带电粒子在磁场中的圆周运动
2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)
磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型1.高考命题中,带电粒子在有界磁场中的运动问题,常常涉及到临界问题或多解问题,粒子运动轨迹和磁场边界相切经常是临界条件。
带电粒子的入射速度大小不变,方向变化,轨迹圆相交与一点形成旋转圆。
带电粒子的入射速度方向不变,大小变化,轨迹圆相切与一点形成放缩圆。
2.圆形边界的磁场,如果带电粒子做圆周运动的半径如果等于磁场圆的半径,经常创设磁聚焦和磁发散模型。
一、分析临界极值问题常用的四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长,(3)当速率v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,再根据几何关系求出半径及圆心角等(4)在圆形匀强磁场中,当运动轨远圆半径大于区域圆半径时,入射点和出射点为磁场直径的两个端点时轨迹对应的偏转角最大(所有的弦长中直径最长)。
二、“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法三、“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上界定方法将一半径为R =mv 0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法四、“平移圆”模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则半径R =mv 0qB,如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R =mv 0qB的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法五、“磁聚焦”模型1.带电粒子的会聚如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出.(会聚)证明:四边形OAO ′B 为菱形,必是平行四边形,对边平行,OB 必平行于AO ′(即竖直方向),可知从A 点发出的带电粒子必然经过B 点.2.带电粒子的发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,从P 点有大量质量为m 、电荷量为q 的正粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)证明:所有粒子运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,也是平行四边形,O 1A (O 2B 、O 3C )均平行于PO ,即出射速度方向相同(即水平方向).(建议用时:60分钟)一、单选题1地磁场能抵御宇宙射线的侵入,赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该部面,如图所示,O为地球球心、R为地球半径,假设地磁场只分布在半径为R和2R的两边界之间的圆环区域内(边界上有磁场),磷的应强度大小均为B,方向垂直纸面向外。
带电粒子在匀强磁场中的匀速圆周运动
洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述
高三物理“带电粒子在磁场中的圆周运动”解析
高三物理“带电粒子在磁场中的圆周运动”解析处理带电粒子在匀强磁场中的圆周运动问题,其本质是平面几何知识与物理知识的综合运用。
重要的是正确建立完整的物理模型,画出准确、清晰的运动轨迹。
下面我们从基本问题出发对“带电粒子在磁场中的圆周运动”进行分类解析。
一、“带电粒子在磁场中的圆周运动”的基本型问题找圆心、画轨迹是解题的基础。
带电粒子垂直于磁场进入一匀强磁场后在洛仑兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。
【例1】图示在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁场的磁感应强度为B;一带正电的粒子以速度V0从O点射入磁场中,入射方向在xy平面内,与x轴正方向的夹角为θ;若粒子射出磁场的位置与O点的距离为L。
求①该粒子的电荷量和质量比;②粒子在磁场中的运动时间。
分析:①粒子受洛仑兹力后必将向下偏转,过O点作速度V0的垂线必过粒子运动轨迹的圆心O’;由于圆的对称性知粒子经过点P时的速度方向与x轴正方向的夹角必为θ,故点P作速度的垂线与点O处速(也可以用垂径定理作弦OP的垂直平分线与点O处速度的垂线的交点也为圆心)。
度垂线的交点即为圆心O’由图可知粒子圆周运动的半径由有。
再由洛仑兹力作向心力得出粒子在磁场中的运动半径为故有,解之。
②由图知粒子在磁场中转过的圆心角为,故粒子在磁场中的运动时间为。
【例2】如图以ab为边界的二匀强磁场的磁感应强度为B1=2B2,现有一质量为m带电+q的粒子从O 点以初速度V0沿垂直于ab方向发射;在图中作出粒子运动轨迹,并求出粒子第6次穿过直线ab所经历的时间、路程及离开点O的距离。
(粒子重力不计)分析:粒子在二磁场中的运动半径分别为,由粒子在磁场中所受的洛仑兹力的方向可以作出粒子的运动轨迹如图所示。
带电粒子在匀强磁场中的圆周运动
4.运动的重复性形成多解:带电粒子在部分是电场、 部分是磁场空间运动时,往往运动具有⑦________,因 而形成多解.
