(完整版)平行线证明专题

合集下载

(完整版)平行线的判定专项练习60题(有答案)

(完整版)平行线的判定专项练习60题(有答案)

1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC 于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE 分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD .25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?。

(完整版)平行线及其判定与性质练习题

(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

《平行线的性质》平行线的证明PPT课件

《平行线的性质》平行线的证明PPT课件

C
∵AB∥CD(已知)
∴∠1=∠D(两直线平行,内错角相等)
∵∠B=∠D(已知)
∴∠1=∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
例2:已知,如图,AB∥CD,∠B=∠D,求证:
AD∥BC.
证法三:
A
D
3
如图,连接BD(构造一组内错角)
4
∵AB∥CD(已知)
B 12
C
∴∠1=∠4(两直线平行,内错角相等)
所以∠BDF=∠EDF.
课堂小结
已知
同位角相等 内错角相等 同旁内角互补
得到
判定 性质
得到 两直线平行
已知
1ppt.
如果∠1 ≠ ∠2c,n AB与CD的位置P课P件T 关系会怎样呢/?kejia
存在两条直线AB和GH都与直线 CD平行.这与基本事实“过直线外 一点有且只有一条直线与这条直
n/ 语文
线平行”相矛盾.
课件
这说明∠1 ≠ ∠2的假设不成立,
/kejia n/yu
所以∠1 =∠2.
wen/
总结归纳
5.如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠C= 180 °-∠B=180°-115°=65°
所以梯形的另外两个角分别是80° 、 65°.
第七章 平行线的证明
平行线的性质
学习目标
1.理解并掌握平行线的性质公理和定理.(重点) 2.能熟练运用平行线的性质进行简单的推理证 明.(难点)

平行线证明题大综合

平行线证明题大综合

平行线的证明【1】1.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()2.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换).∴CE∥BF().∴∠=∠C().又∵∠B=∠C(已知),∴∠=∠B(等量代换).∴AB∥CD().3.如图,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.4.如图,EF∥AD,∠1=∠2.求证:DG∥AB.5.如图,已知DE∥BC,EF平分∠AED,EF⊥AB,CD⊥AB,试说明CD平分∠ACB.6.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.平行线的证明【2】1.如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.2.如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.3.如图,已知AB∥CD∥EF,∠ABC=46°,∠CEF=154°,求:(1)∠ECD的度数;(2)∠BCE的度数.4.学着说点理,填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,()∴AD∥EG,()∴∠1=∠2,()∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴=(等量代换)∴AD平分∠BAC()5.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.6.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=27°.(1)求∠2的度数;(2)若∠3=18°,判断直线n和m的位置关系,并说明理由.7.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.平行线的证明【3】1.如图,已知∠1=142°,∠ACB=38°,∠2=∠3,FH⊥AB于H,问AB与CD是否垂直?并说明理由.2.如图,已知∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?3.已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.4.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.5.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.6.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()7.如图所示,折叠一个宽度相等的纸条,求∠1的度数.平行线的证明【4】1.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.2.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.3.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB 和CD的位置关系,并说明理由.4.如图AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.5.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE的平分线交于点F,请利用(1)的结论求图2中∠F的度数.6.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.7.如图,AB∥CD,∠CDE=122°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.平行线的证明【5】1.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)问直线CD与AB有怎样的位置关系?并说明理由;(2)若∠CEF=70°,求∠ACB的度数.2.如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠BOC比∠DFE大20°,求∠OFE的度数.3.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求:(1)∠FED的度数;(2)∠FEG的度数;(3)∠1和∠2的度数.4.已知△ABC各顶点的坐标为A(﹣4,﹣2),B(﹣1,﹣3),C(﹣2,﹣1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度得到△A′B′C′.(1)在直角坐标系中画出△A′B′C′;(2)求出△A′B′C′的面积.5.如图①,AB∥CD,点E在直线AB与CD之间,连结AE、BE,试说明∠BAE+∠DCE =∠AEC.【探究】当点E在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE =360°;【应用】点E、F、G在直线AB与CD之间,连结AE、EF、FG和CG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=°.平行线的证明【6】1.已知:如图,CD分别交AD、AE、BE于点D、F、C,连接AB、AC,AD∥BE,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BE(已知)∴∠3=∠CAD()∵∠3=∠4(已知)∴∠4=(等量代换)∵∠1=∠2(已知)∴∠1+∠CAE=∠2+∠CAE(等式的基本性质)即∠BAE=∴∠4=(等量代换)∴AB∥CD.2.如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D 的数量关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.3.(1)如图①如果AB∥CD,求证:∠APC=∠A+∠C.(2)如图②,AB∥CD,根据上面的推理方法,直接写出∠A+∠P+∠Q+∠C=.(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m=(用x、y、z表示)4.已知,如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上的一点且GH⊥EG.求证:PF∥GH.5.如图,把矩形纸片ABCD沿EF折叠后,使点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是;(2)若∠BFE=65°,求∠EBF的度数.。

(完整版)平行线及其判定(证明应用题)

(完整版)平行线及其判定(证明应用题)

授课教案学员姓名:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日(~);共_____课时(以上信息请老师用正楷字手写)平行线及其判定(证明应用题)一.解答题(共11小题)1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.2.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.3.如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?2015年03月05日752444625的初中数学组卷参考答案与试题解析一.解答题(共11小题)1.(2014•槐荫区二模)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.考点:平行线的判定.专题:证明题.分析:由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.解答:证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.点评:此题考查了平行线的判定与性质.注意内错角相等,两直线平行与同位角相等,两直线平行.2.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:证明题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.3.(2010•江宁区一模)如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.考点:平行线的判定.专题:证明题.分析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.要证明AM∥BC,只要转化为证明∠C=∠DAM即可.解答:证明:∵AB=AC,∴∠B=∠C,∵∠B=∠DAM,∴∠C=∠DAM,∴AM∥BC.点评:本题主要考查了平行线的判定,注意等量代换的应用.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.考点:平行线的判定.专题:探究型.分析:因为DF∥AC,由内错角相等证明∠C=∠FEC,又因为∠C=∠D,则∠D=∠FEC,故CE∥BD.解答:解:CE∥BD.理由:∵DF∥AC(已知),∴∠C=∠FEC(两直线平行,内错角相等),又∵∠C=∠D(已知),∴∠D=∠FEC(等量代换),∴CE∥BD(同位角相等,两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养“执果索图”的思维方式与能力.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.考点:平行线的判定.专题:探究型.分析:设AB与DE相交于H,若判断ED与FB的位置关系,首先要判断∠1和∠EHA的大小;由∠3=∠4可证得BD∥CF(内错角相等,两直线平行),可得到∠5=∠BAF;已知∠5=∠6,等量代换后发现AB∥CD,即∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断出BF、DE的位置关系.解答:解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.另解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∵△BFA、△DEC的内角和都是180°∴△BFA=∠1+∠BFA+BAF;△DEC=∠2+∠4+∠6∵∠1=∠2;∠BAF=∠6∴∠BFA=∠4,∴BF∥DE.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.考点:平行线的判定.专题:证明题.分析:先由已知证明AD∥EF,再证明1∠1=∠4,∠2=∠4,等量代换得出∠1=∠2.解答:证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(垂直于同一条直线的两直线平行),∴∠1=∠4(两直线平行,同位角相等),又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行),∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2(等量代换).点评:此题的关键是理解平行线的性质及判定.①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.考点:平行线的判定.专题:推理填空题.分析:由∠A=∠F,根据内错角相等,得两条直线平行,即AC∥DF;根据平行线的性质,得∠C=∠CEF,借助等量代换可以证明∠D=∠CEF,从而根据同位角相等,证明BD∥CE.解答:解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).点评:此题综合运用了平行线的判定及性质,比较简单.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.考点:平行线的判定.专题:证明题.分析:首先根据角平分线的性质可得∠BAC=2∠DAC,再根据三角形外角与内角的关系可得∠G+∠GFA=∠BAC,又∠AFG=∠G.进而得到∠BAC=2∠G,从而得到∠DAC=∠G,即可判定出GE∥AD.解答:证明:∵AD是△ABC的平分线,∴∠BAC=2∠DAC,∵∠G+∠GFA=∠BAC,∠AFG=∠G.∴∠BAC=2∠G,∴∠DAC=∠G,∴AD∥GE.点评:此题主要考查了平行线的判定,关键是掌握三角形内角与外角的关系,以及平行线的判定定理.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.考点:平行线的判定.专题:证明题.分析:利用直角三角形中两锐角互余得出∠D=40°,再利用内错角相等,两直线平行的判定证明即可.解答:证明:∵CA⊥AD,∴∠C+∠D=90°,∴∠C=50°,∴∠D=40°,∵∠BAD=40°,∴∠D=∠BAD,∴AB∥CD.点评:本题主要考查了平行线的判定和直角三角形中两锐角互余,比较简单.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.考点:平行线的判定;角平分线的定义.专题:证明题.分析:运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.解答:证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).点评:灵活运用角平分线的定义和角的和差的关系是解决本题的关键,注意正确识别“三线八角”中的同位角、内错角、同旁内角.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?考点:平行线的判定;平行公理及推论.专题:探究型.分析:根据内错角相等,两直线平行可知a∥b,由同旁内角互补,两直线平行可知b∥c,根据如果两条直线都与第三条直线平行那么这两条直线平行得出结论.解答:解:平行.理由如下:∵∠1=∠2,∴a∥b(内错角相等,两直线平行),∵∠3+∠4=180°,∴b∥c(同旁内角互补,两直线平行),∴a∥c(平行于同一直线的两直线平行).点评:本题很简单,考查的是平行线的判定定理和平行公理的推论.内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行那么这两条直线平行.。

