆沙加芝麻糊;方法是:小华先将两勺红豆沙倒进盛载芝麻糊的碗中,搅匀后再取回两勺放入原先盛载红豆沙的碗中,混成后,爸爸问小华:“如果混合前红豆沙与芝麻糊的体积一样,那么混合后红豆沙含芝麻糊的分量与芝麻糊含红豆沙的分量比较,哪一个多”;小华的正确答案是 _____;19.图中ABC是直角三角形,BDEF是正方形,AD= 4厘米,FC= 9厘米,则ABC的面积=_____平方厘米;20.一块长120厘米、宽73厘米的长方形铁皮,最多可以分割成边长为12厘米的正方形_______个;21.一个数除以8后再减3,得到的数比原来的数少66,原来的数是_____;22.在一袋大米包装袋上标着净重,那么这袋大米净重最少是____公斤;23.当哥哥的年龄是弟弟现在的年龄时,哥哥的年龄是弟弟年龄的3倍,当弟弟的年龄是哥哥现在的年龄时,他们两人的年龄和是48,弟弟现在___岁;24.箱子里有红球13个,黄球10个,蓝球15个,从中摸出____个球,才能保证三种颜色的球都至少有4个;第三届小学“希望杯”数学邀请赛第2试四年级第2试1.1+2+……+8+9+10+9+8+……+2+1=_________;2.计算口÷△,结果是:商为10,余数为5;那么△的最小值是____________.3.如果25×口÷3×15+5=2005,那么口_________.4.1,3,5,7,……是从1开始的奇数,其中第2005个奇数是________.5.某工人与老板签订了一份30天的劳务合同:工作一天可得报酬48元,休息一天则要从所得报酬中扣掉12元;该工人合同到期后并没有拿到报酬,则他最多工作了_________天;6.三张数字卡片可以组成______个能被4整除的不同整数;7.某种品牌的电脑降价20%后,每台售价为4592元,则该品牌电脑降价前每台售价______元;8.已知两个自然数的积是35,差是2,则这两个自然数的和是_______;9.图1是3×3的正方形网格,1与2相比,较大的是__________;10.光明小学参加课外活动小组的人数统计如图2所示,则该校参加课外活动小组的共有人;11.下列图形经过折叠不能围成正方体的是________.12.小明、小华和小新三人的家在同一街道,小明家在小华家西300米处,小新家在小明家东400米处,则小华家和小新家相距______米;13.2005年4月lO日是星期日,则2005年6月1日是星期______;14.小明有一包弹球,其中25%是绿色的,10%是黄色的,余下的20%是蓝色的;如果蓝色的弹球是13个,那么这包弹球的个数是______;15.甲、乙两车同时从A、B两地沿相同的方向行驶;甲车如果每小时行驶60千米,则5小时可追上前方的乙车;如果每小时行驶70千米,则3小时可追上前方的乙车;由上可知,乙车每小时行驶_____千米假设乙车的行驶速度保持不变;二、解答题16.将100个小球放入依次排列的36个盒子中;如果任意相邻的5个盒子中的小球总数均为14,且第1个盒中有2个小球;求第36个盒子中小球的个数;17.将图3所示的三角形ABC分成面积相等的四个部分,请给出三种不同的分法;要求:在下面所给的三个图中作答;18.一个活动性较强的细菌每经过10秒就分裂为一个活动性较强的与一个活动性较弱的细菌,而一个活动性较弱的细菌每经过20秒就分裂为两个活动性较弱的细菌;问:一个活动性较强的细菌,经过60秒可繁殖多少个细菌19.王老师每天早上晨练,他第一天跑步1000米,散步1600米,共用25分钟;第二天跑步2000米,散步800米,共用20分钟;假设王老师跑步的速度和散步的速度均保持不变;求:1王老师跑步的速度;2王老师散步800米所用的时间;第四届小学“希望杯”数学邀请赛第1试四年级第1试1.1+2×3÷4+5×6=______.2.2+4+6+……+2006-1+3+5+7+……2005=______.3.9000-9=______×94.观察下列算式:2+4=6=2×3,2+4+6=12=3×42+4+6+8=20=4×5……然后计算:2+4+6+……+100=______;5.小马虎计算1到2006这2006个连续整数的平均数;在求这2006个数的和时,他少算了其中的一个数,但他仍按2006个数计算平均数,结果求出的数比应求得的数小1;小马虎求和时漏掉的数是______ ;6.将各位数字的和是10的不同的三位数按从大到小的顺序排列,第10个数是______;7.一个两位数,加上它的个位数字的9倍,恰好等于100;这个两位数的各位数字的和是______;8.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1行第1列开始,按照编号从小到大的顺序排成一个方阵;小明的编号是28,他排在第3行第4列,则运动员共有______人;9.一城镇共有5000户居民,每户居民的小孩都不超过两个;其中一部分家庭每户有一个小孩,余下家庭的一半每户有两个小孩,则此城镇共有______个小孩;10.一箱番茄连箱共重48千克,其中的番茄和萝卜各卖掉一半后,剩下的番茄和萝卜连箱带筐共重38千克;则一只箱子和一个筐共重______千克;11.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题;这次测验共有______道题;12.为了过冬,小白兔和小黑兔都储藏了一些胡萝卜;已知小白兔储藏的胡萝卜数量是小黑兔储藏数量的3倍;它们各吃了5个胡萝卜后,小白兔剩下的胡萝卜数量是小黑兔剩下数量的4倍;那么它们剩下的胡萝卜共有______个;13.如图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形;这9个小长方形的周长之和是______厘米;14.如图,直角的顶点在直线l上,则图中所有小于平角的较之和是______度;15.如图,六个相同的长方形围成了大小两个正方形,已知小正方形的面积是36平方厘米,则每个小长方形的面积是______平方厘米;16.下图是小华五次数学测验成绩的统计图;小华五次测验的平均分是______分;17.根据图a和图b,可以判断图c中的天平______端将下沉;填“左”或“右”18.某个早晨,容器中有200个细菌,白天有光照,容器中的细菌将减少65个,夜间无光照,容器中的细菌将增加40个;则在第______个白天,容器中的细菌全部死亡;19.成语“愚公移山”比喻做事有毅力,不怕困难;假设愚公家门口的大山有80万吨重,愚公有两个儿子,他的两个儿子又分别有两个儿子,依此类推;愚公和它的子孙每人一生能搬运100吨石头;如果愚公是第1代,那么到了第______代,这座大山可以搬完;已知10个2连乘之积等于102420.甲乙两个港口相距400千米,一艘轮船从甲港顺流而下,20小时可到达乙港;已知顺水船速是逆水船速的2倍;有一次,这艘船在由甲港驶向乙港途中遇到突发事件,反向航行一段距离后,再掉头驶向乙港,结果晚到9个小时;轮船的这次航行比正常情况多行驶______了千米;21.王老师九月下旬的某天早晨出发到外地出差下旬指该月的后10天,前后共5天,第五天晚上回到家,这5天的日期数之和恰好是90日期数指a月b日中的b,如3月19日的日期数是19,王老师是在______回到家的;填几月几日22.某校入学考试,报考的学生中有被录取,被录取者的平均分比录取分数线高6分,没被录取的学生的平均分比录取分数线低24分,所有考生的平均成绩是60分,那么录取分数线是______分;23.周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米;已知林荫道周长是480米,他们从同一地点同时背向而行;在他们第10次相遇后,王老师再走______米就回到出发点;24.北京时间比莫斯科时间早5个小时,如当北京时间是9:00时,莫斯科时间是当日的4:00;有一天,小张乘飞机从北京飞往莫斯科,飞机于北京时间15:00起飞,共飞行了8个小时,则飞机到达目的地时,是斯科时间______;按24时计时法填几时几分第四届小学“希望杯”数学邀请赛第2试四年级第2试一、填空题;每小题4分,共60分;1.25×32÷14+36÷21×25=________;2.如果5×2+△×△-4=2006,那么△=________;3.如果数A减去数B的3倍,差是51;数A加上数B的2倍,和是111,那么数A=________,数B=________;4.如图,圆A表示1到50这50个自然数中能被3整除的数,圆B表示这50个数中能被5整除的数,则阴影部分表示的数是________;5.有40个连续的自然数,其中最大的数是最小的数的4倍,那么最大的数与最小的数之和是________;6.牧羊人赶一群羊过10条河,每过一条河时都有一半的羊掉人河中,每次他都捞上3只,最后清查还剩6只;这群羊在过河前共有________只;7.一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子;但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到________个桃子;8.三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条;黑猫钓上________条鱼;9.从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有________个;10.如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米;8个这样的铁环依此连在一起长________厘米;。

