等差数列的前n项和PPT教学课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“倒序相加”法
讲授新课
1. 等差数列的前n项和公式一
讲授新课
1. 等差数列的前n项和公式一
Sn
n(a1an) 2
讲授新课
2. 等差数列的前n项和公式二
讲授新课
2. 等差数列的前n项和公式二
n(n1)d Snn1a 2
讲授新课
2. 等差数列的前n项和公式二
n(n1)d Snn1a 2还可化成 Nhomakorabea 思考:
1. 等差数列中,S10,S20-S10,S30-S20 成等差数列吗?
2. 等差数列前m项和为Sm,则Sm, S2m-Sm,S3m-S2m是等差数列吗?
PPT教学课件
谢谢观看
Thank You For Watching
2020/12/10
25
Snd 2n2(a1d 2)n
讲解范例:
例1. (1)已知等差数列{an}中,a1=4, S8=172,求a8和d;
(2)等差数列-10,-6,-2,2, …前多少项的和是54?
讲解范例:
例 2. 2000 年 11 月 14 日教育部下发了《关 于在中小学实施“校校通”工程的通知》.某 市据此提出了实施“校校通”工程的总目标: 从 2001 年起用 10 年的时间,在全市中小 学建成不同标准的校园网. 据测算,2001 年该市用于“校校通”工程的经费为 500 万 元.为了保证工程的顺利实施,计划每年投 入的资金都比上一年增加 50 万元.那么从 2001 起的未来 10 年内,该市在“校校通” 工程中的总投入是多少?
教师问:“你是如何算出答案的?” 高斯回答说:“因为1+100=101;2+99=101;… 50+51=101,所以101×50=5050”.
复习引入
小故事”1、2、3
高斯是伟大的数学家,天文学家,高斯十岁时, 有一次老师出了一道题目,老师说: “现在给大家 出道题目: 1+2+…100=?”过了两分钟,正当大家 在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时, 高斯站起来回答说:“1+2+3+…+100=5050.” 教师问:“你是如何算出答案的?” 高斯回答说:“因为1+100=101;2+99=101;… 50+51=101,所以101×50=5050”.
复习引入
6. 数列的前n项和:
复习引入
6. 数列的前n项和: 数列{an}中, a 1 a 2 a 3 a n 称为数列{an}的前n项和,记为Sn.
复习引入
小故事”1、2、3
高斯是伟大的数学家,天文学家,高斯十岁时, 有一次老师出了一道题目,老师说: “现在给大家 出道题目: 1+2+…100=?”过了两分钟,正当大家 在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时, 高斯站起来回答说:“1+2+3+…+100=5050.”
讲解范例:
例3. 求集合
M { m |m 7 n ,n N * 且 m 1}00
的元素个数,并求这些元素的和.
讲解范例:
例4. 等差数列{an}的前n项和为Sn,若 S12=84,S20=460,求S28.
练习:
1. 在等差数列{an}中,已知a3+a99=200, 求S101.
2. 在等差数列{an}中,已知a15+a12+a9 +a6 =20,求S20.
2.3 等差数列的 前n
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
复习引入
1. 等差数列定义: 即an-an-1 =d (n≥2).
2. 等差数列通项公式: (1) an=a1+(n-1)d (n≥1). (2) an=am+(n-m)d . (3) an=pn+q (p、q是常数)
复习引入
3. 几种计算公差d的方法:
复习引入
3. 几种计算公差d的方法:
danan1 d an a1
n1
dan am nm
复习引入
4. 等差中项
复习引入
4. 等差中项 Aaba,A,b成等差数列.
2
复习引入
5. 等差数列的性质
复习引入
5. 等差数列的性质 m+n=p+q am+an=ap+aq. (m,n,p,q∈N)
相关文档
最新文档