平行线的证明题及答案

平行线的证明题及答案

平行线的证明题及答案关于平行线的证明题及答案平行线是几何的知识,关于平行线的证明该怎么解决呢?这类的证明蕴含着那些数学原理呢?下面就是店铺给大家整理的平行线的证明内容,希望大家喜欢。

平行线的证明方法一当∠BPD=∠B+∠D时可以判断AB∥CD过P作PE∥AB则∠BPE=∠B而∠BPD=∠B+∠D∴∠EPD=∠D故PE∥CD∴AB∥CD证明:如果a‖b,a‖c,那么b‖c 证明:假使b、c不平行则b、c交于一点O 又因为a‖b,a‖c 所以过O有b、c两条直线平行于a 这就与平行公理矛盾所以假使不成立所以b‖c 由同位角相等,两直线平行,可推出:内错角相等,两直线平行。

同旁内角互补,两直线平行。

因为a‖b,a‖c, 所以b‖c (平行公理的推论)平行线的证明方法二“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。

一、怎样证明两直线平行证明两直线平行的常用定理(性质)有: 1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行. 2、三角形或梯形的中位线定理. 3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4、平行四边形的性质定理. 5、若一直线上有两点在另一直线的同旁 ).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选 C \认六一值!小人﹃夕叱的一试勺洲洲川JL ZE一B \/(一、图月一飞 /匕\一|求且它们到该直线的距离相等,则两直线平行. 例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B). 例2(2003年泉州市)如图2,△注Bc中,匕BAC 的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF. (l)求证:EF// Bc(1)根据定义。

(完整版)平行线证明(填理由)

(完整版)平行线证明(填理由)

平行线证明(填理由)、填空题(本大题共4小题,共12.0分)1. 已知,如图,BE平分/ ABC /仁/ 2,据提示填空.•/ BE平分/ ABC(已知)/•Z 1=7 3 (______________ )又•••/仁/ 2 (已知)•- _____ =7 2 (_____________ )•- _____ 〃______ ( _______________ )•••7 AED= _____ ( _______________ ).2. 根据解答过程填空:如图,已知7 DAF7 F,7 B=7 D,那么AB与DC平行吗? 解:•••/ DAF7 F (已知)•- _____ 〃______ ( _______ )•7 D=7 DCF( _____ )又•••/ D=7 B ( ______ )•7______ =7 DCF(等量代换)•AB// DC( ____ )3. 如图,已知FGLAB CD£AB 垂足分别为G D, 7仁7 2, 求证:7 CED-7 ACB=180 .请你将小明的证明过程补充完整.证明:••• FGLAB CD£AB垂足分别为G D (已知)•7 FGB7 CDB=90 ( ________ ),•GF// CD ( _____ ).••• GF// CD(已证)•7 2=7 BCD ( _____ )又仁72 (已知),•7 1=7 BCD ( _____ ),• _____ , ( _______ )•7 CED-7 ACB=180 _____ .4. 补全证明过程,即在横线处填上遗漏的结论或理由. 已知:如图,7 1=7 2,7 C=7 D.求证:7 A=7 F.证明:1=7 2 (已知)又7 仁7 DMN( _____ )•7 2=7 _____ (等量代换)•DB// EC ( ____ )•7 C=7 ABD( _____ )T7 C=7 D (已知)•7 D=7 ABD( _____ )• _____ (内错角相等,两直线平行)/•Z A=Z F ( _____ )二、解答题(本大题共 12小题,共96.0分)5. (1)问题发现:如图①,直线 AB//CD E 是AB 与AD 之间的一点,连接 BE CE 可 以发现 Z B+Z C=Z BEC请把下面的证明过程补充完整:证明:过点E 作EF// AB••• AB// DC (已知),EF// AB (辅助线的作法)./• EF// DC( _____ ).•••Z C=Z CEF( ____ )•/ EF// AB /Z B=Z BEF (同理).•Z B+Z C= ______ (等量代换)即 Z B+Z C=Z BEC(2) 拓展探究:如果点 E 运动到图②所示的位置,其他条件不变,进一步探究发现: Z B+Z C=360 - Z BEC 请说明理由.(3)解决问题:如图③,AB// DC Z C=12C ° , Z AEC=80,请直接写出ZA 的度数.6. 阅读下列推理过程,在括号中填写理由.已知:如图,点D E 分别在线段 AB BC 上, AC// DE DF// AE 交BC 于点F, AE 平分Z BAC 求 证:DF 平分Z BDE证明:••• AE 平分Z BAC(已知)• Z 1=Z2 ( ______________________________ )•/ AC// DE(已知)• Z 1=Z 3 () 故Z 2=Z 3 () •••DF// AE(已知)• Z 2=Z 5 () • Z 3=Z 4 ( )圉①••• DF平分/ BDE( _________________________ )7. 如图(1), AB// CD猜想/ BPD与/ B/D的关系,说出理由.解:猜想/ BPD/ B+/ D=360理由:过点P作EF// AB•/ B+/ BPE=180 (两直线平行,同旁内角互补)•/ AB// CD EF// AB•EF/ CD (如果两条直线都和第三条直线平行,那么这两条直线也互相平行. )•/ EPD/ D=180 (两直线平行,同旁内角互补)•••/ B+/ BPE/ EPD/ D=360•••/ B+/ BPD/ D=360(1)依照上面的解题方法,观察图(2),已知AB// CD猜想图中的/ BPD与/ B/D 的关系,并说明理由.(2)观察图(3)和(4),已知AB// CD猜想图中的/ BPD与/ B/D的关系,不需要说明理由.A ------------ BC—P (4)8.如图,已知,CD// EF, /仁/ 2,求证:/ 3=/ ACB请补全证明过程.证明:••• CD// EF,( _____ )•/ 2=/ DCB (两直线平行,同位角相等)•••/仁/ 2, ( _____ )•/ 仁/ DCB ( _______ )•GD/ CB ( _______ )•/ 3=/ ACB ( _______ )9.在横线上填写理由,完成下面的证明.如图,已知/ 1+/2=180°, / B=/ 3,求证/ C=/证明:T/ 1+/2=180°(已知),/ 1+/ DFE=180AED•/ 2=/ DFE( ______ )• AB// EF ( _____ )•/ 3=/ ADE( _____ )又•••/ B=/ 3 (已知)•/ B=/ ADE( _____ )•DE// BC ( _____ ))•••/ C=Z AED( ______ )10. 阅读下面的证明过程,在每步后的横线上填写该步推理的依据. 如图,/ E=Z 1,Z 3+Z ABC=180 , BE是/ ABC的角平分线,求证:DF// AB.证明:••• BE是/ ABC的角平分线•••/ 1=Z 2 ( ___________ )又•••/ E=Z1/•Z E=Z 2 ( ____________ )•AE// BC ( ____________ )•Z A+Z ABC=180 ( ____________ )又T Z 3+Z ABC=180•Z A=Z 3 ( ____________ )•DF// AB ( ____________ ).11. 填空:如图,已知DE// AC Z A=Z DEF试说明AB// EF. 解:••• DE// AC _____________ _•Z A=Z BDE ___T Z A=Z DEF _____•Z BDE Z DEF ___ .•AB// EF ______12. 完成下面的证明:已知:如图,AB// DE 求证:Z D+Z BCD - Z B=180°, 证明:过点C作CF// AB.T AB// CF (已知),•Z B= _____ ( ______ ).T AB// DE CF// AB( 已知 ),•CF// DE ( ______ )•Z 2+ ____ =180 ( ______ )T Z 2=Z BCD- Z 1,•Z D+Z BCD- Z B=180°( _____ ).13. 完成下面推理过程.如图:在四边形ABCD中, Z A=106 - a,Z ABC=74+a,BDLDC于点D, EF±DC于点F,求证:Z仁Z2证明:T Z A=106 - a,Z ABC=74 + a(已知)•Z A+Z ABC=180•AD// ____ ( _____________ )•••/1= ______ ( _______________ )•/ BDL DC EF± DC(已知)•••/ BDF2 EFC=90 ( ________ )• BD// ______ ( _____________ )2= _____ ( _______________ )•••/ 仁/ 2 ( _______ )14. 完成下面的证明(在括号中填写推理理由) 如图,已知/ A=Z F,Z C=Z D,求证:BD// CE 证明:因为/ A=Z F,所以AC// DF ( ______ ),所以/ C+Z _____ =180 ( ________ ).因为/ C=Z D,所以Z D+Z _____ =180 ( ________ ),所以BD// CE ( ______ ).15. 如图AB// CD Z 仁Z 2,Z 3=Z 4,试说明AD// BE 解:••• AB// CD (已知)•Z 4=Z ______ ( _______ )•••Z 3=Z 4 (已知)•Z 3=Z ______ ( _______ )•Z仁Z 2 (已知)•Z 1+Z CAF Z 2+Z CAF( _____ )即Z _____ = Z_______ ( ______ )•Z 3=Z _____•AD// BE ( ____ )16. 如图,已知EF// AD Z 仁Z 2,Z BAC=70,求Z AGD(请填空)解:• EF// AD•Z 2= _____ ( ______又T Z 1=Z2•Z 1=Z 3 ( ______ )•AB// _____ ( _____ )•Z BAC+ ____ =180 ( ________ )•Z BAC=70 ( ______ )•Z AGD= ____ ( ______ )。

平行线的判定证明题(精选篇)

平行线的判定证明题(精选篇)

平行线的判定证明题平行线的判定证明题平行线的判定证明题1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