希望杯考前100题(4年级)

希望杯考前100题(4年级)
求晶晶家的门牌号码?
.
43
43.数一数,图中有多少个三角形?
.
44
44.数一数,图中包含“☆”的长方形(包含正 方形)有多少个?
.
45
45.数一数,图中有多少个三角形?
.
46
46.数一数,图中有多少个长方形(包含正方 形)?
.
47
47.数一数,在图3中的不同位置可以画出多少个 图4所示的图形?(方向可以旋转)
.
31
31.找规律,填数: 1,1,2,3,5.8,13,21,( ),( ),( ),…
.
32
32.把数字1~12填到图中的圆圈中,使每个圆上 的数字之和相等.
.
33
33.同一平面内的2条直线最多有1个交点,3条直 线最多有3个交点,10条直线最多有多少个交点?
.
34
34.按照规律,写出上、下两条横线上应填的 数.
.
28
28.求末尾有几个0?
9 9 99 9 919 ^ 9 99
201 个 6 9 201 个 6 9
201 个 6 9
.
29
29.求末尾数字
2 20 3 1 20 0 4 1 21 0 5 1 22 0 6 1 23 0 7 1 24 01
.
30
30.根据下面一列数的规律,求第2017个数.2, 4,6,8,10,…。
.
21
21.四位数 abbc 可被两位数整除,若a<c,
a+c=5,求b
.
22
22.在下面的算式里加上一对括号,使算式成 立.
1×2×3+4×5+6+7+8+9=100
.