①相切 ②越长 ③长 ④不同 ⑤两种可能 ⑥ 不同 ⑦周期性
3、带电粒子在有界磁场中运动的临界问题的处理方法
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(1)刚好穿出磁场边界的条件是轨迹与边界相切. (2)当速度v一定时,弧长(或弦长)越长,圆周角越 大,则带电粒子在有界磁场中运动的时间越长 (3)当速率v变化时,圆周角越大,时间越长
2、确定临界状态的两 基本方法:
缩放圆
QP
B
v
S
P
QP Q
v
v
S
S
vB
o
d
θv
a
c
B
b
2、确定临界状态的 两基本方法:
教学课件
同学们好
一、带电粒子在磁场中匀速圆周运动分析方法
• 1、找圆心
利用v⊥R半径交点 利用弦的中垂线
两条切线夹角的平分线过圆心
O
O
v
M
P -q
v
M
P -q
v
O′
v
Aθ ●
θB
●
v
O
2、圆心角的求法
a.粒子速度的偏向角(φ)等于 圆心角 (α),并等于AB弦与切
O′
线的夹角(弦切角θ)的2倍
二.带电粒子在有界磁场中的运动 1、直线边界磁场:
负
v
v 正v
带电粒子在磁场中匀速圆周运动的半径计算
实例二:粒子束在磁场中的运动
总结词
考虑一束带电粒子在磁场中的运动,由于粒子间的相互作用力可以忽略不计,因 此每个粒子的运动轨迹仍为匀速圆周运动,但整体呈现出一个束状的运动形态。
详细描述
当一束带电粒子在磁场中运动时,由于粒子间的距离较大,相互作用力可以忽略 不计。因此,每个粒子都做匀速圆周运动,但由于速度和质量的差异,它们的运 动轨迹半径不同。整体上,这些粒子的运动轨迹呈现出一个束状的结构。
实例三:粒子在磁场中的偏转与聚焦
总结词
当带电粒子射入磁场时,由于洛伦兹力的作用,粒子会发生偏转。通过选择合 适的磁感应强度和粒子速度,可以实现粒子的聚焦。
详细描述
当带电粒子射入磁场时,由于洛伦兹力的作用,粒子的运动轨迹会发生偏转。 通过调整磁感应强度和粒子的速度,可以使粒子聚焦在特定的位置。这种技术 广泛应用于粒子加速器磁场中做匀速圆周运动的半径计算公式为 $r = frac{mv}{qB}$,其中 $m$ 是粒 子质量,$v$ 是粒子速度,$q$ 是粒子电荷量,$B$ 是磁感应强度。
公式理解
速度与半径的关系
电荷量与半径的关系
粒子的速度越大,其运动半径也越大。
粒子的电荷量越大,其运动半径越小。
磁感应强度与半径的关系
VS
详细描述
在粒子速度和磁感应强度一定的条件下, 磁场强度越高,粒子的运动半径越小;而 磁场越均匀,粒子的运动轨迹越圆滑,运 动半径也越稳定。这是因为磁场强度和均 匀性决定了洛伦兹力的大小和方向变化, 从而影响粒子的运动轨迹。
THANKS
感谢观看
02
半径计算是研究带电粒子在磁场 中运动规律的重要基础。
重要性及应用领域
重要性
掌握带电粒子在磁场中运动的半 径计算,有助于深入理解电磁场 的基本原理,为相关领域的研究 提供理论支持。
带电粒子在磁场中的运动
带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。
带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。
无论何种情况,其关键均在圆心、半径的确定上。
1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。
方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。
2. 求半径圆心确定下来后,半径也随之确定。
一般可运用平面几何知识来求半径的长度。
3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。
4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。
临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。
一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。
电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。
当不加磁场时,电子束将通过O点打到屏幕的中心M点。
为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。
做a、b点速度的垂线,交点O1即为轨迹圆的圆心。
图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的匀速圆周运动1.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。
2.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
洛伦兹力总与速度方向垂直,正好起到了向心力的作用。
公式:q v B =m v 2rr =m vqBT =2πm qB3.圆心、半径、运动时间的分析思路(1)圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点,如图(a)所示,或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图(b)所示.(2)运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定:首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t =α2πT .(4)圆心角的确定:①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如图所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.[特别提醒]带电粒子(不计重力)以一定的速度v 进入磁感应强度为B 的匀强磁场时的运动轨迹:(1)当v ∥B 时,带电粒子将做匀速直线运动.(2)当v ⊥B 时,带电粒子将做匀速圆周运动.(3)当带电粒子斜射入磁场时,带电粒子将沿螺旋线运动.4、带电粒子在三类有界磁场中的运动轨迹特点(1)直线边界:进出磁场具有对称性。
(2)平行边界:存在临界条件。
(3)圆形边界:沿径向射入必沿径向射出。
【例题1】如图所示,一束电荷量为e 的电子以垂直于磁场方向(磁感应强度为B )并垂直于磁场边界的速度v 射入宽度为d 的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.答案:23dBe 3v 23πd 9v解析:过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 作OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知,电子的轨迹半径r =d sin 60°=233d ①由圆周运动知e v B =m v 2r②解①②得m =23dBe 3v.电子在无界磁场中运动周期为T =2πeB ·23dBe 3v =43πd 3v.电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd 9v.带电粒子在磁场中的圆周运动问题处理方法(1)定圆心:圆心一定在与速度方向垂直的直线上,也在弦的中垂线上,也是圆的两个半径的交点.(2)求半径的两种方法:一是利用几何关系求半径,二是利用r =m v Bq 求半径.(3)求时间:可以利用T =2πr v 和t =Δl v 求时间,也可以利用t =θ2πT 求时间.【例题2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB 方向射入磁场,经过t 时间从C 点射出磁场,OC 与OB 成60°角。