按这个判定,绝对没错。

这两种的第一条都没有办法判定,而后两条就完全可以按照第一条来判定,最后的结果一定是对的。

2平行线的性质:(1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。

平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

平行线的性质:在同一平面内永不相交的两条直线叫做平行线。

平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

3光学原理。

延长GE角D于Q因为∠2=∠3,所以AB∥D由AB∥D可得∠1=∠GQD又∠1=∠4所以∠4=∠GQD所以GQ∥FH 即:GE∥FH因为∠2=∠3所以AB∥D所以角FE=角FEB所以大角HFE=大角FEG所以HF∥GE4)要证明AB∥GD,只要证明∠1=∠BAD即可,根据∠1=∠2,只要再证明∠2=∠BAD即可证得;(2)根据AB∥D,∠1:∠2:∠3=1:2:3即可求得三个角的度数,再根据∠EBA与∠ABD互补,可求得∠EBA的度数,即可作出判断.解答:解:(1)证明:∵AD⊥B,EF⊥B(已知)∴∠EFB=∠ADB=90°(垂直的定义)∴EF∥AD(同位角相等,两直线平行)(2分)∴∠2=∠BAD(两直线平行,同位角相等)(3分)∵∠1=∠2,(已知)∴∠1=∠BAD(等量代换)∴AB∥DG.(内错角相等,两直线平行)(4分)(2)判断:BA平分∠EBF(1分)证明:∵∠1:∠2:∠3=1:2:3∴可设∠1=k,∠2=2k,∠3=3k(k 0)∵AB∥D∴∠2+∠3=180°(2分)∴2k+3k=180°∴k=36°∴∠1=36°,∠2=72°(4分)∴∠ABE=72°(平角定义)∴∠2=∠ABE∴BA平分∠EBF(角平分线定义).(5分)。

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

人教版七年级下册数学平行线证明题专题训练(含答案)

人教版七年级下册数学平行线证明题专题训练(含答案)

人教版七年级下册数学平行线证明题专题训练 1.如图,已知∠1+∠2=180°,且∠3=∠B .(1)求证:∠AFE =∠ACB ;(2)若CE 平分∠ACB ,且∠2=110°,∠3=50°,求∠ACB 的度数.2.如图,点D 、F 在线段AB 上,点E 、G 分别在线段BC 和AC 上,CD EF ∥,12∠=∠.(1)求证: DG BC ∥;(2)若DG 是角ADC ∠的平分线,385∠=︒,且:9:10DCE DCG ∠∠=,请说明AB 和CD 怎样的位置关系?3.如图,已知BE AO ∥,12∠=∠,OE OA ⊥于点O ,那么4∠与5∠有什么数量关系?为什么?4.如图所示,已知CD 平分ACB ∠,12∠=∠,那么B 与4∠相等吗?完成下面的填空.CD 平分ACB ∠(已知)2∴∠=∠______(______), 12∠=∠(已知), ∴∠______1=∠(______),∴______∥______(______),4B ∴∠=∠(______). 5.如图,在四边形ABCD 中,AD BC ∥,连接BD ,点E 在BC 边上,点F 在DC 边上,且12∠=∠.(1)求证:EF BD ∥.(2)若DB 平分ABC ∠,130A ∠=︒,70C ∠=︒,求CFE ∠的度数.6.如图,D ,E ,G 分别是AB ,AC ,BC 边上的点,12180∠+∠=︒,3B ∠=∠.(1)请说明∥DE BC 的理由;7.已知如图,已知∠1=∠2,∠C =∠D .(1)判断BD 与CE 是否平行,并说明理由;(2)当∠A =30°时,求∠F 的大小.8.如图所示,已知BE FG ∥,12∠=∠.求证∥DE BC .9.推理填空:如图,CF 交BE 于点H ,AE 交CF 于点D ,∠1=∠2,∠3=∠C ,∠ABH =∠DHE ,求证:BE ∠AF .证明:∠∠ABH =∠DHE (已知),∠_______(_____________),∠∠3+______=180°(_______).∠∠3=∠C (已知),∠∠C +________=180°(_________),∠AD ∠BC (___________),∠∠2=∠E (___________).∠∠1=∠2(已知),∠∠1=∠E (等量代换).∠BE ∠AF (内错角相等,两直线平行).10.如图,AB 、CD 是两条直线,BMN CNM ∠=∠,12∠=∠.请说明E F ∠=∠的理由.11.如图,MN BC ∥,BD DC ⊥,1260∠=∠=︒,DC 是NDE ∠的平分线(1)AB 与DE 平行吗?请说明理由;(2)试说明ABC C ∠=∠;(3)求ABD ∠的度数.12.如图,AD 与BE 相交于F ,∠A =∠C ,∠1与∠2互补.(1)试说明:AB CE ∥;(2)若∠1=85°,∠E =26°,求∠A 的度数.13.已知,点A ,B 在直线EF 上,∠1+∠2=180°,DB 平分∠CDA ,CD ∠AB .(1)求证:AD ∠BC ;(2)若∠DAB =52°,求∠BDC 的度数.14.如图,已知180BAD ADC ∠+∠=︒,AE 平分BAD ∠,交CD 于点F ,交BC 的延长线于点E ,DG 交BC 的延长线于点G ,CFE AEB ∠=∠.(1)若87B ∠=︒,求DCG ∠的度数;(2)AD 与BC 是什么位置关系?请说明理由;(3)若DAB α∠=,DGC β∠=,直接写出α,β满足什么数量关系时AE DG ∥.15.已知:如图,D ,E ,F 分别是AB ,AC ,BC 上的点,DE ∠BC ,∠ADE =∠EFC ,求证:∠1=∠2.16.如图,直线EF分别与直线AB,CD相交于点A,C,AD平分∠BAC,交CD于点D,若∠1=∠2,且∠ADC=54°.(1)直线AB、CD平行吗?为什么?(2)求∠1的度数.17.如图,AE∠BC,FG∠BC,∠1=∠2,求证:AB∠CD.18.如图,已知DG∠BC,AC∠BC,EF∠AB,∠1=∠2,求证:CD∠AB19.如图,已知AD∠BC,FG∠BC,垂足分别为D,G.且∠1=∠2,猜想:DE与AC 有怎样的关系?说明理由.20.(1)如图1,AB∠CD,∠A=38°,∠C=50°,求∠APC的度数.(提示:作PE∠AB).(2)如图2,AB∠DC,当点P在线段BD上运动时,∠BAP=∠α,∠DCP=∠β,求∠CPA与∠α,∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P在段线OB上运动,请你直接写出∠CPA与∠α,∠β之间的数量关系______.参考答案:1.证明:∠∠1+∠2=180°,∠1+∠FDE =180°,∠∠FDE =∠2,∠∠3+∠FEC +∠FDE =180°,∠2+∠B +∠ECB =180°,∠B =∠3, ∠∠FEC =∠ECB ,∠EF ∥ BC ,∠∠AFE =∠ACB ;(2)解:∠∠3=∠B ,∠3=50°,∠∠B =50°,∠∠2+∠B +∠ECB =180°,∠2=110°,∠∠ECB =20°,∠CE 平分∠ACB ,∠∠ACB =2∠ECB =40°.2.(1)证明∠CD EF ∥,∠2DCB =∠∠,又∠12∠=∠,∠1DCB ∠=∠,∠DG BC ∥;(2)CD AB ⊥,理由如下:由(1 )知DG BC ∥,∠385∠=︒,∠180395BCG ∠=︒-∠=︒,∠:9:10DCE DCG ∠∠=, ∠9954519DCE ∠=︒⨯=︒, ∠DG BC ∥,∠45CDG ∠=︒,∠DG 是ADC ∠的平分线, ∠290ADC CDG ∠=∠=︒, ∠CD AB ⊥.3.解:∠4与∠5互余,理由:∠OE ∠OA ,∠∠AOE =90°,即∠2+∠3=90°, ∠∠1+∠2+∠3+∠4=180°, ∠∠1+∠4=90°∠∠1=∠2,∠∠2+∠4=90°,∠BE AO ∥,∠∠2=∠5, ∠∠5+∠4=90°,即∠4与∠5互余. 4.【详解】 CD 平分ACB ∠(已知)23∴∠=∠(角平分线的定义),12∠=∠(已知), 31∴∠=∠(等量代换),DE BC ∴∥(内错角相等,两直线平行),4B ∴∠=∠(两直线平行,同位角相等). 5.(1)证明:AD BC (已知), 1∴∠=∠DBC (两直线平行,内错角相等), 12∠=∠,2DBC ∴∠=∠(等量代换),EF BD ∴∥(同位角相等,两直线平行). (2)AD BC (已知),180ABC A ∴∠+∠=(两直线平行,同旁内角互补), 130A ∠=(已知), 50ABC ∴∠=, DB 平分 ABC ∠(已知), 1252DBC ABC ∴∠=∠=, 225DBC ∴∠=∠=,在 CFE 中,2180CFE C ∠+∠+∠=(三角形内角和定理),70C ∠=,85CFE ∴∠=.6.(1)解:∠12180∠+∠=︒,1DFG ∠=∠, ∠2180DFG ∠+∠=︒,∠AB EG ∥,∠B EGC ∠=∠.又∠3B ∠=∠,∠3EGC ∠=∠,∠∥DE BC ;(2)∠DE 平分ADC ∠,∠ADE EDC ∠=∠.∠∥DE BC ,∠B ADE EDC ∠=∠=∠,∠22B ∠=∠,2180ADE EDC ∠+∠+∠=︒, ∠2180B B B ∠+∠+∠=︒, ∠45B ∠=︒,∠2290B ∠=∠=︒,∠CD AB ⊥,∠AB EG∥,⊥.∠CD EG7.(1)BD∠CE,理由如下:∠∠1=∠2,∠2=∠3,∠∠1=∠3,∠BD∠CE;(2)∠BD∠CE,∠∠C=∠4,∠∠C=∠D,∠∠D=∠4,∠AC∠DF,∠∠A=∠F=30°.8.∥证明:∠BE FG∠2CBE∠=∠(两直线平行,同位角相等)又∠12∠=∠∠1CBE∠=∠DE BC(内错角相等,两直线平行)-∠∥9.证明:∠∠ABH=∠DHE(已知),∠AB∠CF(同位角相等,两直线平行),∠∠3+∠ADC=180°(两直线平行,同旁内角互补),∠∠3=∠C(已知),∠∠C+∠ADC=180°(等量代换),∠AD∠BC(同旁内角互补,两直线平行),∠∠2=∠E(两直线平行,内错角相等).∠∠1=∠2(已知),∠∠1=∠E(等量代换),∠BE∠AF(内错角相等,两直线平行).故答案为:AB∠CF,同位角相等,两直线平行;∠ADC,两直线平行,同旁内角互补;∠ADC,等量代换;同旁内角互补,两直线平行;两直线平行,内错角相等.10.∵∠BMN=∠CNM(已知),∠AB CD(内错角相等,两直线平行).∠∠AMN=∠MND(两直线平行,内错角相等).∠∠1=∠2(已知),∠∠EMN=∠MNF(等式性质).∥(内错角相等,两直线平行).∠ME NF∠∠E=∠F(两直线平行,内错角相等),11.(1)解:AB DE∥,理由如下:∥,∠MN BC∠∠ABC=∠1=60°.又∠∠1=∠2,∠∠ABC=∠2,∠AB∠DE.(2)解:∠MN∠BC,∠∠NDE+∠2=180°,∠∠NDE=180°-∠2=180°-60°=120°.∠DC是∠NDE的平分线,∠1602∠=∠=∠=︒EDC NDC NDE.∠MN∠BC,∠∠C=∠NDC=60°,∠∠ABC=∠C.(3)解:∠ADC=180°-∠NDC=180°-60°=120°,∠BD∠DC,∠∠BDC=90°,∠∠ADB=∠ADC-∠BDC=120°-90°=30°.∠MN∠BC,∠∠DBC=∠ADB=30°,∠∠ABC=∠C=60°,∠∠ABD=30°12.(1)证明:∠∠1与∠2互补,∠AD BC∥,∠∠ADE=∠C,∠∠A=∠C,∠∠A=∠ADE,∠AB CE∥;(2)解:∠∠1与∠2互补,∠1=85°,∠∠2=180º-85º=95º,∠AB CE∥,∠E=26º,∠∠ABE=∠E=26º,∠∠ABC=∠ABE+∠2=26º+95º=121º,∠AD BC ∥,∠∠A =180º-∠ABC =180º-121º=59º.13.(1)∠∠1+∠2=180°,点A ,B 在直线EF 上, ∠∠1+∠DAB =180°,∠∠2=∠DAB ,∠AD ∠BC ;(2)∠CD ∠AB ,∠DAB =52°,∠∠CDA =180°﹣∠DAB =180°﹣52°=128°, ∠DB 平分∠CDA ,∠∠BDC 12=∠CDA =64°. 14.(1)解:∠180BAD ADC ∠+∠=︒,∠AB CD ∥,∠87B DCG ∠=∠=︒.(2)解:AD 与BC 是的位置关系为:AD BC ∥,理由如下: ∠AE 平分BAD ∠,∠BAE DAE ∠=∠,∠180BAD ADC ∠+∠=︒,∠AB CD ∥,∠BAE CFE ∠=∠,∠AEB CFE ∠=∠,∠∠AEB =∠BAE =∠DAE ,∠AD BC ∥.(3)解:α与β的数量关系为:12αβ=,理由如下:当AE DG∥时,AEB DGCβ∠=∠=,由(2)中推导可知,1122 AEB EAD BADα∠=∠=∠=,∠12αβ=.15.证明:∠DE∠BC,∠∠ADE=∠ABC.∠∠ADE=∠EFC,∠∠ABC=∠EFC.∠AB∠EF.∠∠1=∠2.16.(1)解:AB CD∥,理由:∠∠1=∠2,∠1=∠DCA,∠∠2=∠DCA,∠AB CD∥(2)解:∠∠ADC=54°,AB CD∥,∠∠DAB=∠ADC=54°,∠AD平分∠BAC,∠∠BAC=2∠DAB=108°,∠∠2=180°-∠BAC=72°,∠∠1=72°.17.直线平行可得AB∠CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∠AE∠BC,FG∠BC,∠∠AMB=∠GNB=90°,∠AE∠FG,∠∠A=∠1;又∠∠2=∠1,∠∠A=∠2,∠AB∠CD.18.证明:∠ DG∠BC,AC∠BC(已知),∠ ∠DGB=∠ACB=90°(垂直的定义),∠ DG∠AC(同位角相等,两直线平行).∠ ∠2=∠ACD(两直线平行,内错角相等).∠ ∠1=∠2(已知),∠ ∠1=∠ACD(等量代换),∠ EF∠CD(同位角相等,两直线平行).∠ ∠AEF=∠ADC(两直线平行,同位角相等).∠ EF∠AB(已知),∠ ∠AEF=90°(垂直的定义),∠ ∠ADC=90°(等量代换).∠ CD∠AB(垂直的定义).19.DE∠AC.理由如下:∠AD∠BC,FG∠BC,∠∠ADG=∠FGC=90°,∠AD∠FG,∠∠1=∠CAD,∠∠1=∠2,∠∠CAD=∠2,∠DE∠AC.20.(1)如图1,过P作PE∠AB,∠AB∠CD,∠PE∠AB∠CD,∠∠A=∠APE,∠C=∠CPE,∠∠A=38°,∠C=50°,∠∠APE=38°,∠CPE=50°,∠∠APC=∠APE+∠CPE=38°+50°=88°;(2)∠APC=∠α+∠β,理由是:如图2,过P作PE∠AB,交AC于E,∠AB∠CD,∠AB∠PE∠CD,∠∠APE=∠PAB=∠α,∠CPE=∠PCD=∠β,∠∠APC=∠APE+∠CPE=∠α+∠β;(3)如图3,过P作PE∠AB,交AC于E,∠AB∠CD,∠AB∠PE∠CD,∠∠PAB=∠APE=∠α,∠PCD=∠CPE=∠β,∠∠APC=∠CPE-∠APE,∠∠APC=∠β-∠α.故答案为:∠APC=∠β-∠α.。