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

希望杯四年级组题附答案.doc

希望杯四年级组题附答案.doc

第十五届 (2017 年)小学“希望杯”全国数学邀请赛四年级培训题1.计算: 2017×2071+2077×2017-2037×2017- 2111×2017.2.计算: 9999×2222+3333×3334.3.比较大小: A=2016×2018, B=2017×2017, C=2015×2019.4.定义新运算: a b= b b b ,求 (1 4) (2 3).a个5.一个自然数,各个数位上的数字之和是74,这个数最小是多少 ?6.一个三位数被 3 除余 1,被 5 除余 3,被 7 除余 5,这个数最大是多少 ?7.一个整除算式,被除数比商大126,除数是 7,求被除数 .8.一个三位数,它的各位数字之和是 20,十位数字比个位数字大 1,如果将百位数字与个位数字对调,得到的三位数比原三位数大 198,求原数 .9.在从 1 开始的 n 个连续的自然数中,去掉其中的一个数,余下各数的和是 2017,求去掉的数 .10.若干个数的平均数是 17,加入一个新数 2017 后,这组数的平均数变成 21,原来共有多少个数 ?11.用 2,0,1,7 这四个数字可以组成多少个没有重复数字的四位偶数?12.已知 a,b,c 是三个质数,且 a < b < c,a + b ×c = 93,求 a, b,c.13.a,b,c 是彼此不同的非0 自然数,若 a + b + c = 6,求四位奇数aabc中最小的那个 .14.a,b,c 是彼此不同的非0 自然数,若 a + b + c = 6,求四位数aabc中最大的那个 .15.三位数abc是质数, a,b,c 也是质数,cba是偶数,ab是 5 的倍数,求三位数abc .16.求被 7 除,余数是 3 的最小的三位数 .17.求被 7 除,余数是 4 的最大的四位数 .18.将分别写有数字3,7,8 的三张卡片排成三位数a bc ,使它是43的倍数,求 abc .19.已知 a,b,c 是不同的质数,且三位数abc 能同时被3,7整除,求 abc .20.用写有 2,3,5,7 的四张纸片可以排成多少个小于1000 的质数 ?21.四位数abbc可被两位数ac整除,若 a < c, a + c = 5,求 b.22.在下面的算式里加上一对括号,使算式成立.1×2×3+4×5+6+7+8+9=100.23.在等号左边添上适当的运算符号、括号,使等式成立.9 9 9 9 = 8.24.从 1 至 9 的自然数中选择 8 个数填入下面的方框中,使得计算结果尽量大,那么这个结果最大是多少 ?□÷□×(□+□)-□×□-□+□25.在图 1 的算式中, A, B, C,D 代表 0~9 中四个各不相同的数字,且 A 是最小的质数,求四位数 ABCD.图126.在如 2 的算式中,“希”、“望”、“杯”三个字分代表 0~9 中三个不同的数字,求“希望杯”代表的数 .227.a,b,c,d,e 都是自然数,且 0 < c < b < a < d < e ≤9,若如 3 的算式成立,求abc .328.求 99 9 ×99 9 +199 9 末尾有多少个 0?2016个 92016个 92016 个 929.求2 20103201142012520136201472015的末位数字.30.根据下面一列数的律,求第2017 个数 .2, 4, 6,8,10,⋯.31.找律,填数:1, 1, 2,3,5,8,13,21, (), (),(),⋯32.把数字 1~12 填到 4 的圈中,使每个上的数字之和相等.433.同一平面内的 2 条直最多有 1 个交点, 3 条直最多有 3 个交点, 10 条直最多有多少个交点 ?34.按照律,写出上、下两条横上填的数.12 43 6 94 8 12 165 10 15 __ 256 12 18 __ 30 3635.如 5,察前面两个正方形中数之的关系,根据律求第三个正方形中“ ?”代表的数 .536.正方体骰子上 1 和 6 相对,2 和 5 相对,3 和 4 相对,把它放在水平桌面上 (如图6),将骰子向右翻滚 90°,然后在桌面上按逆时针方向旋转 90°,则完成一次变换 (如图 7),若骰子的初始位置为图 6,那么完成 23 次变换后,朝上一面的数字是什么 ?图 6图737.有一串数字,任何相邻的 4 个数之和都是 22,若从左边起第 2,5,12 个数分别是 3,7,8,求第 11 个数 .38.小伟和小明交流暑假中的活动情况,小伟说:“我参加了夏令营,外出一个星期,这七天的日期数之和是84. ”小明说:“我假期到舅舅家住了七天,日期数的和再加月份数也是 84. ”那么,小伟出发的日期和小明回家的日期分别是几号 ?39.某个月中星期一多于星期二,而星期日多于星期六,那么这个月有多少天,这个月的 5 日是星期几 ?40. 6 位同学数学考试的平均成绩是 93 分,他们的成绩是互不相同的整数,且最高分是 99 分,最低分是 75 分,求按分数从高到低居第三位的同学的得分.41.为了表扬好人好事,需核实一件事,厂方找了A, B,C,D 四人 . A说:“是 B 做的 . ”B说:“是 D 做的 . ”C说:“不是我做的 . ”D说:“B说的不对 . ”若这四人中只有一人说了实话,问:这件事是谁做的 .42.晶晶家门牌号码满足:(1)若是 4 的倍数,则它就是60~69 中的数;(2)若不是 5 的倍数,则它就是70~79 中的数;(3)若不是 8 的倍数,则它就是80~89 中的数 .求晶晶家的门牌号码 ?43.数一数,图 8 中有多少个三角形 ?图 844.数一数,图 9 中包含“☆”的长方形 (包含正方形 )有多少个 ?图 945.数一数,图 10 中有多少个三角形 ?图 1046.数一数,图 11 中有多少个长方形 (包含正方形 )?图1147.数一数,在图 12 中的不同位置可以画出多少个图13 所示的图形 ?(方向可以旋转)图 12图1348.图 14 由 10 个相同的小正方形组成,请用三种方法把它分割成两个大小相等、形状相同的部分 (沿图中的线分割 ).图1449.将图 15 中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法 ?图1550.小聪学玩魔方,向小笨拜师学艺 .小笨首先出了一道题考他 .从图 16 的四个图形中,每个小正方形都标上了颜色 .若要求一个正方体两个相对面上的颜色都一样,那么下列 4 个展开图有几个是正确的 ?图1651.从图 17 中任意选择四个点,可组成多少个不同的正方形 ?(不同的点组成的正方形视为不同的正方形 )图1752.有 5 根小木棒的长度分别为 1cm, 1cm,2cm,3cm,5cm.从中任取 3 根,不同的长度和有几种 ?53.一个长方形的长和宽都是整数,且它的面积和周长恰好在数值上相等,那么长方形的长和宽分别是多少 ?(不需写过程 )54.如图 18,已知 AD=100,BD=65,AC=75,求 BC.图1855.如图 19,两个完全相同的等腰三角形中各有一个正方形,图甲中的正方形面积为 48 平方厘米,求图乙中的正方形面积 .图1956.两个边长为 8 厘米的正方形如图 20 重叠,若图中阴影部分的面积为 24 厘米,那么所拼成的大长方形周长是多少厘米 ?图2057.图 21 中的正六边形被分为 12 个相同的小三角形,每个小三角形的面积为 1. 问:图中面积等于 3 的梯形有多少个 ?图2158.图 22 中有 20 个相同的小三角形,它们的面积都是 1,问图中面积为 3 的梯形有多少个 ?图2259.图 23 的 3 个图中,网格小正方形的边长都是1,求各图中阴影部分的面积.图 2360.如图 24,从边长是 8 的正方形上裁掉两个边长是 2 的正方形和两个腰长是 4 的等腰直角三角形,求余下部分的面积 .图 2461.一张长方形纸片,长是10 厘米,宽是7 厘米 .把它的右上角往下折叠,如图25 所示,再把左下角往上折叠如图26 所示,求未盖住部分 (阴影部分 )的面积 .图 25图2662.一个长方形,若长增加 3,宽增加 2,则面积增加 33;若长增加 1,宽增加 3,则面积增加 26,求原长方形的周长 .63.如图 27,在长是12 的线段上画两个正方形,已知两个正方形的面积的差是48,求其中大正方形的面积.图 2764.如图 28,长方形边长是 12,宽是 6. 把长分成三等份,宽分成两等份,再将长方形内某点与分割点连接,求阴影部分面积 .图 2865.在一条直路的一侧等距离地植了128 棵树,路的两端都有树 .若第 3 棵树和第7 棵树相距 20 米,求这条路的长 .66.有一个报时钟,每敲响一下,声音可持续 2 秒且每两次敲响的时间间隔相同.如果敲响 5 下,那么从敲响第一下到最后一下持续声音结束,一共需要26 秒.现在敲响 10 下,从敲响第一下到最后一下持续声音结束,一共需要多少秒?67.楠楠 6 岁时,爸爸 36 岁,再过多少年,爸爸的年龄是楠楠年龄的 4 倍?68.今年父亲的年龄是兄弟年龄和的 2 倍,是兄弟年龄差的 8 倍.父子三人年龄和是48 岁,长兄和弟弟今年各几岁 ?69.今年,李林和爸爸的年龄的和是 50 岁, 5 年后,爸爸的年龄比李林年龄的 3 倍小 4 岁,爸爸比李林大几岁 ?70.妈妈像女儿这样大时,女儿才两岁,当女儿长到妈妈现在这样大时,妈妈 86 岁,求妈妈现在的年龄 .71.两棵树上一共有25 只鸟,先是左边树上的鸟有一半飞到了右边树上,然后右边树上的 8 只鸟又飞到了左边树上,这时左边树上的鸟比右边树上多 3 只. 请问最开始左边树上有几只鸟?72.有甲、乙、丙、丁四个书库,共有图书 24000 本.从甲书库调运 1500 本书到乙书库,然后从乙书库调运 1800 本书到丙书库,再从丙书库调运 2200 本书到丁书库,最后从丁书库调运 1700 本书到甲书库 . 此时,甲、乙、丙、丁书库的图书数量相等 . 求甲书库原来有图书多少本 ?73.小肯同学去肯德基用餐,先买了一份“豪华午餐”,吃完后又买了一个“脆皮甜筒”,一共花了180 角.若以角计费,“豪华午餐”的价格末尾有个0,如果把0 去掉,正好是“脆皮甜筒”价格的一半 . 两样各花了多少元 ?74.一桶油连桶重 19 千克,用了一半油以后,再连桶一称,共重 12 千克 . 求原来油和桶各重多少 ?75.小笨和小聪练习打字,两分钟内,小笨比小聪多打49 个字,又比小聪的3 倍多 7 个字 . 问:两分钟内,小聪和小笨分别打了多少字?76.小笨和小聪买了 60 包方便面,小聪比小笨每周少吃 4 包,二人恰好用了 6 周吃完了所有的方便面 . 求小笨每周吃多少包方便面 ?77.甲、乙、丙三数之和为 177,乙比丙的两倍少 4,甲比丙的 3 倍多 7,求甲、乙、丙三数 .78.某单位请小王临时帮忙,规定 12 天报酬是人民币 660 元和一个 MP4 播放器 . 可是小王工作了七天后,因有急事不能继续,结果这个单位根据每天平均值给小王一个 MP4 播放器和人民币 150 元 . 问:一个 MP4 播放器价值多少元 ?79.小明今年得压岁钱 1650 元,比小亮的 2 倍少 150 元,求小亮今年得压岁钱多少元 ?80.麦当劳餐厅推出“夏日冰饮第二杯半价”活动,贝贝同学买了 2 杯“麦旋风”,共花了 18 元. 那么一杯“麦旋风”原价多少元 ?81.小王对小李说:“你给我 100 元,我的钱是你的 2 倍 . ”小李对小王说:“你给我 20 元,我的钱是你的 5 倍 . ”原来两人各有多少钱 ?82.小明、小刚和小丽为灾区儿童捐书,小明比小刚多捐了 7 本,小刚比小丽多捐了13 本,小明捐的本数是小丽的 3 倍,求三人一共捐了多少本书 ?83.A,B,C, D 四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了 4 次,得到下面四个数: 23,26,30, 33. 求 A , B,C,D 的平均数 . 84.有一群小朋友分一堆苹果,如果减少 1 人,每人可分得 8 个;如果增加 2 人,每人可分得 6 个 . 求实际有多少个小朋友 ?85.有一群小朋友分一堆苹果,如果每人分 5 个,就会剩下 4 个苹果,这时离开了 3 个小朋友,那么每人分 6 个还会剩 4 个. 问:原来一共有多少个苹果 ?86.张丽正在读一本 181 页的故事书,可是她不小心把书合上了,只记得刚读完的连续两页页码之和为 81,如果张丽每天读 30 页,那么剩下的几天能读完 ?87.小华有 8 个练习本,小明有 7 个练习本,小强没有,他付了 10 元从小华和小明购买了一些后,三人有相同数量的练习本 .若每个练习本的价格都相同,则小华应得几元钱 ?88.甲、乙、丙 3 人手机都使用了“畅聊卡”,并获得了赠送一个月基础话费的优惠,一个月后三人均超过了基础话费,甲付了 70 元,乙付了 50 元,丙付了 30 元.3 人通话时长共计 90 小时,如果一个人通话 90 小时,要付 350 元,那么丙通话了多少小时 ?89.运 1200 吨水泥,甲、乙两个车队共同运输需要运 30 次,若甲车队每次可比乙车队多运 10 吨,则甲车队独立运输需要运几次 ?90.一个牧民年初买了一头母羊,每年能生 2 只公羊, 4 只母羊,每只小母羊两年后,每年又可以生 6 只羊,其中 2 只公羊,4 只母羊 .这样从今年开始到第 3 年底,一共有多少只羊 ?91.小明家 2013 年初买了一头母羊,每年春天生 2 只公羊和 3 只母羊,每只小母羊从第三年头起,每年春天生 2 只公羊和 3 只母羊 .那么从 2013 年开始到 2017 年夏天,小明家共有只羊 ?92.有一根木棍上有两种刻度,第一种刻度将木棍分成10 等份,第二种刻度将木棍分成 12 等份,如果沿每条刻度线将木棍锯断,请问木棍共被锯成多少段?93.和尚分馒头: 100 个和尚分 100 个馒头,大和尚每人分 3 个,小和尚每 3 个人分 1 个,刚好分完 .大、小和尚各有多少人 ?94.3 名同学去参加数学竞赛,共 10 道题,答对一道题得 10 分,答错一道题扣 3 分 .这3 个同学都回答了所有的问题,小笨得了87 分,小聪得了74 分,香香得了9 分,问,他们一共答对了几道题 ?95.今有鸡兔同笼,有33 个头,有 108 只脚,求鸡和兔各多少只?96.两列火车同时从北京和沈阳相对开出,从北京开出的火车每小时行 59 千米,从沈阳开出的火车每小时行 64 千米,6 小时后两车相遇 . 北京到沈阳的铁路线长多少千米 ?97.南京长江大桥是新中国第一座自己设计,建造的铁路、公路两用桥 .清晨,一列长228 米的火车,以每秒 20 米的速度通过南京长江大桥,共用了 350 秒 .那么桥的全长是多少米 ?98.甲、乙两人分别从 A 、B 两地同时以 30 千米 / 时、 20 千米 /时速度相向而行,相遇后继续前行各自到达 B、A 两地后立即返回,到第二次相遇时相遇点,该点离第一次相遇点 40 千米,求 A 、B 两地相距多少千米 ?99.红红和明明的家相距 380 米,两人同时从家中出发,在同一条笔直的路上行走,红红每分钟走 65 米,明明每分钟走 55 米, 3 分钟后两人相距多少米 ?100.甲、乙两地是一条电车线路两端的发车站,每隔一定时间两站同时发出一辆电车,每辆电车每隔 4 分钟都会遇到一辆迎面开来的电车,上午 10 点时,小明、小强两人分别从甲、乙车站同时出发,相向而行,小明每 5 分钟遇到一辆迎面开来的电车,小强每 6 分钟遇到一辆迎面开来的电车,如果电车行驶全程需 42 分钟,求小明和小强相遇的时刻 ?参考答案1. 0 42. 852. 33330000 43. 163. B>A>C 44. 144.4. 6561 45. 275. 299999999 46. 616. 943 47. 217. 147 48. 如图8.5879.6310.49911.1012.a=2 b=7 c=1313. 1123 49. 1814. 3321 50. 315. 257 51. 2016. 101 52. 717. 9993 53. 3,6 或 4,418. 387 54. 4019. 357 或 735 55. 54 平方厘米20. 10 56. 42 厘米21. 5 57. 1222. 1×2×(3+4) ×5+6+7+8+9=100. 58. 1623. (9 ×9-9) ÷9=8 59. 图 1:3;图 2:3;图 3: 324. 131 60. 4025. 2016 61. 1226. 167 62. 2227. 543 或 542 或 532 63. 6428. 4032 64. 3029. 1 65. 63530. 4034 66. 5631. 34,55,89 67. 432. 本题答案不唯一 . 68. 10, 633. 45 69. 2834. 20,24 70. 5835. 9 71. 1236. 6 72. 580037. 4 73. 3 元; 15 元38. 14 74. 14 千克, 5 千克39. 30 天,星期四75. 21, 7040. 97 76. 741. C 77. 甲=94,乙 =54,丙 =2921希望课堂——一个真正帮助孩子学懂数学的课堂78. 564 90. 4379. 900 91. 16180. 12 92. 2081. 小王 60 元,小李 180 元93. 大和尚 25 人,小和尚 75 人82. 63 94. 2083. 28 95. 兔子 21 只,鸡 12 只84. 10 96. 73885. 94 97. 677286. 5 98. 10087. 6 99. 可能相距20 米,740 米,410 米,88. 26 或 350 米89. 48 100. 10 点 45 分22。