带电粒子在匀强磁场中的圆周运动
1 2 eU mv 2
v evB m R
2
r tan 2 R
q
1 B r
2mU q tg e 2
【习题】如图所示,一个质量为m、电量为q的正离 子,从A点正对着圆心O以速度v射入半径为R的绝缘 圆筒中。圆筒内存在垂直纸面向里的匀强磁场,磁感 应强度的大小为B。要使带电粒子与圆筒内壁碰撞多 次后仍从A点射出,问发生碰撞的最少次数? 并计算此过程中正离子在磁场中运动的时间t ? 设粒子与圆筒内壁碰撞时无能量和电量损失,不计粒 子的重力。
磁场专题复习
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中做圆周运动的 分析方法:
求解带电粒子在匀强磁场中的匀速圆周 运动时,根据题意对带电粒子进行受力分析 和运动分析,画出粒子运动的轨迹,确定出 圆心,从而求出半径或圆心角,然后利用牛 二定律圆周运动公式进行解答。其中求出半 径或圆心角,往往是解题关键。解题的一般 步骤为:看求解,明对象;查电性,析受力; 画轨迹,定圆心;找关系,求半径;套公式, 做解答。{也可逆向分析}
带电粒子在半无界磁场中的运动
例题(2001年全国卷)如图所示,在y<0的区域内存 在匀强磁场,磁场方向垂直于xy平面并指向纸面外, 磁感强度为B。一带正电的粒子以速度v0从O点射入 磁场,入射方向在xy平面内,与x轴正向的夹角为θ。 若粒子射出磁场的位置与O点的距离为l,求该粒子的 电量和质量之比。
(2005年广东卷)如图12所示,在一个圆形区域内,两 个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界 的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º 。一质量为 m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成 30º 角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心 O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁 场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子 重力)。
磁场中圆周运动动量定理
磁场中圆周运动动量定理摘要:一、磁场中圆周运动的基本概念1.粒子在磁场中做圆周运动的条件2.圆周运动的特征二、动量定理在磁场中圆周运动中的应用1.动量的定义及计算方法2.动量在磁场中圆周运动中的变化三、磁场中圆周运动的周期公式1.周期公式的推导过程2.周期公式的应用四、磁场中圆周运动的相关问题1.向心力的来源2.磁场中圆周运动的速度与磁感应强度的关系正文:一、磁场中圆周运动的基本概念在磁场中,当带电粒子受到洛伦兹力作用时,会做圆周运动。
这种运动具有以下特征:粒子在磁场中的速度方向始终与磁场方向垂直,因此速度的大小不变,但方向会发生改变。
由于动量是矢量,速度方向的改变意味着动量的改变,所以动量的改变量并不为0。
二、动量定理在磁场中圆周运动中的应用动量定理是用来描述物体动量变化的物理定律。
在磁场中,带电粒子受到洛伦兹力作用,其动量会发生改变。
根据动量定理,动量的变化量等于作用在粒子上的力的冲量。
在磁场中,洛伦兹力提供向心力,使粒子做圆周运动。
因此,可以通过动量定理来分析粒子在磁场中圆周运动的性质。
三、磁场中圆周运动的周期公式带电粒子在匀强磁场中做匀速圆周运动的周期公式为:T = 2πm/Bq,其中m为粒子质量,B为磁感应强度,q为粒子的电量。
根据这个公式,可以计算出粒子在磁场中圆周运动的周期。
需要注意的是,周期与运动速度v无关,这是磁场中圆周运动的一个特性。
四、磁场中圆周运动的相关问题在磁场中,圆周运动的向心力来源于洛伦兹力。
洛伦兹力始终与速度方向垂直,因此不会对粒子做功。
带电粒子在磁场中做匀速圆周运动的时间
带电粒子在磁场中匀速圆周运动的时间是一个物理学中的重要问题,涉及到磁场、带电粒子的运动规律等多个方面的知识。
本文将从相关概念的解释、物理公式的推导、实验验证等方面细致地分析带电粒子在磁场中做匀速圆周运动的时间问题,以期为读者深入理解这一问题提供一定的帮助。
一、带电粒子在磁场中匀速圆周运动的基本概念1.1 磁场的基本概念磁场是指物质中存在的与电流或磁矩相关的物理量。
处于磁场中的带电粒子会受到一个叫洛伦兹力的作用力而产生运动。
1.2 带电粒子在磁场中的运动规律处于磁场中的带电粒子会受到一个洛伦兹力,导致其做匀速圆周运动。
二、带电粒子在磁场中匀速圆周运动时间的物理公式推导2.1 带电粒子在磁场中受到的洛伦兹力带电粒子在磁场中受到的洛伦兹力可以表示为:F = qvBsinθ,其中q 为带电粒子的电荷量,v为带电粒子的速度,B为磁感应强度,θ为带电粒子速度方向与磁感应强度方向之间的夹角。
2.2 圆周运动的基本物理公式带电粒子在磁场中做匀速圆周运动的时间问题,可以通过圆周运动的基本公式来推导。
圆周运动的基本公式为:v = 2πr / T,其中v为速度,r为半径,T为运动周期。
2.3 带电粒子在磁场中做匀速圆周运动的时间推导通过将带电粒子在磁场中受到的洛伦兹力与圆周运动的基本公式相结合,可以得到带电粒子在磁场中做匀速圆周运动的时间公式:T = 2πm / (qB),其中m为带电粒子的质量,q为带电粒子的电荷量,B 为磁感应强度。
三、实验验证带电粒子在磁场中匀速圆周运动时间的方法3.1 实验装置为了验证带电粒子在磁场中做匀速圆周运动的时间,可以搭建一个简单的实验装置。
实验装置主要包括磁铁、电源、导线等。
3.2 实验步骤首先在实验装置中生成一个磁场,然后将带电粒子引入磁场中,观察带电粒子是否做匀速圆周运动,并测量带电粒子在磁场中做匀速圆周运动的时间。
3.3 实验结果分析通过实验数据的分析,可以验证带电粒子在磁场中做匀速圆周运动的时间公式的准确性,从而进一步验证相关理论。
带电粒子在匀强磁场中的圆周运动
第 1 页 共 1 页 带电粒子在匀强磁场中的圆周运动
1.匀速圆周运动的规律
若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做匀速圆周运动.
(1)基本公式:
q v B =m v 2R
(2)半径R =m v Bq
(3)周期T =2πR v =2πm qB
2.圆心的确定
(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图1甲所示,P 为入射点,M 为出射点).
图1
(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M 为出射点).
3.半径的确定
可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.