平行线证明题专讲二-含答案

平行线证明题专讲二-含答案

平行线专题二一.解答题(共19小题)1.如图,四边形ABCD中,AD∥BC,F为AB边上一点,且∠ADF=∠CDB,射线DF、CB相交于点E,∠BFE=∠CBD,求证:AB∥CD.2.如图,直线AB和直线BC相交于点B,连接AC,点D、E、H分别在AB、AC、BC上,连接DE、DH,F是DH上一点,已知∠1+∠3=180°(1)求证:∠CEF=∠EAD;(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).3.阅读下面材料:小明遇到这样一个问题:如图1,AC∥BD,点E为直线AC上方一点,连接CE、DE,猜想∠C、∠D、∠E的数量关系,并证明.小明发现,可以过点E作MN∥AC来解决问题,如图2,请你完成解答;用学过的知识或参考小明的方法,解决下面的问题:如图3,AB∥CD,P是平面内一点,连接AP、CP,使AP∥BD,∠APC=100°,BM、CM分别平分∠ABD、∠DCP交于点M,求∠M的度数.4.已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.(1)如图1,∠EOF在直线CD的右侧:①若∠COE=30°,求∠BOF和∠POE的度数;②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:①请直接写出∠POE与∠BOP之间的数量关系;②请直接写出∠POE与∠DOP之间的数量关系.5.如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E 是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.6.(1)如图①,若AB∥CD,求∠B+∠D+∠E1的度数?(2)如图②,若AB∥CD,求∠B+∠D+∠E1+∠E2的度数?(3)如图③,若AB∥CD,求∠B+∠D+∠E1+∠E2+∠E3的度数?(4)如图④,若AB∥CD,猜想∠B+∠D+∠E1+∠E2+…+∠E n的度数?7.思考:填空,并探究规律如图1,图2,OA∥EC,OB∥ED,∠AOB=30°,则图1中∠CED=°;图2中∠CED=°;用一句话概括你发现的规律证明:请利用图1,图2证明你发现的规律;应用:已知∠AOB=80°,∠CED=x°,OA∥CE,OB∥ED,则x的值为(直接写出答案).8.如图,已知∠1=∠BDC,∠2+∠3=180°,(1)问AD与EC平行吗?试说明理由;(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠F AB的度数.9.如图,在四边形ABCD中,分别取AB,CD延长线上的一点E和F,连接EF,分别交BC,AD于点G和H,若∠1=∠2,∠A=∠C,求证:∠E=∠F.10.如图,在三角形ABC中,点D、G分别为边BC、AB上的点,DE⊥AC于点E,BF⊥AC于点F,连接FG,且∠BFG+∠BDE=180°.(1)求证:DE∥BF;(2)猜想∠AGF与∠ABC的数量关系,并证明你的猜想.11.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.12.完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().13.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.14.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.15.如图1,已知l1∥l2,点A,B在直线l1上,点C,D在l2上,连接AD,BC.AE,CE 分别是∠BAD,∠BCD的平分线,∠1=70°,∠2=30°.(1)求∠AEC的度数;(2)如图2,将线段AD沿线段CD方向平移,其他条件不变,求∠AEC的度数.16.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥CD.17.如图,已知,AB∥CD,∠1=∠2,AE与DF平行吗?为什么?18.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.19.如图,已知AB∥DC,BF平分∠ABE,CF平分∠DCE,BF与CF相交于F (1)如图①,若∠F=30°,求∠E的度数;(2)如图②,若设∠F=α,∠E=β,请你猜想α与β之间的关系(直接写出结果不用说明理由);(3)在图③中,(2)中α与β之间的关系是否仍然成立?若成立说明理由,若不成立写出它们之间的关系,并说明理由.参考答案与试题解析一.解答题(共19小题)1.如图,四边形ABCD中,AD∥BC,F为AB边上一点,且∠ADF=∠CDB,射线DF、CB相交于点E,∠BFE=∠CBD,求证:AB∥CD.【解答】证明:∵AD∥BC,∴∠ADF=∠E,∵∠ADF=∠CDB,∴∠E=∠CDB,∵在△CBD中,∠C+∠CDB+∠CBD=180°,在△EFB中,∠E+∠EBF+∠EFB=180°,∵∠CBD=∠EFB,∴∠EBF=∠C,∴AB∥CD.2.如图,直线AB和直线BC相交于点B,连接AC,点D、E、H分别在AB、AC、BC上,连接DE、DH,F是DH上一点,已知∠1+∠3=180°(1)求证:∠CEF=∠EAD;(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).【解答】解:(1)∵∠3+∠DFE=180°,∠1+∠3=180°∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠BDE=180°﹣α又∵DH平分∠BDE∴∠1=∠BDE=(180°﹣α)∴∠3=180°﹣(180°﹣α)=90°+α3.阅读下面材料:小明遇到这样一个问题:如图1,AC∥BD,点E为直线AC上方一点,连接CE、DE,猜想∠C、∠D、∠E的数量关系,并证明.小明发现,可以过点E作MN∥AC来解决问题,如图2,请你完成解答;用学过的知识或参考小明的方法,解决下面的问题:如图3,AB∥CD,P是平面内一点,连接AP、CP,使AP∥BD,∠APC=100°,BM、CM分别平分∠ABD、∠DCP交于点M,求∠M的度数.【解答】证明:(1)∠D═∠C+∠E(图)∠D═∠C+∠DEC(图2)过点E作MN∥AC,∴∠C═∠CEN.又∵AC∥BD,∴MN∥BD,∴∠D═∠DEN又∵∠DEN═∠DEC+∠CEN,.∴∠D═∠C+∠DEC(2)如图所示,AP与CD,CD与BM分别相交于点E、F两点,∵BM、CM分别平分∠ABD、∠DCP,∴∠MBD=∠MBA=∠ABD,∠MCP=∠MCD═∠PCE.又∵AB∥CD,∴∠D+∠DBA=180°.又∵AP∥BD,∴∠AED+∠D=180°,∵∠DBA=∠AED,又∵∠AED=∠PEC∴∠CEP=∠DBA∴∠MBA═∠CEP.又∵∠ABF=∠BFD,∠BFD=∠CFM,∴∠ABF=∠CFM=∠ABD=∠CEP.又∵△CEP中,∠P=100°∴∠PCE+∠PEC=180°﹣100°=80°,∴∠CEP+∠PCE=(∠PCE+∠PEC)=×80°=40°,∴∠MCF+∠MFC=40°,∴∠M=180°﹣(∠MCF+∠MFC)=180°﹣40°=140°.4.已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.(1)如图1,∠EOF在直线CD的右侧:①若∠COE=30°,求∠BOF和∠POE的度数;②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:①请直接写出∠POE与∠BOP之间的数量关系;②请直接写出∠POE与∠DOP之间的数量关系.【解答】解:(1)①∵CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE=30°,∴∠COF=90°+30°=120°,∵OP平分∠COF,∴∠COP=∠COF=60°,∴∠POE=∠COP﹣∠COE=30°;②CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE,∵OP平分∠COF,∴∠COP=∠POF,∴∠POE=∠COP﹣∠COE,∠BOP=∠POF﹣∠BOF,∴∠POE=∠BOP;(2)①∵∠EOF=∠BOC=90°,∵PO平分∠COF,∴∠COP=∠POF,∴∠POE=90°+∠POF,∠BOP=90°+∠COP,∴∠POE=∠BOP;②∵∠POE=∠BOP,∠DOP+∠BOP=270°,∴∠POE+∠DOP=270°.5.如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=70°.②若∠A=25°,∠C=40°,则∠AEC=65°.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E 是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.【解答】解:(1)①如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠C=50°,∴∠1=∠A=20°,∠2=∠C=50°,∴∠AEC=∠1+∠2=70°;故答案为:70°;②同理可得,∴∠AEC=∠1+∠2=65°;故答案为:65°;③猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD(等量代换).(2)当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BMN=∠FEM,∠DNE=∠FEN,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.6.(1)如图①,若AB∥CD,求∠B+∠D+∠E1的度数?(2)如图②,若AB∥CD,求∠B+∠D+∠E1+∠E2的度数?(3)如图③,若AB∥CD,求∠B+∠D+∠E1+∠E2+∠E3的度数?(4)如图④,若AB∥CD,猜想∠B+∠D+∠E1+∠E2+…+∠E n的度数?