第希望杯考前训练题四年级完整版

第希望杯考前训练题四年级完整版

第希望杯考前训练题四年级HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第16届希望杯考前训练100题学前知识点梳理主要针对“希望杯”全国数学邀请赛进行考前特训,主要学习内容有:1.整数的四则运算,运算定律,简便运算。

2.基本图形,图形的拼组(分、合、移、补),图形的变换,折叠与展开。

3.角的概念与度量,长方形、正方形的周长和面积,平行四边形、梯形的概念和周长计算。

4.整除概念,数的整除特征,带余数除法,平均数。

5.几何计数(数图形),找规律,归纳,统计,可能性。

6.数谜,分析推理能力,数位,十进制表示法。

7.生活数学(钟表,时间,人民币,位置与方向,长度,质量的单位)。

8.应用题(植树问题、年龄问题、鸡兔同笼、盈亏问题、行程问题)。

考前100题选讲1.计算:8×27×25。

2.计算:9+98+987+9876。

3.计算:2-4+6-8+10-12+…-48+50。

4.计算:2017×2016+2016×2014-2015×2016-2015X2017。

5.计算:15÷7+68÷14。

6.已知999999÷(a÷2)=142857,求a7.某数被27除,商是8,余数是5,求这个数。

8.定义:A*B=(A+3)×(B-2),求15*17。

9.除法算式△÷7=12……□中,余数最大是多少?10.有5个连续偶数之和恰好等于4个连续奇数之和,如4+6+8+10+12=7+9+11+13。

请写出一个符合要求的式子。

11.将36表示成三个大于1的自然数的乘积(不考虑三个自然数的相乘顺序)。

共有几种不同的表示方法?12.用数字2,0,1,7可以组成多少个不重复的三位数?13.用2295除以一个两位数,丽丽在计算的时候错把这个两位数的十位数字和个位数字写反了,得到的结果是45,则正确的结果应该是多少?14.如果把某个除法算式的被除数152写成125,则商会比原来的结果小3,且余数不发生变化,求余数?和某个小于100的自然数的和正好等于两个连续自然数之积,求这个小于100的自然数。