4.运动时间的确定
粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间
表示为t =θ2π
T (或t =θR v ).。
带电粒子在磁场中的圆周运动---经典练习题(含答案详解)
电粒子在磁场中的圆周运动1.处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( ) A .与粒子电荷量成正比 B .与粒子速率成正比 C .与粒子质量成正比 D .与磁感应强度成正比答案 D解析 假设带电粒子的电荷量为q ,在磁场中做圆周运动的周期为T =2πm qB ,则等效电流i =q T =q 2B2πm ,故答案选D.带电粒子在有界磁场中的运动2.如图377所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )图377A .1∶2B .2∶1C .1∶ 3D .1∶1答案 B解析 正、负电子在磁场中运动轨迹如图所示,正电子做匀速圆周运动在磁场中的部分对应圆心角为120°,负电子圆周部分所对应圆心角为60°,故时间之比为2∶1.回旋加速器问题图3783.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场中,如图378所示,要增大带电粒子射出时的动能,下列说法中正确的是( ) A .增加交流电的电压 B .增大磁感应强度 C .改变磁场方向 D .增大加速器半径答案 BD解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r ,得v =qBrm .若D 形盒的半径为R ,则R =r 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 22m .所以要提高加速粒子射出的动能,应尽可能增大磁感应强度B 和加速器的半径R .(时间:60分钟)题组一 带电粒子在磁场中的圆周运动图3791.如图379所示,ab 是一弯管,其中心线是半径为R 的一段圆弧,将它置于一给定的匀强磁场中,方向垂直纸面向里.有一束粒子对准a 端射入弯管,粒子的质量、速度不同,但都是一价负粒子,则下列说法正确的是( )A .只有速度大小一定的粒子可以沿中心线通过弯管B .只有质量大小一定的粒子可以沿中心线通过弯管C .只有质量和速度乘积大小一定的粒子可以沿中心线通过弯管D .只有动能大小一定的粒子可以沿中心线通过弯管 答案 C解析 由R =m vqB 可知,在相同的磁场,相同的电荷量的情况下,粒子做圆周运动的半径决定于粒子的质量和速度的乘积.图37102.如图3710所示,水平导线中有电流I 通过,导线正下方的电子初速度的方向与电流I 的方向相同,则电子将( )A .沿路径a 运动,轨迹是圆B .沿路径a 运动,轨迹半径越来越大C .沿路径a 运动,轨迹半径越来越小D .沿路径b 运动,轨迹半径越来越小 答案 B解析 由左手定则可判断电子运动轨迹向下弯曲.又由r =m vqB 知,B 减小,r 越来越大,故电子的径迹是a .故选B.3.一电子在匀强磁场中,以一正电荷为圆心在一圆轨道上运行.磁场方向垂直于它的运动平面,电场力恰好是磁场作用在电子上的磁场力的3倍,电子电荷量为e ,质量为m ,磁感应强度为B ,那么电子运动的角速度可能为( )A .4Be mB .3Be mC .2Be m D.Be m答案 AC解析 向心力可能是F 电+F B 或F 电-F B ,即4eB v 1=m v 21R =mω21R 或2eB v 2=m v 22R =mω22R ,所以角速度为ω1=4Be m 或ω2=2Be m.故A 、C 正确.4.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度2倍的匀强磁场中做匀速圆周运动,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率减半,轨道半径变为原来的14D .粒子的速率不变,周期减半 答案 BD解析 由R =m v qB 可知,磁场加倍半径减半,洛伦兹力不做功,速率不变,由T =2πmBq 可知,周期减半,故B 、D 选项正确.图37115.如图3711所示,一带电粒子(重力不计)在匀强磁场中沿图中轨道运动,中央是一薄绝缘板,粒子在穿过绝缘板时有动能损失,由图可知( ) A .粒子的运动方向是abcde B .粒子带正电C .粒子的运动方向是edcbaD .粒子在下半周期比上半周期所用时间长 答案 BC题组二 带电粒子在有界磁场中运动图37126.空间存在方向垂直于纸面向里的匀强磁场,图3712中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是( ) A .入射速度不同的粒子在磁场中的运动时间一定不同 B .入射速度相同的粒子在磁场中的运动轨迹一定相同 C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 答案 BD解析 由于粒子比荷相同,由R =m vqB 可知速度相同的粒子轨迹半径相同,运动轨迹也必相同,B 正确.对于入射速度不同的粒子在磁场中可能的运动轨迹如图所示,由图可知,粒子的轨迹直径不超过磁场边界一半时转过的圆心角都相同,运动时间都为半个周期,而由T =2πmqB 知所有粒子在磁场运动周期都相同,A 、C 皆错误.再由t =θ2πT =θmqB可知D 正确,故选BD.图37137.如图3713所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子从S 点沿SP 方向同时射入磁场.其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,设粒子从S 到a 、b 所需时间分别为t 1和t 2,则t 1∶t 2为(重力不计)( ) A .1∶3 B .4∶3 C .1∶1 D .3∶2答案 D解析 如图所示,可求出从a 点射出的粒子对应的圆心角为90°.从b 点射出的粒子对应的圆心角为60°.由t =α2πT ,可得:t 1∶t 2=3∶2,故选D.图37148.如图3714所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( ) A .从P 射出的粒子速度大 B .从Q 射出的粒子速度大C .从P 射出的粒子,在磁场中运动的时间长D .两粒子在磁场中运动的时间一样长 答案 BD解析 作出各自的轨迹如图所示,根据圆周运动特点知,分别从P 、Q 点射出时,与AC 边夹角相同,故可判定从P 、Q 点射出时,半径R 1<R 2,所以,从Q 点射出的粒子速度大,B 正确;根据图示,可知两个圆心角相等,所以,从P 、Q 点射出时,两粒子在磁场中的运动时间相等.