【解答】解:(1)如图①,过E1作E1F∥AB,则E1F∥CD,∴∠B+∠1=180°①,∠D+∠1=180°②,①+②得∠B+∠1+∠D+∠2=360°,即∠B+∠D+∠E1=360°;(2)如图②,分别过E1,E2作E1F∥AB,E2G∥AB,则E1F∥E2G∥CD,∴∠1+∠B=∠2+∠3=∠4+∠D=180°,∴∠B+∠D+∠E1+∠E2=∠1+∠B+∠2+∠3+∠4+∠D=540°=3×180°;(3)如图③,分别过E1,E2,E3作E1F1∥E2F2∥E3F3∥AB,则E1F1∥E2F2∥E3F3∥CD,∴∠B+∠BE1E2=180°,∠E2E1F1+∠E1E2F2=180°,∠E3E2F2+∠E2E3F3=180°,∠DE3F3+∠D=180°,∴∠B+∠D+∠E1+∠E2+∠E3=720°;(4)由(1)(2)(3)知,拐点的个数n与角的和之间的关系是(n+1)•180°,∴∠B+∠D+∠E1+∠E2+…+∠E n=(n+1)•180°.7.思考:填空,并探究规律如图1,图2,OA∥EC,OB∥ED,∠AOB=30°,则图1中∠CED=30°;图2中∠CED=150°;用一句话概括你发现的规律两直线平行,同位角相等证明:请利用图1,图2证明你发现的规律;应用:已知∠AOB=80°,∠CED=x°,OA∥CE,OB∥ED,则x的值为80或100(直接写出答案).【解答】解:思考:∵OA∥EC,OB∥ED,∠AOB=30°∴图1中∠CED=30°∴图2中∠CED=150°故可得到:两直线平行,同位角相等应用:∵∠AOB=80°,OA∥CE,OB∥ED,设∠CED=x°,∴x的值为80或100.故答案为:30,150,两直线平行,同位角相等,80或100.8.如图,已知∠1=∠BDC,∠2+∠3=180°,(1)问AD与EC平行吗?试说明理由;(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠F AB的度数.【解答】解:(1)AD∥EC.理由如下:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,又∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥EC;(2)∵DA平分∠BDC∴∠ADC=∠BDC=∠1=×70°=35°,∴∠2=∠ADC=35°,又∵CE⊥AE,AD∥EC,∴∠F AD=∠AEC=90°,∴∠F AB=∠F AD﹣∠2=90°﹣35°=55°.9.如图,在四边形ABCD中,分别取AB,CD延长线上的一点E和F,连接EF,分别交BC,AD于点G和H,若∠1=∠2,∠A=∠C,求证:∠E=∠F.【解答】证明:∵∠1=∠AHE,∠1=∠2∴∠AHE=∠2∴AD∥BC∴∠ADF=∠C∵∠A=∠C∴∠A=∠ADF∴AB∥CD∴∠E=∠F10.如图,在三角形ABC中,点D、G分别为边BC、AB上的点,DE⊥AC于点E,BF⊥AC于点F,连接FG,且∠BFG+∠BDE=180°.(1)求证:DE∥BF;(2)猜想∠AGF与∠ABC的数量关系,并证明你的猜想.【解答】证明:(1)∵DE⊥AC于点E,BF⊥AC于点F,∴∠CED=∠EFB=90°,∴DE∥BF;(2)∠AGF=∠ABC,理由如下:∵DE∥BF,∴∠BDE+∠DBF=180°,∵∠BFG+∠BDE=180°.∴∠BFG=∠DBF,∴FG∥BC,∴∠AGF=∠ABC11.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.【解答】解:(1)如图1,∵MN∥PQ,∴∠MAG=∠BDG,∵∠AGB是△BDG的外角,BG⊥AD,∴∠AGB=∠BDG+∠PBG=90°,∴∠MAG+∠PBG=90°;(2)2∠AHB﹣∠CBG=90°或2∠AHB+∠CBG=90°,证明:①如图,当点C在AG上时,∵MN∥PQ,∴∠MAC=∠BDC,∵∠ACB是△BCD的外角,∴∠ACB=∠BDC+∠DBC=∠MAC+∠DBC,∵AH平分∠MAC,BH平分∠DBC,∴∠MAC=2∠MAH,∠DBC=2∠DBH,∴∠ACB=2(∠MAH+∠DBH),同理可得,∠AHB=∠MAH+∠DBH,∴∠ACB=2(∠MAH+∠DBH)=2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=∠CBG+90°,∴2∠AHB=∠CBG+90°,即2∠AHB﹣∠CBG=90°;②如图,当点C在DG上时,同理可得,∠ACB=2∠AHB,又∵Rt△BCG中,∠ACB=90°﹣∠CBG,∴2∠AHB=90°﹣∠CBG,即2∠AHB+∠CBG=90°;(3)(2)中的结论不成立.存在:2∠AHB+∠CBG=270°;2∠AHB﹣∠CBG=270°.①如图,当点C在AG上时,由MN∥PQ,可得:∠ACB=360°﹣∠MAC﹣∠PBC=360°﹣2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°﹣2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=90°+∠CBG,∴360°﹣2∠AHB=90°+∠CBG,即2∠AHB+∠CBG=270°;②如图,当C在DG上时,同理可得,∠ACB=360°﹣2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°﹣2∠AHB,又∵Rt△BCG中,∠ACB=90°﹣∠CBG,∴360°﹣2∠AHB=90°﹣∠CBG,∴2∠AHB﹣∠CBG=270°.12.完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).【解答】证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:角平分线的定义,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.13.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.【解答】解:(1)平行.理由如下:∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),∴∠1=∠CDB,∴AE∥FC(同位角相等两直线平行);(2)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等),又∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC(同位角相等,两直线平行);(3)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.14.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.15.如图1,已知l1∥l2,点A,B在直线l1上,点C,D在l2上,连接AD,BC.AE,CE 分别是∠BAD,∠BCD的平分线,∠1=70°,∠2=30°.(1)求∠AEC的度数;(2)如图2,将线段AD沿线段CD方向平移,其他条件不变,求∠AEC的度数.【解答】解:(1)如图1,过点E作EF∥l1,∵l1∥l2,∴EF∥l2,∵l1∥l2,∴∠BCD=∠α,∵∠1=70°,∴∠BCD=70°,∵CE是∠BCD的角平分线,∴∠ECD=×70°=35°,∵EF∥l2,∴∠FEC=∠ECD=35°,∵l1∥l2,∴∠BAD+∠2=180°,∵∠2=30°,∴∠BAD=150°,∵AE平分∠BAD,∴∠BAE=×150°=75°,∵EF∥l1,∴∠BAE+∠AEF=180°,∴∠AEF=105°,∴∠AEC=105°+35°=140°;(2)如图2,过点E作EF∥l1,∵l1∥l2,∴EF∥l2,∵l1∥l2,∴∠BCD=∠1,∵∠1=70°,∴∠BCD=70°,∵CE是∠BCD的角平分线,∴∠ECD=×70°=35°,∵EF∥l2,∴∠FEC=∠ECD=35°,同理可求∠AEF=15°,∴∠AEC=∠AEF+∠CEF=50°.16.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥CD.【解答】证明:∵∠C=∠1,∴CF∥BE,∴∠3=∠EGD,∵BE⊥DF,∴∠EGD=90°,∴∠3=90°,∴∠C+∠D=90°,∵∠2+∠D=90°,∴∠C=∠2,∴AB∥CD.17.如图,已知,AB∥CD,∠1=∠2,AE与DF平行吗?为什么?【解答】解:AE∥DF,理由如下:∵AB∥CD(已知),∴∠BAD=∠ADC(两直线平行,内错角相等),又∵∠1=∠2(已知),∴∠BAD﹣∠1=∠ADC﹣∠2,即∠EAD=∠ADF(等式的性质),∴AE∥DF(内错角相等,两直线平行).18.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.【解答】解:AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行).(2分)19.如图,已知AB∥DC,BF平分∠ABE,CF平分∠DCE,BF与CF相交于F (1)如图①,若∠F=30°,求∠E的度数;(2)如图②,若设∠F=α,∠E=β,请你猜想α与β之间的关系(直接写出结果不用说明理由);(3)在图③中,(2)中α与β之间的关系是否仍然成立?若成立说明理由,若不成立写出它们之间的关系,并说明理由.【解答】解:(1)如图①过点F作FM∥AB,过点E作EN∥AB.∵AB∥DC,∴FM∥CD,EN∥CD,∴∠1=∠3,∠2=∠4.∠ABE=∠5,∠DCE=∠6∵BF平分∠ABE,CF平分∠DCE,∴∠1=∠5,∠2=∠6,∴∠3+∠4=∠1+∠2=(∠5+∠6),即∠BFC=∠BEC.∵∠BFC=30°,∴∠BEC=60°;(2)β=2α.理由:如图②,过点F作FM∥AB,过点E作EN∥AB.同(1)可得∠BFC=∠BEC,∵∠BFC=α,∴∠BEC=2∠BFC=2α,即β=2α;(3)不成立.如图③,过点F作FM∥AB,∵AB∥DC,∴FM∥CD,∴∠1=∠3,∠2=∠4,∵BF平分∠ABE,CF平分∠DCE,∴∠EBF=∠1=∠3,∠ECF=∠2=∠4,∴∠EBF+∠ECF=∠1+∠2=α,∵α+β+(∠EBF+∠ECF)=360°,∴α+β+α=360°,即2α+β=360°.。