四年级希望杯100题

四年级希望杯100题

江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。

解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。

2017年四年级希望杯奥数试卷【含答案】

2017年四年级希望杯奥数试卷【含答案】

2017年四年级希望杯奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 下列哪个数是质数?A. 12B. 13C. 14D. 153. 下列哪个数是合数?A. 11B. 12C. 13D. 144. 下列哪个数是奇数?A. 10B. 11C. 12D. 135. 下列哪个数既是偶数又是合数?A. 15B. 16C. 17D. 18二、判断题(每题1分,共5分)1. 2是最大的偶数。

()2. 所有的偶数都是合数。

()3. 所有的奇数都是质数。

()4. 1是质数。

()5. 9是合数。

()三、填空题(每题1分,共5分)1. 4 + 5 = ____2. 9 4 = ____3. 7 × 6 = ____4. 15 ÷ 5 = ____5. 2 + 3 + 4 + 5 + 6 = ____四、简答题(每题2分,共10分)1. 请写出前五个偶数。

2. 请写出前五个奇数。

3. 请写出前五个质数。

4. 请写出前五个合数。

5. 请写出前五个自然数的和。

五、应用题(每题2分,共10分)1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 小红有3个橘子,她再买2个,一共有几个橘子?3. 一辆火车每小时行驶60公里,行驶3小时后,一共行驶了多少公里?4. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。

5. 一个正方形的边长是5厘米,求这个正方形的周长。

六、分析题(每题5分,共10分)1. 请分析偶数和奇数的区别。

2. 请分析质数和合数的区别。

七、实践操作题(每题5分,共10分)1. 请用纸和剪刀制作一个正方形。

2. 请用纸和剪刀制作一个长方形。

八、专业设计题(每题2分,共10分)1. 设计一个简单的加法电路,输入两个1位二进制数,输出它们的和。

2. 设计一个简单的减法电路,输入两个1位二进制数,输出它们的差。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

2017年“希望杯”全国数学邀请赛试卷(附答案及讲解)

2017年“希望杯”全国数学邀请赛试卷(附答案及讲解)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(四年级第2试)一、填空题(本大题共12小题,每小题5分,共60分)1.(5分)计算:1100÷25×4÷11=.2.(5分)有15个数,他们的平均数是17,加入1个数后,平均数变为20,则加入的数是.3.(5分)若和是两个三位数,且a=b+1,b=c+2,×3+4=,则=.4.(5分)已知a+b=100,若a除以3,余数是2,b除以7,余数是5,则a×b的值最大是.5.(5分)如图所示,两个完全相同的等腰三角形中各有一个正方形,图乙中的正方形面积为36平方厘米,则图甲中的正方形面积为平方厘米.6.(5分)边长为20的正方形的面积恰好等于边长为a和边长为b的两个正方形的面积的和,若a和b都是自然数,则a+b=.7.(5分)今年是2017年,年份的数字和是10,则本世纪内,数字和是10的所有年份的和是.8.(5分)在纸上画2个圆,最多可得到2个交点,画3个圆,最多可得到6个交点,那么,如果在纸上画10个圆,最多可得到个交点.9.(5分)小红带了面额50元,20元,10元的人民币各5张,6张,7张,她买的230元的商品,那么,有种付款方式.10.(5分)甲、乙、丙三个数的和是2017,甲比乙的2倍少3,乙比丙的3倍多20,则甲是.11.(5分)篮球比赛中,三分线外投中一球可得3分,三分线内投中一球可得2分,罚蓝投中一球得1分,某球队在一次比赛中共投进32个球,得65分,已知二分球的个数比三分球的个数的4倍多3个,则这个球队在比赛中罚篮共投中球.12.(5分)在如图的乘法算式中,A、B、C、D、E、F、G、H、I分别表示彼此不同的一位数,则“FIGAA”表示的五位数是.二、解答题:每小题15分,共60分。