正确选项应是B 、D. 题组三 质谱仪和回旋加速器图37159.如图3715是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( ) A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过狭缝P 的带电粒子的速率等于EBD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小答案 ABC解析 质谱仪是测量带电粒子的质量和分析同位素的重 要工具,故A 选项正确;速度选择器中电场力和洛伦兹力是一对平衡力,即:q v B =qE ,故v =EB ,根据左手定则可以确定,速度选择器中的磁场方向垂直纸面向外,故B 、C 选项正确.粒子在匀强磁场中运动的半径r =m v qB 0,即粒子的比荷qm =v B 0r ,由此看出粒子的运动半径越小,粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越大,故D 选项错误. 10.用回旋加速器分别加速α粒子和质子时,若磁场相同,则加在两个D 形盒间的交变电压的频率应不同,其频率之比为( )A .1∶1B .1∶2C .2∶1D .1∶3 答案 B图371611.(2014·高新区高二检测)一个用于加速质子的回旋加速器,其核心部分如图3716所示,D 形盒半径为R ,垂直D 形盒底面的匀强磁场的磁感应强度为B ,两盒分别与交流电源相连.下列说法正确的是( ) A .质子被加速后的最大速度随B 、R 的增大而增大 B .质子被加速后的最大速度随加速电压的增大而增大 C .只要R 足够大,质子的速度可以被加速到任意值 D .不需要改变任何量,这个装置也能用于加速α粒子 答案 A解析 由r =m v qB 知,当r =R 时,质子有最大速度v m =qBRm ,即B 、R 越大,v m 越大,v m 与加速电压无关,A 对、B 错.随着质子速度v 的增大、质量m 会发生变化,据T =2πmqB 知质子做圆周运动的周期也变化,所加交流电与其运动不再同步,即质子不可能一直被加速下去,C 错.由上面周期公式知α粒子与质子做圆周运动的周期不同,故此装置不能用于加速α粒子,D 错. 题组四 综合应用图371712.带电粒子的质量m =1.7×10-27kg ,电荷量q =1.6×10-19C ,以速度v =3.2×106 m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图3717所示.(1)带电粒子离开磁场时的速度多大? (2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?(g 取10 m/s 2) 答案 见解析解析 粒子所受的洛伦兹力F 洛=q v B ≈8.7×10-14 N ,远大于粒子所受的重力G =mg =1.7×10-26 N ,故重力可忽略不计.(1)由于洛伦兹力不做功,所以带电粒子离开磁场时速度仍为3.2×106 m/s.(2)由q v B =m v 2r 得轨道半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m .由题图可知偏转角θ满足:sin θ=Lr =0.1 m 0.2 m =0.5,所以θ=30°=π6,带电粒子在磁场中运动的周期T =2πm qB,可见带电粒子在磁场中运动的时间t =θ2π·T =112T ,所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17 s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32)m ≈2.7×10-2 m.图371813.如图3718所示,两个板间存在垂直纸面向里的匀强磁场,一带正电的质子以速度v 0从O 点垂直射入.已知两板之间距离为d .板长为d ,O 点是NP 板的正中点,为使粒子能从两板之间射出,试求磁感应强度B 应满足的条件(已知质子带电荷量为q ,质量为m ). 答案4m v 05dq ≤B ≤4m v 0dq解析 如图所示,由于质子在O 点的速度垂直于板NP ,所以粒子在磁场中做圆周运动的圆心O ′一定位于NP 所在的直线上.如果直径小于ON ,则轨迹将是圆心位于ON 之间的一段半圆弧. (1)如果质子恰好从N 点射出,R 1=d 4,q v 0B 1=m v 20R 1.所以B 1=4m v 0dq.(2)如果质子恰好从M 点射出R 22-d 2=⎝⎛⎭⎫R 2-d 22,q v 0B 2=m v 20R 2,得B 2=4m v 05dq.所以B 应满足4m v 05dq ≤B ≤4m v 0dq.图371914.如图3719,一个质量为m ,电荷量为-q ,不计重力的带电粒子从x 轴上的P (a,0)点以速度v ,沿与x 轴正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限,求: (1)匀强磁场的磁感应强度B ; (2)穿过第一象限的时间. 答案 (1)3m v 2qa (2)43πa 9v解析 (1)作出带电粒子做圆周运动的圆心和轨迹,由图中几何关系知: R cos 30°=a ,得:R =23a3Bq v =m v 2R 得:B =m v qR =3m v2qa .(2)运动时间:t =120°360°·2πm qB =43πa9v.。
带电粒子在圆形磁场区域运动规律
带电粒子在圆形磁场区域的运动规律处理带电粒子在匀强磁场中的圆周运动问题,关键就是综合运用平面几何知识与物理知识。
最重要的是,画出准确、清晰的运动轨迹。
对于带电粒子在圆形磁场区域中做匀速圆周运动,有下面两个规律,可以帮助大家准确、清晰画出带电粒子的圆周运动的轨迹。
规律一:带电粒子沿着半径方向射入圆形边界内的匀强磁场,经过一段匀速圆周运动偏转后,离开磁场时射出圆形区域的速度的反向延长通过边界圆的圆心。
规律二:入射速度方向(不一定指向区域圆圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆弧对应的圆心角也为θ2,并且初末速度方向的交点、轨迹圆的圆心、区域圆的圆心都在弧弦的垂直平分线上。