平行线的证明试题总集含答案

平行线的证明试题总集含答案

平行线的证明试题总集含答案(共79页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《平行线的证明》单元测试题一、 填空题1.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.2.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72º ,则∠2= ;3.在△ABC 中,∠BAC =90º,AD ⊥BC 于D ,则∠B 与∠DAC 的大小关系是________4.写出“同位角相等,两直线平行”的题设为_______,结论为_______.5.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.6.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______7.如图,写出两个能推出直线AB ∥CD 的条件________________________.8.满足一个外角等于和它相邻的一个内角的△ABC 是_____________ 二、 选择题9.下列语句是命题的是 【 】(A)延长线段AB (B)你吃过午饭了吗 (C)直角都相等 (D)连接A ,B 两点 10.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是 【 】 (A)75º (B)45º (C)105º (D)135º11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角” 是假命题是 【 】(A)设这个角是30º,它的余角是60°,但30°<60°(B)设这个角是45°,它的余角是45°,但45°=45°(C)设这个角是60°,它的余角是30°,但30°<60° (D)设这个角是50°,它的余角是40°,但40°<50°12.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】 (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定 13.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB , 则∠DEC 等于【 】 (A )63° (B) 118° (C) 55°(D )62°14.三角形的一个外角是锐角,则此三角形的形状是 【 】C A BDE E C D B A 1 3 24 第5题第6题 第7题A BC D E F G 12DABCE第10题(A)锐角三角形 (B)钝角三角形(C)直角三角形(D)无法确定三、解答证明题15.如图,AD=CD,AC平分∠DAB,求证DC∥AB.16.如图,已知∠1=20°,∠2=25°,∠A=55°,求∠BDC的度数.17.如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F.(1)探求:∠F与∠B、∠D有何等量关系?(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?C ABD1218.如图,已知点A在直线l外,点B、C在直线l上.(1)点P是△ABC内一点,求证:∠P>∠A;(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A试证明你的结论.19、如图,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.20、已知:如图,∠BAF、∠CBD、∠ACE是△ABC的三个外角.求证:∠BAF+∠CBD+∠ACE=360°.21、如图,已知BE、CE分别是△ABC的内角、外角的平分线,∠A=40°,求∠E的度数.22、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论。

(完整word版)平行线经典证明题

(完整word版)平行线经典证明题

1.如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠。

求证:BC AD //。

(12分)2如图EB ∥DC,∠C=∠E,请你说出∠A=∠ADE 的理由。

3如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30 o ,求∠EAD 、∠DAC 、∠C 的度数。

4图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线若AOC ∠=30°判断OD 与OE 的位置关系,并说明理由.若不知道AOC ∠的大小 ,你还能判断OD 与OE 的位置关系吗,并说明理由.5如图(7),已知∠AEC=∠A+∠C ,试说明:AB ∥CD 。

.如图,已知:AB//CD ,求证:∠B+∠D+∠BED=360︒EA BC D21F ED C B A6如图(18),ABA⊥BD,CD⊥MN,垂足分别是B 、D 点,∠FDC=∠EBA.(1)判断CD 与AB 的位置关系; (2)BE 与DE 平行吗?为什么?7如图(19),∠1+∠2=180°,∠DAE=∠BCF,DA 平分∠BDF。

(1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么? (3)BC 平分∠DBE 吗?为什么。

8读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( ) F E 21D C B A NM F E D C B A。