每题都要写出推算过程。

13.(15分)甲、乙两人同时从A、B两地出发,相向而行,甲每分钟走70米,乙每分钟走60米,两人在距离中点80米的地方相遇,求A、B两地之间的距离.14.(15分)老师给学生水果,准备了两种水果,其中橘子的个数比苹果的个数的3倍多3个,每人分2个苹果,则余下6个苹果;每人分7个橘子,最后一人只能分得1个橘子,求学生的人数.15.(15分)两个相同的正方形重合在一起,将上层的正方形向右移动3厘米,再向下移动5厘米,得到如图所示的图形,已知阴影部分的面积是57平方厘米,求正方形的边长.16.(15分)商店推出某新款手机的分期付款活动,有两种方案供选择.方案一:第一个月付款800元,以后每月付款200元.方案二:前一半的时间每月付款350元,后一半的时间每月付款150元.两种方案付款总数与时间都相同,求这款手机的价格.2017年第十五届小学“希望杯”全国数学邀请赛试卷(四年级第2试)参考答案与试题解析一、填空题(本大题共12小题,每小题5分,共60分)1.(5分)计算:1100÷25×4÷11=16.【分析】先算1100÷11÷25,得4,再算4×4【解答】解:1100÷25×4÷11=1100÷11÷25×4=100÷25×4=4×4=16故答案是:16【点评】本题考查了乘除的混合运算,本题突破点:交换乘除数的位置,即可巧算出结果2.(5分)有15个数,他们的平均数是17,加入1个数后,平均数变为20,则加入的数是65.【分析】首先根据题意,可得:原来15个数的和是255(15×17=255),后来16个数的和是320(16×20=320);然后用后来16个数的和减去原来15个数的和,求出加入的数是多少即可.【解答】解:16×20﹣15×17=320﹣255=65答:加入的数是65.故答案为:65.【点评】此题主要考查了平均数问题,要熟练掌握,解答此题的关键是求出原来15个数以及后来16个数的和各是多少.3.(5分)若和是两个三位数,且a=b+1,b=c+2,×3+4=,则=964.【分析】显然a比c大3,a最小是3,b最小是2,c最小是0,而×3+4=,d 最大为9,只有当a=3时才满足题意,故可以求出.【解答】解:根据分析,a=b+1=c+2+1=c+3,又a、b、c均为一位数,故a的最小值为3,b最小是2,c最小是0,又∵×3+4=,∴d最大为9,此时a=3,b=2,c=0即=320,则=×3+4=320×3+4=964;故答案是:964.【点评】本题考查了最大与最小的知识,本题突破点是:根据已知确定a,b,c的最小值以及d的最大值,从而可以求出结果.4.(5分)已知a+b=100,若a除以3,余数是2,b除以7,余数是5,则a×b的值最大是2491.【分析】要求a×b最大值,则要使a、b的差尽可能小,而两者的和一定,即可缩小范围,求出最大值.【解答】解:根据分析,a除以3,余数是2,b除以7,余数是5,可设a=3m+2,b=7n+5,又∵a+b=100,由于和不变,差小积大,则要求a与不得差尽可能小,得a=53,b=47,a×b=53×47=2491,此时a×b的值最大.故答案是:2491.【点评】本题考查了最大与最小,本题突破点是:根据最大最小的特征,和不变,差小积大,故而可以求得最大值.5.(5分)如图所示,两个完全相同的等腰三角形中各有一个正方形,图乙中的正方形面积为36平方厘米,则图甲中的正方形面积为32平方厘米.【分析】根据正方形的对角线性质及等腰直角三角形的性质作图如下:将乙中的等腰直角三角形平均分成了4份,则三角形的面积是36÷2×4=72平方厘米,图甲将三角形平均分成了9个相同的小三角形,正方形占了4个,它的面积是三角形面积的,据此可求出正方形的面积是多少,据此解答.【解答】解:如图:三角形的面积:36÷2×4=18×4=72(平方厘米)图甲中正方形的面积:72×=32(平方厘米)答:图甲中的正方形面积为32平方厘米.故答案为:32.【点评】本题的重点是把等腰直角三角形平均分成若干份,再根据正方形占的份数进行解答.6.(5分)边长为20的正方形的面积恰好等于边长为a和边长为b的两个正方形的面积的和,若a和b都是自然数,则a+b=28.【分析】按题意,边长为20的正方形的面积恰好等于边长为a和边长为b的两个正方形的面积的和,即可列一个关系式,a2+b2=20,再根据a和b都是自然数确定a和b的值.【解答】解:根据分析,可以得到:a2+b2=20,∵a和b都是自然数,且32+42=52⇒122+162=202,∴a=12,b=16∴a+b=28.故答案是:28.【点评】本题考查了完全平方数性质,本题突破点是:根据完全平方数的性质和自然数的条件,确定a和b的值,从而再求和.7.(5分)今年是2017年,年份的数字和是10,则本世纪内,数字和是10的所有年份的和是18396.【分析】按题意,本世纪即:2000~2100之间找出数字和为10的数,然后再加起来即可,而这些数百位均为0,可以从十位开始算起.【解答】解:根据分析,在2000~2100数字中,由于千位为2,百位为0,十位与个位数字之和等于8即可,故满足条件的有:2008,2017、2026、2035、2044、2053、2062、2071、2080;和为:2008+2017+2026+2035+2044+2053+2062+2071+2080=18396.故答案是:18396.【点评】本题考查了数字问题,突破点是:确定千位和百位上的数字,只须确定十位与个位上的数字和即可.8.(5分)在纸上画2个圆,最多可得到2个交点,画3个圆,最多可得到6个交点,那么,如果在纸上画10个圆,最多可得到90个交点.【分析】当已经有n个圆时,再画一个圆,圆与其他n个圆的交点最多的情况是:这个圆与其他每个圆都相交于两点.【解答】解:递推分析:画第1个圆,交点为0个,画第2个圆,它与第1个圆交于两点,交点有0+2=2个,画第3个圆,它与前两个圆分别相较于两点,交点有0+2+4=6个,…画第10个圆,它与前面9个圆分别交于两点,交点个数:0+2+4+6+…+18=90个;故本题答案为:90.【点评】每两个圆之间交点最多的情况是两圆相交,交点最多为2个,本题也可以用排列组合来解答:2×=90个.9.(5分)小红带了面额50元,20元,10元的人民币各5张,6张,7张,她买的230元的商品,那么,有11种付款方式.【分析】要用50,20,10凑成230,用枚举法列举出所有方式.【解答】解:根据50元面额由大到小的顺序,枚举出所有可能的组合,如下表:面额张数50元4433332222120元1043216543610元130********共有11种组合方式.故本题答案为:11.【点评】枚举法列举即可,注意避免遗漏,题目较简单.10.(5分)甲、乙、丙三个数的和是2017,甲比乙的2倍少3,乙比丙的3倍多20,则甲是1213.【分析】乙比丙的3倍多20,那么乙数可以表示为丙数×3+20,甲比乙的2倍少3,那么甲数就是丙数的2×3倍多20×3,那么三数的和就是丙数的1+2×3+3倍多(20×3﹣3),用三数的和减去(20×3﹣3)得到丙数的(1+2×3+3)倍,进而求出丙数,从而得到乙数和甲数.【解答】解:丙数:(2017﹣20×3+3)÷(1+2×3+3)=(2017﹣57)÷10=1960÷10=196,乙数:196×3+20=608,甲数:608×2﹣3=1213,答:甲是1213.故答案为:1213.【点评】解决本题关键是通过代换,得出甲数是丙数的几倍多几,进而得出三数的和是丙数的几倍多几,从而求出丙数,进而求解.11.(5分)篮球比赛中,三分线外投中一球可得3分,三分线内投中一球可得2分,罚蓝投中一球得1分,某球队在一次比赛中共投进32个球,得65分,已知二分球的个数比三分球的个数的4倍多3个,则这个球队在比赛中罚篮共投中4球.【分析】设三分球有x个,则两分球有(4x+3)个,一分球有(32﹣4x﹣3﹣x)个,各种球投中的个数乘对应分数,表示出各种球的得分,再相加就是全部的得分65分,由此列出方程求出3分球的个数,进而求出一分钱(罚篮)的个数.【解答】解:设三分球有x个,则二分球有(4x+3)个,一分球有(32﹣4x﹣3﹣x)个,则:3x+(4x+3)×2+(32﹣4x﹣3﹣x)=65x=5一分球有:32﹣4×5﹣3﹣5=4(球)答:这个球队在比赛中罚篮共投中4球.故答案为:4.【点评】解决本题先设出三分球的个数,再根据倍数关系表示出两分球的个数,再根据投中球的个数表示出一分球的个数,然后根据乘法的意义分别得出3类球的得分数,再相加得到总分65分,由此等量关系列出方程求解.12.(5分)在如图的乘法算式中,A、B、C、D、E、F、G、H、I分别表示彼此不同的一位数,则“FIGAA”表示的五位数是15744.【分析】首先找到题中的特殊情况,根据第一个乘积是三位数,尾数相同可以枚举排除,再根据A和C确定B,然后就可以求解.【解答】解:依题意可知:A、B、C、D、E、F、G、H、I共9个数字,题中没有数字0.再根据结果是三位数,那么首位字母可以是C=2,A=4或者C=3,A=9不满足三位数的条件.所以A=4,C=2.再根据进位B=9,E=8.根据E+H=A=4那么H=6,A加上进位等于I=5.所以D=3,F=1.即:49×32=15744.故答案为:15744.【点评】本题考查凑数谜的理解和运用,突破口就是字母C和第一个乘积是三位数限制了百位数字不能太大,问题解决.二、解答题:每小题15分,共60分。