以上两个规律,利用几何知识很容易证明,在解题时,可以直接应用,请看下面的两个例子:例1如图1所示,在平面坐标系xoy 内,第Ⅱ、Ⅲ象限内存在沿y 轴正方向的匀强电场,第I 、Ⅳ象限内存在半径为L的圆形匀强磁场,磁场圆心在M (L ,0)点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q (一2L ,一L )点以速度0v 沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L ,O )点射出磁场.不计粒子重力,求: (1)电场强度与磁感应强度大小之比 (2)粒子在磁场与电场中运动时间之比 解析:(1)设粒子的质量和所带正电荷分别为m 和q ,粒子在电场中运动,由平抛运动规律得:102t v L =2121at L =,又牛顿运动定律得:ma qE = 粒子到达O 点时沿y +方向分速度为0v at v y ==,1tan 0==v v y α 故045=α,粒子在磁场中的速度为02v v =,应用规律二,圆心角为:0902=α,画出的轨迹如图2所示,由rm v Bqv 2=,由几何关系得L r 2=得:2v B E = (2)在磁场中运动的周期vrT π2=粒子在磁场中运动时间为02241v L T t π==图2图1得412π=t t 例2如图3所示,真空中有一以(r ,O )为圆心,半径为r 的圆柱形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y ≤一r 的范围内,有方向水平向右的匀强电场,电场强度的大小为E 。
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中的圆周运动由于带电粒子在匀强磁场中的受力情况特殊,其运动轨迹呈现为圆周运动。
本文将详细介绍带电粒子在匀强磁场中的圆周运动原理及相关公式。
根据洛伦兹力的作用,当带电粒子运动时,受到匀强磁场的力会使其偏离直线路径,而呈现出圆周运动。
该力的方向垂直于带电粒子的速度方向与磁场方向,符合右手螺旋定则。
由于受力方向始终向心,因此粒子在磁场中做圆周运动。
带电粒子在匀强磁场中的圆周运动可以通过以下公式进行描述:1.某物质在匀强磁场中的圆周运动半径:$$r=\frac{mv}{|qB|}$$其中,$r$为圆周运动半径,$m$为粒子质量,$v$为粒子速度,$q$为粒子电荷量,$B$为磁感应强度。
2.圆周运动的周期:$$T=\frac{2\pi m}{|q|B}$$其中,$T$为圆周运动的周期,$m$为粒子质量,$q$为粒子电荷量,$B$为磁感应强度。
3.圆周运动的频率:$$f=\frac{1}{T}=\frac{|q|B}{2\pi m}$$其中,$f$为圆周运动的频率,$T$为圆周运动的周期,$q$为粒子电荷量,$B$为磁感应强度,$m$为粒子质量。
从以上公式可以看出,带电粒子的质量、速度、电荷量以及磁感应强度都会对其圆周运动的半径、周期和频率产生影响。
在匀强磁场中,不同的带电粒子具有不同的圆周运动轨迹。
根据质量和电荷量的不同,带电粒子的圆周运动半径、周期和频率都会有所差异。
因此,通过对带电粒子在匀强磁场中的圆周运动进行观测和测量,可以对粒子的性质进行研究和分析。
带电粒子在匀强磁场中的圆周运动在物理学和实际应用中具有重要的意义。
它可以被应用于粒子物理实验、质谱仪、核磁共振等领域。
了解带电粒子在匀强磁场中的圆周运动的原理及相关公式,有助于理解和应用这些技术和方法。
总结了带电粒子在匀强磁场中的圆周运动原理及相关公式,希望对读者对该主题有一个清晰的了解。
带电粒子进入磁场做圆周运动的原因
带电粒子进入磁场做圆周运动的原因在物理学中,我们经常会遇到带电粒子进入磁场后做圆周运动的现象。
这种现象的背后隐藏着一些重要的物理原理和规律。
本文将针对该现象展开探讨,解释带电粒子在磁场中做圆周运动的原因。
首先,我们需要了解磁场对带电粒子的影响。
当带电粒子进入磁场时,会受到磁力的作用。
这个磁力叫做洛伦兹力,它的方向垂直于带电粒子的速度和磁场的方向。
根据洛伦兹力的方向,带电粒子将受到一个向圆心的力,这就使得带电粒子做圆周运动。
为了更好地理解这个现象,我们来看一个具体的例子。
假设有一个正电荷带电粒子,它以一个给定的速度在磁场中运动。
当带电粒子进入磁场时,由于它带有正电荷,所以会受到洛伦兹力的作用。
根据右手定则,我们可以知道洛伦兹力的方向是垂直于带电粒子的速度方向和磁场方向的方向向量。
假设磁场方向指向纸面内,带电粒子的速度方向指向纸面外,那么根据右手定则,我们可以得知洛伦兹力的方向是竖直向下的。
这个力的作用下,带电粒子将受到一个垂直向下的加速度。
由于速度的大小保持不变,这个加速度使得带电粒子的速度方向逐渐改变,从而产生一个向圆心的向心加速度。
正是由于这个向心加速度的存在,带电粒子才会做圆周运动。
这个向心加速度的大小和带电粒子的速度、磁场的强度以及粒子的电荷量有关。
根据牛顿第二定律,我们知道加速度的大小与作用力的大小成正比,与质量成反比。
因此,带电粒子的质量越小,所需要的向心力就越小,速度越大,圆周半径也就越大。
需要指出的是,带电粒子在磁场中做圆周运动的前提条件是带电粒子的速度与磁场互相垂直。
如果带电粒子的速度方向与磁场方向平行或共线,那么它将不会受到向心力的作用,也就不会做圆周运动。
通过以上的解释,我们可以得出带电粒子在磁场中做圆周运动的原因是洛伦兹力的作用。
这一现象不仅仅在物理学中起到了重要的作用,而且在生活中也有着广泛的应用,比如磁共振成像技术就是基于带电粒子在磁场中做圆周运动的原理。
综上所述,带电粒子进入磁场后做圆周运动的原因是洛伦兹力的作用。
带电粒子在匀强磁场中的匀速圆周运动
⑷运动时间的确定
O′
v
Aθ θ B
O v
a.直接根据公式 t =s / v 或 t =α/ω求出运动时间t
b. 粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所 对应的圆心角为α时,其运动时间可由下式表示:
t T 或 2
t
360 0
T
一.带电粒子在单直线边界磁场中的运动
①如果垂直磁场边界进入,粒子作半圆运动后垂直 原边界飞出;
⑵半径的计算
O
M
v P
v
-q
圆心确定后,寻找与半径和已知量相关的直角三角形,利 用几何知识,求解圆轨迹的半径。
⑶偏向角、回旋角、弦切角的关系
a.粒子速度的偏向角(φ)等于回旋角 (α), 并等于AB弦切线的夹角(弦切角θ)的2倍
2 t
b. 相对的弦切角(θ)相等,与相邻的弦 切角(θ′)互补
N
d
r2
(m1 m2 )v qB
m1v0 qB
r1
v v0 t2 t1
3.一个负离子,质量为m,电量大小为q,以速率v垂直
于屏S经过小孔O射入存在着匀强磁场的真空室中.磁感应
强度B的方向与离子的运动方向垂直,并垂直于纸面向里.
(1)求离子进入磁场后到达屏S上时的位置与O点的距离.