初中数学平行线证明专题训练含答案

初中数学平行线证明专题训练含答案

平行线证明专题训练一.选择题(共16小题)1.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°2.下列命题为假命题的是()A.直角都相等B.对顶角相等C.同位角相等D.同角的余角相等3.下列命题中:正确的说法有()①成轴对称的两个图形一定全等;②直线l经过线段AB的中点,则l是线段AB的垂直平分线;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形;④等腰三角形是轴对称图形,对称轴是顶角的角平分线.A.1个B.2个C.3个D.4个4.下列命题是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角5.如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需再有下列条件中的()即可.A.∠1=∠2B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD 6.如图,已知∠1=∠2,则有()A.AD∥BC B.AB∥CD C.∠ABC=∠ADC D.AB⊥CD7.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36°B.72°C.50°D.46°8.在△ABC中,∠A=35°,∠B=80°,则∠C=()A.85°B.75°C.65°D.55°9.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°10.图中,∠2的度数是()A.110°B.70°C.60°D.40°11.如图,在△ABC中,AD平分∠BAC,AE是高,若∠B=40°,∠C=60°,则∠EAD 的度数为()A.30°B.10°C.40°D.20°12.如图,BD是∠ABC的角平分线,CD是∠ACB的角平分线,∠BDC=120°,则∠A的度数为()A.40°B.50°C.60°D.75°13.如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.40°B.45°C.50°D.60°14.对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是()A.a=2,b=1B.a=﹣1,b=﹣2C.a=﹣2,b=﹣1D.a=﹣1,b=1 15.能说明命题“若a2=b2,则a=b”是假命题的一个反例可以是()A.a=2,b=﹣2B.a=2,b=3C.a=﹣2,b=﹣2D.a=﹣2,b=﹣3 16.如图,下列条件中能得到AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠1=∠4D.∠2=∠3二.填空题(共3小题)17.如图,△ABC中,∠A=80°,△ABC的两条角平分线交于点P,∠BPD的度数是_____.18.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠AOB=_____.19.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为_____.三.解答题(共8小题)20.已知:如图∠B=40°,∠B=∠BAD,∠C=∠ADC,求∠DAC的度数.21.如图,在下列解答中,填写适当的理由或数学式:(1)∵AD∥BE,(已知)∴∠B=∠_____.(_____)(2)∵∠E+∠_____=180°,(已知)∴AC∥DE.(_____)(3)∵_____∥_____,(已知)∴∠ACB=∠DAC.(_____)22.如图,在△ABC中,∠B=60°,∠C=40°,AD是∠BAC的角平分线,AE是高,求∠EAD的度数.23.如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.请阅读下面的解答过程,并填空(理由或数学式)证明:∵∠1=∠2(已知)∠1=∠3(_____)∴∠2=∠3(等量代换)∴BD∥_____(_____)∴∠4=_____(_____)又∵∠A=∠F(已知)∴AC∥_____(_____)∴∠4=_____(_____)∴∠C=∠D(等量代换)24.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB.(Ⅰ)若∠A=60°,则∠BOC的度数为_____;(Ⅱ)若∠A=100°,则∠BOC的度数_____;(Ⅲ)若∠A=α,求∠BOC的度数,并说明理由.25.已知:如图,∠1+∠2=180°,∠A=∠D.求证:AB∥CD.(在每步证明过程后面注明理由)26.(1)如图,在三角形纸片ABC中.∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC内部,折痕为MN.如果∠1=17°,求∠2的度数;(2)小明在(1)的解题过程中发现∠1+∠2=2∠C,小明的这个发现对任意的三角形都成立吗?请说明理由.27.如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.试说明:∠A=∠F.请同学们补充下面的解答过程,并填空(理由或数学式).解:∵∠AGB=∠DGF(_____)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(_____)∴_____∥_____(_____)∴∠D=_____(_____)∵∠D=∠C(已知)∴_____=∠C(_____)∴_____∥_____(_____)∴∠A=∠F(_____)平行线证明专题训练参考答案与试题解析一.选择题(共16小题)1.解:在△OBC中,∠OBC+∠OCB=180﹣∠BOC=180﹣130=50°,又∵∠ABC、∠ACB的平分线交于点O.∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=100°∴∠A=180﹣(∠ABC+∠ACB)=180﹣100=80°故选:C.2.解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.3.解:①成轴对称的两个图形一定全等,故符合题意;②直线l经过线段AB的中点且垂直线段,则l是线段AB的垂直平分线,故不符合题意;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,故符合题意;④等腰三角形是轴对称图形,对称轴是顶角的角平分线所在的直线.故不符合题意故选:B.4.解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、个三角形中至少有两个锐角,原命题是真命题;故选:D.5.解:∵EF∥AB,∴∠1=∠2,∵∠1=∠DFE,∴∠2=∠DFE,∴DF∥BC,故选:B.6.解:∵∠1=∠2,∴AB∥CD,故选:B.7.解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.8.解:∵∠A=35°,∠B=80°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣80°=65°,故选:C.9.解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.10.解:∵∠1=60°+20°=80°,∴∠2=180°﹣60°﹣80°=40°,故选:D.11.解:∵∠B=40°,∠C=60°,∠B+∠C+∠BAC=180°∴∠BAC=80°又∵AD平分∠BAC∴∠CAD=40°∵AE⊥BC,∠C=60°∴∠AEC=90°,∠CAE=30°∴∠EAD=10°,故选:B.12.解:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠A=60°;故选:C.13.解:∵∠A=75°,∠B=65°,∴∠C=180°﹣(65°+75°)=40°,∴∠CDE+∠CED=180°﹣∠C=140°,∴∠2=360°﹣(∠A+∠B+∠1+∠CED+∠CDE)=360°﹣300°=60°.故选:D.14.解:对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是a=﹣1,b=﹣2,a>b,但(﹣1)2<(﹣2)2,故选:B.15.解:能说明命题“若a2=b2,则a=b”是假命题的一个反例是a=2,b=﹣2,a2=b2,但a=﹣b,故选:A.16.解:A,∠1=∠2不能判定两条直线平行;不符合题意;B,∠3=∠4不能判定两条直线平行,不符合题意;C,∠1=∠4可以判定AD∥BC,不符合题意;D,∠2=∠3可以判定AB∥CD,根据内错角相等,两条直线平行,符合题意.故选:D.二.填空题(共3小题)17.解:∵△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵△ABC的两条角平分线交于点P,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+ACB)=×100°=50°,∴∠BPD=∠PBC+∠PCB=50°;故答案为:50°.18.解:∵AD平分∠BAC,CE平分∠ACB,∠DAC=30°,∠ECA=35°,∴∠BAC=2∠DAC=60°,∠ACB=2∠ECA=70°,∴∠ABC=180°﹣∠BAC﹣∠ACB=50°.∵△ABC的三条角平分线交于一点,∴BO平分∠ABC,∴∠ABO=∠ABC=25°,∴∠AOB=180°﹣25°﹣30°=125°故答案为125°19.解:∵DE∥BC,∴∠ADE=∠B=75°,又∵∠ADE=∠EDF=75°,∴∠BDF=180°﹣75°﹣75°=30°,故答案为30°.三.解答题(共8小题)20.解:∵∠B=40°,∴∠B=∠BAD=40°,∴∠ADC=80°,∴∠C=∠ADC=80°,∴∠DAC=180°﹣80°﹣80°=20°.21.解:(1)∵AD∥BE,(已知)∴∠B=∠F AD.(两直线平行,同位角相等)(2)∵∠E+∠ACE=180°,(已知)∴AC∥DE.(同旁内角互补,两直线平行)(3)∵AD∥BE,(已知)∴∠ACB=∠DAC.(两直线平行,内错角相等)故答案为:(1)F AD;两直线平行,同位角相等;(2)ACE;同旁内角互补,两直线平行;AD;BE;两直线平行,内错角相等.22.解:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是角平分线,∴∠BAD=∠BAC=×80°=40°,∵AE是高,∴∠BEA=90°,∴∠BAE=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠BAD﹣∠BAE=40°﹣30°=10°.23.解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠4=∠C(两直线平行,同位角相等)又∵∠A=∠F(已知)∴AC∥DF(内错角相等,两直线平行)∴∠4=∠D(两直线平行,内错角相等)∴∠C=∠D(等量代换);故答案为:对顶角相等;CE;同位角相等,两直线平行;∠C;两直线平行,同位角相等;DF;内错角相等,两直线平行;∠D;两直线平行,内错角相等.24.解:(Ⅰ)∵BO、CO分别平分∠ABC和∠ACB,∠A=60°,∴∠CBO+∠BCO=(180°﹣∠A)=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠CBO+∠BCO)=180°﹣60°=120°;故答案为:120°;(Ⅱ)同理,若∠A=100°,则∠BOC=180°﹣(180°﹣∠A)=90°+∠A=140°,故答案为140°;(Ⅲ)同理,若∠A=α,则∠BOC=180°﹣(180°﹣∠A)=90°+.25.证明:∵∠1与∠CGD是对顶角,∴∠1=∠CGD(对顶角相等),∵∠1+∠2=180°(已知),∴∠CGD+∠2=180°(等量代换),∴AE∥FD(同旁内角互补,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等),又∵∠A=∠D(已知),∴∠BFD=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).26.解:(1)∵△ABC中,∠A=64°,∠B=76°,∴∠C=180°﹣∠A﹣∠B=180°﹣64°﹣76°=40°,∵∠1=17°,∴∠CNM=,在△CMN中,∠CMN=180°﹣∠C﹣∠CNM=180°﹣40°﹣81.5°=58.5°,∴∠2=180°﹣2∠CMN=180°﹣2×58.5°=63°.(2)由题意可知:2∠CNM+∠1=180°,2∠CMN+∠2=180°,∴2(∠CNM+∠CMN)+∠1+∠2=360°,∵∠C+∠CNM+∠CMN=180°,∴∠CMN+∠CMN=180°﹣∠C,∴2(180°﹣∠C)=360°﹣(∠1+∠2),∴∠1+∠2=2∠C.27.解:∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠D=∠CEF(两直线平行,同位角相等)∵∠D=∠C(已知)∴∠CEF=∠C(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)故答案为:对顶角相等;等量代换;BD;CE;同位角相等,两直线平行;∠CEF;两直线平行,同位角相等;∠CEF;等量代换;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等.。