2017希望杯四年级100题及解析

2017希望杯四年级100题及解析
于是b=7,c=13.
13、a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位奇数 中最小的那个.
文字解析
因为a,b,c是彼此不同的非0自然数,且a+b+c=6,
所以这三个数只能是1,2,3,由1,2,3构成的型的奇数有:
1123,2213,2231,3321,
比较可知最小的=1123.
14、a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位数 中最大的那个.
故可以组成10个没有重复数字的四位偶数.
12、已知a, b, c是三个质数,且a<b<c, a+b×c=93,求a:_____,b:______,c:_______.
文字解析
因为a+b×c=93,所以a和b×c是一个奇数和一个偶数,而b和c是大于2的质数,所以b×c是奇数,a为偶数,因此a=2,所以b×c=93-2=91=7×13,
文字解析
同第13题,可得的最大值=3321.
15、三位数 是质数, a, b, c也是质数, 是偶数, 是5的倍数,求三位数 .
文字解析
因为cba是偶数,a是质数,所以a=2.因为是5的倍数,b是质数,所以b=5.
因为c也是质数,所以=257或253.但是253=11×23,不是质数,所以=257.
当n=64时,(1+64)×64÷2=2080,(符合)
2080-2017=63,
所以去掉的数是63.
10、若干个数的平均数是17,加入一个新数2017后,这组数的平均数变成21,原来共有多少个数?
文字解析
根据平均数的定义,若增加的数是17,那么这组数的平均数不变,
2017-17=2000,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五届(2017年)小学“希望杯”全国数学邀请赛四年级培训题1.计算:2017×2071+2077×2017-2037×2017-2111×2017.2.计算:9999×2222+3333×3334.3.比较大小:A=2016×2018,B=2017×2017,C=2015×2019.4.定义新运算⊗: ba b b b b a 个⨯⋅⋅⋅⨯⨯=⊗,求(1⊗4)⊗(2⊗3).5.一个自然数,各个数位上的数字之和是74,这个数最小是多少?6.一个三位数被3除余1,被5除余3,被7除余5,这个数最大是多少?7.一个整除算式,被除数比商大126,除数是7,求被除数.8.一个三位数,它的各位数字之和是20,十位数字比个位数字大1,如果将百位数字与个位数字对调,得到的三位数比原三位数大198,求原数.9.在从1开始的n个连续的自然数中,去掉其中的一个数,余下各数的和是2017,求去掉的数.10.若干个数的平均数是17,加入一个新数2017后,这组数的平均数变成21,原来共有多少个数?11.用2,0,1,7这四个数字可以组成多少个没有重复数字的四位偶数?12.已知a,b,c是三个质数,且a<b<c,a+b⨯c=93,求a,b,c.13.a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位奇数aabc 中最小的那个.14.a,b,c是彼此不同的非0自然数,若a+b+c=6,求四位奇数aabc 中最大的那个.15.三位数abc是质数,a,b,c也是质数,cba是偶数,ab是5的倍数,求三位数abc.16.求被7除,余数是3的最小的三位数.17.求被7除,余数是4的最大的四位数.18.将分别写有数字3,7,8的三张卡片排成三位数abc,使它是43的倍数,求abc.19.已知a,b,c是不同的质数.且三位数abc能同时可被3,7整除,求abc.20.用写有2,3,5,7的四张纸片可以排成多少个小于1000的质数?21.四位数abbc可被两位数ac整除,若a<c,a+c=5,求b.22.在下面的算式里加上一对括号,使算式成立.1⨯2⨯3+4⨯5+6+7+8+9=10023.在等号左边添上适必的运算符号、括号,使等式成立.9999=824.从1至9的自然数中选择8个数填入下面的方框中,使得计算结果尽量大,那么这个结果最大是多少?□÷□⨯(□+□)-□⨯□-□+□.25.在下面的算式中,A,B,C,D代表0~9四个各不相同的数字,且A是最小的质教,求四位数ABCD.⨯CAD=ABCDCD26、在如图的算式中,“希”、“望”、“杯”三个字分别代表0~9中三个不同的数字,求“希望杯”代表的数.希望杯×希望=22望杯27、a、b、c、d、e 都是自然数,且0<c<b<a<d<e≤9,若如图的算式成立,求abc 。

28、求 9201692016920169991999999个个个⋅⋅⋅+⋅⋅⋅⨯⋅⋅⋅末尾有多少个0?29、求765432201520142013201220112010+++++的末位数字30、根据下面一列数的规律,求第2017数.2,4,6,8,10,….31、找规律,填数:1,1,2,3,5,8,13,21,(),(),(),...32、把数字1~12填到下图的圆圈中,使每个圆上的数字之和相等33、同一平面内的2条直线最多有1个交点,3条直线最多有3个交点,10条直线的交点最多有多少个交点?34、按照规律,写出上、下两条横线上应填的数。

35、如图现察前面两个正方形中数之间的关系,根据规律求第三个正方形中“?”代表的数.36、正方体骰子上1和6相对,2和5相对,3和4相对,把它放在水平桌面上(如图6),将骰子向右翻滚90°,然后在桌面上按逆时针方句旋转90°,则完成一次变换(如图7),若骰子的初始位置为图6,那么完成23次变换后,朝上一面的数字是什么?37、有一串数字,任何相邻的4个数之和都是22,若从左边起第2,5,12个数分别是3,7,8,求第11个数。

38、小伟和小明交流暑假中的活动情况,小伟说:“我参加了夏令营,外出一个星期,这七天的日期数之和是84.”小明说:“我假期到家住了七天,日期数的和再加月份数也是84.”那么,小伟出发的日期和小明回家的日期分别是几号?39、某个月中星期一多于星期二,而星期日多于星期六,那么这个月有多少天,这个月的5号是星期几?40、6位同学数学考试的平均成绩是93分,他们的成绩是互不相同的整数,且最高分是99分,最低分是75分,求按分数从高到低居第三位的同学的得分.41、为了表扬好人好事,需核实一件事,厂方找了A,B,C,D四人.A说:“是B做的.”B说:“是D做的.”C说:“是我做的.”D说:“B说的不对.”若这四人中只有一人说了实话,问:这件事是谁做的.42、晶晶家门牌号码满足:(1)若是4的倍教,则它就是60~69中的数;(2)若不是5的倍数,则它就是70~79中的数;(3)若不是8的倍数,则它就是80~89中的数.晶晶家的门牌号码?43、数一数,图中有多少个三角形?44、数一数,图中包含“☆”的长方形(包含正方形)有多少个?45、数一数,图中有多少个三角形?46、数一数,图中有多少个长方形(包含正方形)?47、数一数,在图12中的不同位置可以画出多少个图13所示的图形?(方向可以旋转)48.图中由10个相同的小正方形组成,请用三种方法把它分割成两个大小相等、形状相同的部分(沿图中的线分割).49.将图中的〇分别涂成红色、黄色或绿色,要求有线段相连的两个相邻〇涂不同的颜色,共有多少种不同涂法?50.小聪学玩魔方,向小笨拜师学艺.小笨首先出了一道题考他.从下图的四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么下列4个展开图有几个是正确的?51.从图中任意选择四个点,可组成多少个不同的正方形?(不同的点组成的正方形视为不同的正方形)52.有5根小木棒的长度分别为1cm,1cm,2cm,3cm,5cm.从中任取3根,不同的长度和有几种?53.一个长方形的长和宽都是整数,且它的面积和周长恰好在数值上相等,那么长方形的长和宽分别是多少?(不需写过程)54.如图,已知AD=100,BD=65,AC=75,求BC.A B C D55.如图,两个完全相同的等腰三角形中各有一个正方形,图甲中的正方形面积为求图乙中的正方形面积.56.两个边长为8厘米的正方形如图重叠,若图中阴影部分的面积为24平方厘米,那么所拼成的大长方形周长是多少厘米?57.图中的正六边形被分为12个相同的小三角形,每个小三角形的面积为1.问:图中面积等于3的梯形有多少个?58.图中有20个相同的小三角形,它们的面积都是1,问图中面积为3的梯形有多少个?59.图中的3个图中,网格小正方形的边长都是1,求各图中阴影部分的面积.60.如图,从边长是8的正方形上剪掉两个边长是2的正方形和两个腰长是4的等腰直角三角形,求余下部分的面积.61.一张长方形纸片,长是10厘米,宽是7厘米.把它的右上角样下折叠,如图25所示,再把左下角往上折叠如图26所示,求未盖住部分(阴影部分)的面积.62.一个长方形,若长增加3,宽增加2,则面积增加33;若长增1,宽增加3,则面积增加26,求原长方形的周长.63.如图,在长是12的线段上画两个正方形,已知两个正方形的面积的差是48,求其中大正方形的面积.64.如图,长方形边长是12,宽是6.把长分成三等份,宽分成两等份,再将长方形内某点与分割点连接,求阴影部分面积.65.在一条直路的一侧等距离地植了128棵树,路的两端都有树.若第3棵树和第7棵树相距20米,求这条路的长.66.有一个报时钟,每敲响一下,声音可持续2秒且每两次敲响的时间间隔相同.如果敲响5下,那么从敲响第一下到最后一下持续声音结束,一共需要26秒.现在敲响10下,从敲响第一下到最后一下持续声音结束,一共需要多少秒?67.楠楠6岁时,爸爸36岁,再过多少年,爸爸的年龄是楠楠年龄的4倍?68.今年父亲的年龄是兄弟年龄和的2倍,是兄弟年龄差的8倍.父子三人年龄和是48岁,长兄和弟弟今年各几岁?69.今年,李林和爸爸的年龄的和是50岁,5年后,爸爸的年龄比李林年龄的3倍小4岁,爸爸比李林大几岁?70.妈妈像女儿这样大时,女儿才两岁,当女儿长到妈妈现在这样大时,妈妈86岁,求妈妈现在的年龄.71.两棵树上一共有25只鸟,先是左边树上的鸟有一半飞到了右边树上,然后右边树上的8只鸟又飞到了左边树上.这时左边树上的鸟比右边树上多3只,请问最开始左边树上有几只鸟?72.有甲、乙、两、丁四个书库.共有图书24000本。