(2)如果离子进入磁场后经过时间t到达位置P,证明:直线
带电粒子在匀强磁场中的匀速圆周运动
带电粒子的垂直进入匀强磁场中,做匀速圆周运动
1. 洛仑兹力提供向心力
Bqv
m
v2 r
m 2r
m
4
T
2 2
r
m4 2
f
mEk 1 2mU Bq Bq Bq B q
带电粒子在磁场中做匀速圆周运动的条件
带电粒子在磁场中做匀速圆周运动的条件在我们生活的这个世界里,电和磁的世界可真是妙不可言,像是一场永不停息的舞蹈。
在这个舞蹈中,带电粒子就像是舞者,在磁场的指引下翩翩起舞。
想象一下,带电粒子在磁场中转个不停,形成一个个优美的圆圈,简直就像是在参加一场华丽的舞会,让人忍不住想要鼓掌叫好。
可别小看这舞蹈,想要带电粒子在磁场中做匀速圆周运动,可不是随随便便就能做到的哦!这其中可有讲究。
带电粒子得有足够的电荷。
想象一下,电荷就像是一种魔法,能让粒子在磁场中感受到神奇的力。
没有电荷,粒子就像没有魔法的普通人,根本无法在这个舞池里尽情旋转。
每个粒子都有自己的电荷,正电荷和负电荷,都是这个舞会的明星。
正电荷在磁场中向右转,负电荷则向左转,像是两位舞者在不同的舞台上,互不相扰,彼此却又相互依存。
再说到磁场,这个家伙也不简单。
磁场就像是舞会的主持人,决定着舞者的舞步。
要想在磁场中优雅地转圈,粒子必须在一个合适的磁场强度下才能完成这场舞蹈。
如果磁场太弱,粒子根本无法获得足够的动力,像是个没有劲儿的小孩,转个圈都嫌费劲;如果磁场太强,粒子又会被迫改变轨道,可能就没法维持原来的匀速运动。
真是“欲速则不达”,得把握好这个平衡啊。
说到这里,大家肯定会问,匀速运动的速度又得怎么控制呢?这可是一门大学问!粒子的速度和圆周半径之间有着微妙的关系。
一般来说,粒子的速度越快,转的圈就越小,反之亦然。
如果我们想要粒子在磁场中以一个固定的速度转圈,那这个圆的半径就得恰到好处。
就像是骑自行车,太快了就容易摔,太慢了又没劲儿,得找到那个最佳的骑行速度。
得提一下粒子的质量。
质量可不是小事,轻的粒子在磁场中比较容易转动,像是个灵活的小精灵;而重的粒子则需要更多的力量来维持它的运动,这就像是个胖子,跑起来可就费劲了。
不过,质量和速度之间也有个关系,越重的粒子,要想转得稳,就得有更快的速度来支持它的转动。
无论如何,这一切都需要达到一个微妙的平衡,就像是调和饮料,甜酸适中,才能让人喝得舒服。
带电粒子在磁场中的圆周运动-课件
.a L s b
解:粒子带正电,故在磁场中沿逆 时针方向做匀速圆周运动,用R表 示轨道半径,有
L
a
r mv16cm
P1
qB
因朝不同方向发射的α粒子的圆轨
迹都过S,由此可知,某一圆轨迹在
图中ab上侧与ab相切,则此切点P1
s
N
就是该粒子能打中的上侧最远点.
再考虑ab的下侧.任何α粒子在运动中
离S的距离不可能超过2R,以2R为半径、
②定半径
主要由三角形几何关系求出 (一般是三角形的边角关系、或者勾股定理确定)。
h
r-h
r
1. 若已知d与θ,则由边角关系知 2. 若已知d与h(θ未知),则由勾股定理知
②定半径
练习: 圆形磁场区域半径为R,质量为m带电量为+q的粒子,以速度 沿半 径方向从A点射入磁场并从B点射出磁场,粒子的速度偏转角为 。 求:(1)粒子旋转半径; (2)磁感应强度B的大小。
qB
角为θ 时,其运动时间由下式表示:
t360 T或 t2 T
5.如图所示,在y>0的区域内存在匀强磁场,磁场垂直于 图中的xOy平面,方向指向纸外.原点O处有一离子源,沿 各个方向射出质量与速率乘积mv相等的同价正离子.对于 在xOy平面内的离子,它们在磁场中做圆弧运动的圆心所在 的轨迹,可用下图给出的四个半圆中的一个来表示,其中 正确的是[
解:(1)由几何关系知
R
r
③求时间
先确定偏向角.带电粒子射出磁场的速度方向对射入磁场
的速度的夹角θ,即为偏向角,它等于入射点与出射点两条半径 间的夹角(圆心角或回旋角)。由几何知识可知,它等于弦切 角的2倍,即θ=2α=ωt,如图所示。
然后确定带电粒子通过磁场的时间。粒子在磁场中运
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在磁场中的圆周运动
自贡市蜀光中学朱阳智
一、教学目标
1、知识目标
1)、会判断洛伦兹力的方向、会计算洛伦兹力的大小。
2)、熟练掌握带电粒子在磁场中的圆周运动的解题方法
2、能力目标
1)、培养学生理论分析能力和运用数学解决物理问题的能力;
2)、了解宏观研究与微观研究相结合的科学方法。
3、情感、态度、价值观
让学生亲身感受解决物理问题的方法、过程和策略。
二、教学重点:带电粒子在磁场中的圆周运动作图方法
教学难点:找圆心、找半径
教学方法:启发、分析、推理、归纳总结
三、教学过程:
例1:一质量为、带电量为的粒子以速度从O点沿轴正方向射入磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸向面,粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30°,如图所示(粒子重力忽略不计)。
试求:(1)圆形磁场区的最小面积;
(2)粒子从O点进入磁场区到达点所经历的时间;
(3)点的坐标。
解析:(1)由题可知,粒子不可能直接由O点经半个圆周偏转到点,其必在圆周运动不到半圈时离开磁场区域后沿直线运动到点。
可知,其离开磁场时的临界点与O点都在圆周上,到圆心的距离必相等。
如图,过点逆着速度的方向作虚线,与轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于轴上,距O点距离和到虚线上点垂直距离相等的点即为圆周运动的圆心,圆的半径。
由,得。
弦长为:,
要使圆形磁场区域面积最小,半径应为的一半,即:,面积
(2)粒子运动的圆心角为1200,时间。
(3)距离,故点的坐标为(,0)。
,E的大小为例2:如图所示,第四象限内有互相正交的匀强电场E与匀强磁场B
1
1.5×103 V/m,B
的大小为0.5 T;第一象限的某个矩形区域内,有方向垂直纸面
1
的匀强磁场,磁场的下边界与x轴重合.一质量m=1×10-14kg、电荷量q=2×10-10C 的带正电微粒以某一速度v沿与y轴正方向成60°角的M点射入,沿直线运动经P 点后进入处于第一象限内的磁场B
区域.一段时间后,微粒经过y轴上的N点并沿
2
与y轴正方向成60°角的方向飞出.M点的坐标为(0,-10),N点的坐标为(0,30),不计微粒重力,取g=10 m/s2.求:
(1) 微粒运动速度v的大小.