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点八年级数学平行线的证明知识点在日复一日的学习、工作或生活中,大家最不陌生的就是证明了吧,证明是我们经常用到的应用文体。

写证明的注意事项有许多,你确定会写吗?以下是店铺帮大家整理的八年级数学平行线的证明知识点,希望对大家有所帮助。

八年级数学平行线的证明知识点 11、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行初中数学常见公式常见的初中数学公式1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.三角形内角和定理三角形三个内角的和等于180°6.多边形内角和定理 n边形的内角的和等于(n-2)×180°7.定理1 关于某条直线对称的两个图形是全等形初中5种数学提分方法1.细心地发掘概念和公式2.总结相似类型的题目3.收集自己的典型错误和不会的题目4.就不懂的问题,积极提问、讨论5.注重实践(考试)经验的培养初中数学有理数的运算加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

专题训练中考数学总复习《平行线的证明》专题复习练习及答案

专题训练中考数学总复习《平行线的证明》专题复习练习及答案

中考数学复习平行线的证明专题复习练习1. 下列说法正确的是( D )A.经验、观察或试验完全可以判断一个数学结论的正确与否B.推理是科学家的事,与我们没有多大的关系C.对于自然数n,n2+n+37一定是质数D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个2. “两条平行直线被第三条直线所截,同位角相等”这句话是( C )A.定义 B.假命题 C.公理 D.定理3. 下列语句中,是命题的是( C )A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连接A,B两点4.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是( A ) A.25°B.35°C.50°D.65°5.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于( B )A.90°B.100°C.130°D.180°6.如图,已知△ABC中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是( A )A .∠DCE>∠ADB B .∠ADB>∠DBCC .∠ADB>∠ACBD .∠ADB>∠DEC7.如图,AB ∥CD ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分∠BEF ,交CD 于点G ,∠1=50°,则∠2等于( C )A .50°B .60°C .65°D .90°8.如图,已知直线AB ∥CD ,BE 平分∠ABC ,且BE 交CD 于点D ,∠CDE =150°,则∠C 的度数为( C )A .150°B .130°C .120°D .100°9.如图,直线a ∥b ,∠A =38°,∠1=46°,则∠ACB 的度数是( C )A .84°B .106°C .96°D .104°10.适合条件∠A =12∠B =13∠C 的三角形ABC 是( B )A .锐角三角形 B. 直角三角形 C .钝角三角形 D .都有可能11.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D ,E 分别在边AB ,AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合.若∠A =75°,则∠1+∠2等于( A )A.150° B. 210°C.105°D.75°12.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( B )A.30° B. 35°C.40°D.45°13.如图,DAE是一条直线,DE∥BC,则x=__64°__.14.如图,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是__50°__.15.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠ABD=__70°__,∠CED=__110°__.16.已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC =100°,则∠BAC=__120°__.17.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为__22°__.18.已知等腰三角形的一腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为__50°或130°__.19.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=__10__度.20.如图,∠C=∠1,∠2和∠D互余,BE⊥FD,求证:AB∥CD.解:∵∠C=∠1,∴CF∥BE,又BE⊥FD,∴CF⊥FD,∴∠CFD=90°,则∠2+∠BFD=90°,又∠2+∠D=90°,∴∠D=∠BFD,则AB∥CD21.一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.解:50°,因为∠1=130°,所以与∠1相邻的内角为50°,所以∠3-∠2=50°。

2024八年级数学上册第七章平行线的证明4平行线的性质习题课件新版北师大版

2024八年级数学上册第七章平行线的证明4平行线的性质习题课件新版北师大版
上,点 G 在线段 CD 上, ED 与 FG 相交于点 H ,∠ C =
∠ EFG ,∠ CED =∠ GHD .
(2)试判断∠ AED 与∠ D 之间的数量关系,并说明理由;
1
2
3
4
5
6
7
8
9
10
(2)解:∠ AED +∠ D =180°.理由如下:
∵ CE ∥ GF ,∴∠ C =∠ FGD .
第七章
4
平行线的证明
平行线的性质
CONTENTS


01
1星题
落实四基
02
2星题
提升四能
03
3星题
发展素养
知识点1平行线的性质
1. 如图,已知直线 a ∥ b .
(1)根据“两直线平行,同位角相等”,可得
∠1=∠ 5
∠ 6
,∠4=∠ 8
,∠3=∠
1
2
3
,∠2=
7 ;

4
5
6
7
8
9
10
1. 如图,已知直线 a ∥ b .
(
C
)
A. 40°
B. 45°
C. 50°
D. 55°
1
2
3
4
5
6
7
8
9
10
3. [2023济宁]如图, a , b 是直尺的两边, a ∥ b ,把三角板
的直角顶点放在直尺的 b 边上,若∠1=35°,则∠2的度
数是(
B
)
A. 35°
1
2
3
4
5
6
7
8
9
10
知识点2平行线的性质与判定的关系

中考数学考点总动员系列专题25平行线的证明(含解析)(new)

中考数学考点总动员系列专题25平行线的证明(含解析)(new)

考点二十五:平行线的证明聚焦考点☆温习理解一。

命题1。

命题:判断一件事情的语句,叫做命题。

2.真命题:如果题设成立,那么结论一定成立,这样的命题叫真命题.3.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫假命题.4.互逆命题:在两个命题中,如果第一个命题的题设是另一个命题的结论,而第一个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题.二、平行线的判定与性质(1)平行线的性质如果两直线平行,那么同位角相等;如果两直线平行,那么内错角相等;如果两直线平行,那么同旁内角互补.(2)平行线的判定同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

2。

平行线的基本事实(即平行公理)经过直线外一点,有且只有一条直线与这条直线平行。

名师点睛☆典例分类考点典例一、推理论证【例1】(2017•宁波)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A.3 B.4 C.5 D.6【答案】A【解析】考点:推理与论证.【点睛】此题主要考查了推理与论证,正确结合正方形面积表示出矩形各边长是解题关键.【举一反三】1. (2017•路南区二模)某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①要游览甲,就得去乙;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;”根据导游的说法,在下列选项中,该旅行团可能游览的景点是()A.甲、丙 B.甲、丁 C.乙、丁 D.丙、丁【答案】B.【解析】试题分析:根据导游说的分两种情况进行分析:①假设要去甲;②假设去丙;然后分析可得答案.试题解析:导游说:“①要游览甲,就得去乙;②乙、丙只能去一个,;③丙、丁要么都去,要么都不去”,①假设要去甲,就得去乙,就不能去丙,不去丙,就不能去丁,因此可以只去甲和乙;②假设去丙,就得去丁,就不能去乙,不去乙也不能去甲,因此可以只去丙丁;故选:D.考点:推理与论证.2.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2 B.3 C.6 D.x+3【答案】B.考点:整式的加减.考点典例二、命题的真假【例2】(2017内蒙古通辽第9题)下列命题中,假命题有( )①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;③过一点有且只有一条直线与已知直线平行;④垂直于同一直线的两条直线平行;⑤若⊙O的弦CDAB,交于点P,则PDPCPBPA⋅=⋅.A.4个 B.3个 C。

(完整版)七年级数学平行线的有关证明及答案

(完整版)七年级数学平行线的有关证明及答案

平行线的性质与判定的证明练习题温故而知新:1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行互补.例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;(2)探求∠DNQ与∠AMN,∠EPN的数量关系.解析:在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.解析:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.解析:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?解析:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.举一反三:1.如图2-9,FG∥HI,则∠x的度数为()A.60°B. 72°C. 90°D. 100°2. 已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.例4如图2-6,已知AB ∥CD ,试再添上一个条件,使∠1=∠2成立,并说明理由.解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.5.如图1-7,已知直线1l 2l ,且3l 和1l 、2l 分别交于A 、两点,点P 在AB 上,4l 和1l 、2l 分别交于C 、D 两点,连接PC 、PD 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点一:判断命题的真假
1.下列命题哪些是真命题?哪些是假命题?是假命题的说明理由。

(1)等角(或同角)的补角相等;
(2)平行于同一条直线的两条直线互相平行;
(3)如果ab=0,那么a=0;
(4)两条直线相交,只有一个交点;
(5)如果a2=b2,那么a=b;
(6)如果两个角的两边分别平行,那么这两个角一定相等。

考点二:平行线的判定与性质
1.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.
2.如图,试求∠A+∠B+∠C+∠D+∠E的度数.
3.已知:如图所示,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
4.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,∠DAE=18°,求∠C的度数.
5.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.
6.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.
7.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
8.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)求证:AB∥CD;
(2)试探究∠2与∠3的数量关系.
9.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.
10.如图,已知∠P=∠Q,∠1=∠2,AB与ED平行吗?为什么?
11.如图,点P在CD上,已知∠BAP+∠APD=180°,∠1=∠2,证明:AE∥PF
12.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
13.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.
14.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.15.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.
16.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.
考点三:三角形内外角的计算与证明
1.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,则∠B=∠,∠C=∠.
2.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.
3.如图,∠α=.
4.如图,直线a∥b,则∠A=,若作BH⊥AC于H,则∠ABH=.
5.计算∠1+∠2+∠3+∠4+∠5+∠6的度数为.
6.直角三角形的两个锐角的平分线所交成的角的度数是.
7.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠ACD=度.
8.如图,在△ABC中,∠B=30°,∠C=66°,AE⊥BC于E,AD平分∠BAC,求∠DAE的度数.
9.如图,已知AB∥DE,点C是BE上的一点,∠A=∠BCA,∠D=∠DCE.求证:AC⊥CD.
10.如图1,直线a∥b,则∠ACB=__________.
11.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.。

相关文档
最新文档