从甲书库调运1500本书到乙书库然后从乙书库调运1800本书到丙书库,再从丙书库调运2200本到丁书库,最后从丁书库调运1700本书到甲书库.此时,甲、乙、丙、丁书库的图书数量相等.求甲书库原来有图书多少本?73.小肯同学去肯德基用餐,先买了一份“豪华午餐”,吃完后又买了一个“脆皮甜筒”,一共花了180角.若以角计费,“豪华午餐”的价格末尾有个0,如果把0去掉,正好是“脆皮甜筒”价格的一半.两样各花了多少元?74.一辆油连桶重19千克.用了一半油以后.再连桶一称,共重12千克.求原来油和桶各重多少?75.小笨和小聪练习打字.两分钟内,小笨比小聪多打49个字.又比小聪的3倍多7个字.问:两分钟内,小聪和小笨分别打了多少字?76.小笨和小聪买了60包方便面,小聪比小笨每周少吃4包,二人恰好用了6周吃完了有的方便面.求小笨每周吃多少包方便面?77.甲、乙、两三数之和为177,乙比丙的两倍少4,甲比丙的3倍多7,求甲、乙、丙三数.78.某单位请小王临时帮忙,规定12天报酬是人民币660元和一个MP4播放器.可是小王工作了七天后,因有急事不能继续,结果这个单位根据每天平均值给小王一个MP4播放器和人民币150元.问:一个MP4播放器价值多少元?79.小明今年得压岁钱1650元,比小亮的2倍少150元,求小亮今年得压岁钱多少元?80.麦当劳餐厅推出“夏日冰饮第二杯半价”活动,贝贝同学买了2杯“麦旋风”,共花18元.那么一杯“麦旋风”原价多少元?81.小王对小李说:“你给我100元,我的钱是你的2倍.”小李对小王说:“你给我20元,我的钱是你的5倍.”原来两人各有多少钱?82.小明、小刚和小丽为灾区儿童捐书,小明比小刚多捐了7本,小刚比小丽多捐了13本,小明捐的本教是小丽的3倍,求三人一共捐了多少本书?83.A,B,C,D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面四个数:23,26,30,33.求A,B,C,D 的平均数.84.有一群小朋友分一堆苹果.如果减少1人,每人可分得8个;如果增加2人,每人可得6个.求实际有多少个小朋友?85.有一群小朋友分一堆苹果,如果每人分5个,就会剩下4个苹果,这时离开了3个小朋友,那么每人分6各还会剩4个.那么原来一共有多少个苹果?86.张丽正在读一本181页的故事书,可是她不小心把书合上了,只记得刚读完的连续两页页码之和为81,如果张丽每天读30页,那么剩下的几天能读完?87.小华有8个练习本,小明有7个练习本,小强没有,他付了10元从小华和小明购买一些后,三人有相同数量的练习本.若每个练习本的价格都相同,则小华应得几元钱?88.甲、乙、丙3人手机都使用了“畅聊卡”,并获得了赠送一个月基础话费的优惠,一个月后三人均超过了基础话费,甲付了70元,乙付了50元,丙付了30元.3人通话时长共计90小时,如果一个人通话90小时,要付350元,那么丙通话了多少小时?89.运1200吨水泥.甲、乙两个车队共同运输需要运30次.若甲车队每次可比乙车队多运10吨,则甲车队独立运输需要运几次?90.一个牧民年初买了一头母羊.每年能生2只公羊,4只母羊,每只小母羊两年后,每年又可以生6只羊,其中2只公羊,4只母羊.这样从今年开始到第3年底,一共有多少只羊?91.小明家2013年初买了一头母羊.每年春天生2只公羊和3只母羊,每只小母羊从第三年头起,每年春天生2只公羊和3只母羊.那么从2013年开始到2017年夏天,小明家共有只羊?92.有一根木糙上有两种刻度,第一种相度将木棍分成10等份,第二种朝度将木棍分成12等份,如果沿每条刻度线将木棍锯断,请问木棍共被锯成多少段?93.和尚分馒头:100个和尚分100个馒头,大和尚每人分3个,小和尚每3个人分1个,刚好分完.大、小和尚各有多少人?94.3名同学去参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分.这3个同学都回答了所有的问题,小笨得了87分.小聪得了74分,香香得了9分,问,他们一共答对了几道题?95.今有鸡兔同笼,有33个头,有108只脚,求鸡和兔各多少只?96.两列火车同时从北京和沈阳相对开出,从北京开出的火车每小时行59千未,从沈阳开出的火车每小时行64千米,6小时后两车相遇.北京到沈阳的铁路线长多少千米?97.南京长江大桥是新中国第一座自己设计,建造的铁路、公路两用桥.清晨,一列长228米的火车,以每秒20米的速度通过南京长江大桥,共用了350秒.那么桥的全长是多少米?98.甲、乙两人分别从A、B两地同时以30千米/时、20千米/时速度相向而行,相遇后继续前行各自到达B、A两地后立即返回,到第二次相遇时相遇点,该点离第一次遇点40米,求A、B两地相距多少千米?99.红红和明明的家相距380米,两人两时从家中出发,在同一条笔直的路上行走,红红每分钟走65米,明明每分钟走55米,3分钟后两人相距多少米?100.甲、乙两地是一条电车线路两端的发车站,每隔一定时间两站同时发、出一辆电车,每辆电车每隔4分钟都会遇到一辆迎面开来的电车,上午10点时,小明、小强两人分别从甲、乙车站同时出发,相向而行,小明每5分钟遇到一辆迎面开来的电车,小强每6分钟遇到一辆迎面开来的电车,如果电车行完全程需42分钟,求小明和小强相遇的时刻?。

相关文档
最新文档