(2) 匀强磁场B
2
的大小.
(3) B
2
磁场区域的最小面积.
解析:(1) 带正电微粒在电场和磁场复合场中沿直线运动,qE=qvB
1
,解得v= =3×103 m/s.
(2) 画出微粒的运动轨迹如图,粒子做圆周运动的半径为R= m.
由qvB
2=,解得B
2
= T.
(3) 由图可知,磁场B
2
的最小区域应该分布在图示的矩形PACD内,由几何关系易得PD=2Rsin 60°=20 cm=0.2 m,PA=R(1-cos 60°)= m.
所以,所求磁场的最小面积为S=PD·PA= m2.
例3:如图甲所示,在y轴右侧加有垂直纸面向外的匀强磁场,磁感应强度B=1 T.
从原点O处向第Ⅰ象限发射一比荷=1×104 C/kg的带正电的粒子(重力不计),=103 m/s,方向垂直于磁场且与x轴正方向成30°角.求:
速度大小v
.
(1) 粒子在该匀强磁场中做匀速圆周运动的半径R和在该磁场中运动的时间t
1 (2) 若磁场随时间变化的规律如图乙所示(垂直于纸面向外为磁场正方向),
t=×10-4 s后空间不存在磁场.在t=0时刻,粒子仍从O点以与原来相同的速度射入,求粒子从O点射出后第二次经过x轴时的坐标.
v
解析: (1) 粒子运动轨迹如图甲所示.由Bqv=m得
甲
轨迹半径R==0.1 m.
粒子运动周期T==2π×10-4 s.
粒子在磁场中运动轨迹所对的圆心角为240°,
所以粒子在磁场中运动的时间为
==π×10-4 s.
t
1
(2) 磁场变化的半周期为Δt=×10-4 s=.
在图乙中,∠OO
1C=∠CO
2
D=120°,且O
1
O
2
平行于x轴.
OE=2(R+Rsin 30°)=3R=0.3 m.
△EDP中,∠EDP=60°,DE=2Rsin 60°.
EP=DEtan 60°=3R=0.3 m.
则粒子从O点射出后第二次经过x轴时的坐标为
x
P
=OE+EP=0.6 m.
作业:
1.(2001年江苏省高考试题)如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。
一带正电的粒子以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。
若粒子射出磁场时的位置与O点的距离为l,求该粒子的电量和质量之比q/m。
解析:带正电粒子射入磁场后,由于受到洛仑兹力的作用,粒子将沿图6所示的轨迹运动,从A点射出磁场,O、A间的距离为l,射出时速度的大小仍为
v
,射出方向与x轴的夹角仍为θ。
由洛仑兹力公式和牛顿定律可得,
,(式中R为圆轨道的半径)
解得
/qB①
R=mv
圆轨道的圆心位于OA的中垂线上,由几何关系可得
l/2=Rsinθ②
联立①、②两式,解得。
2.如图所示,矩形匀强磁场区域的长为L,宽为L/2。
磁感应强度为B,质量为m,电荷量为e的电子沿着矩形磁场的上方边
界射入磁场,欲使该电子由下方边界穿出磁
场,求:电子速率v 的取值范围?
解析:(1)带电粒子射入磁场后,由于速
率大小的变化,导致粒子轨迹半径的改变,如
图所示。
当速率最小时,粒子恰好从d点射出,
由图可知其半径R1=L/4,再由R1=mv1/eB,得
当速率最大时,粒子恰好从c点射出,由图可知其半径R2满足,即R2=5L/4,再由R2=mv2/eB,得
电子速率v 的取值范围为:。
3.如图所示,在第一象限有一匀强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一匀强磁场,磁场方向与纸面垂直.一质量为m 、
电荷量为-q (q >0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入
电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场.粒子在磁场中的
运动轨迹与y 轴交于M 点.已知OP =l ,OQ =23l .不计重力.求: (1)M 点与坐标原点O 间的距离;
(2)粒子从P 点运动到M 点所用的时间.
解析:(1)带电粒子在电场中做类平抛运动,在y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为a ;在x 轴正方向上做匀速直线运动,设速度为v 0;粒子从P 点运动到Q 点所用的时间为t 1,进入磁场时速度方向与x 轴正方向的夹角为θ,则
a =qE m ① t 1= 2y 0
a
②
v 0=x 0
t 1
③
其中x 0=23l ,y 0=l ,又有tan θ=at 1
v 0
④
联立②③④式,得θ=30°
⑤
因为M 、O 、Q 点在圆周上,∠MOQ =90°,所以MQ 为 直径.从图中的几何关系可知,
R =23l ⑥
MO =6l
⑦
(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的 时间为t 2,则有
v =
v 0
cos θ ⑧ t 2=
πR
v
⑨
带电粒子自P 点出发到M 点所用的时间t 为
t =t 1+t 2
⑩
联立①②③⑤⑥⑧⑨⑩式,并代入数据得
t=(
3
2
π+1)
2ml
qE
.
2015.12.29。