旋转单元测试题.doc

合集下载

旋转单元测试试题及答案

旋转单元测试试题及答案
答案:B.
第13题.如图,已知四边形 ,是关于点 成中心对称图形,试判定四边形 的形状.并说明理由.
答案:解:是平行四边形,理由如下:
四边形 是关于点 成中心对称图形.

四边形 是平行四边形.
第14题. 在等边三角形、平行四边形、矩形和圆这四个图形中,即是轴对称图形,又是中心对称图形的有( )
A.1个B.2个C.3个D.4个
A.矩形、菱形、正方形都是中心对称图形,对角线的交点是对称中心
B.中心对称的对称中心只有一个,而轴对称图形的对称轴可能不只一条
C.中心对称图形一定是轴对称图形
D.正方形有4条对称轴,一个对称中心
答案:C.
第20题.把图中的各三角形绕 边中点 ,旋转 ,画出得到的图形,并说明拼成了一个什么图形?分析它的对称性.
答案:B.
第32题. 下列文字中属于中心对称图形的有( )
A.干B.中C.我D.甲
答案:B.
第33题. 下图中是中心对称图形的是( )
A.A和BB.B和CC.C和DD.都是
答案:B.
第34题.如图 与 关于 点成中心对称.则 _______ , ______, ________.
答案:=, , .
第35题.已知四边形 和点 ,作四边形 使四边形 和四边形 交于点 成中心对称.
A.只能作一个B.能作三个C.能作无数个D.不存在
答案:A.
第24题. 已知 及边 上一点 ,画出 以点 为对称中心的对称图形.
答案:略.
第25题. 等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有( )
A.1个B.2个C.3个D.4个
答案:B.
第26题. 下列各图中,不是中心对称图形的是( )

旋转单元测试题及答案

旋转单元测试题及答案

旋转单元测试题及答案一、选择题1. 旋转的定义是什么?A. 绕某一点转动B. 沿直线平移C. 缩放D. 反射2. 旋转变换不改变图形的哪些性质?A. 形状B. 大小C. 面积D. 所有选项3. 旋转对称图形在旋转多少度后能与自身重合?A. 90度B. 180度C. 360度D. 任意角度二、填空题4. 一个图形绕着某一点旋转____度后,与原图形重合,这个点称为图形的______。

5. 在平面直角坐标系中,若将点P(x, y)绕原点O(0, 0)逆时针旋转θ度,旋转后的坐标为______。

三、简答题6. 请简述旋转的性质,并给出一个生活中的例子。

7. 解释什么是旋转对称图形,并给出一个例子。

四、计算题8. 在平面直角坐标系中,点A(3, 4)绕原点O(0, 0)顺时针旋转90度,求旋转后点A的新坐标。

9. 若一个图形在旋转对称变换下,其旋转中心为点P(1, 2),旋转角度为120度,请画出旋转后的图形。

五、论述题10. 论述旋转在几何证明中的应用,并给出一个具体的几何证明例子。

答案:一、1. A2. D3. C二、4. 180,旋转中心5. (-y, x)三、6. 旋转的性质包括保持图形的形状和大小不变,旋转中心到图形上任意两点的距离相等。

生活中的例子包括门的开关,地球的自转等。

7. 旋转对称图形是指在旋转一定角度后能与自身重合的图形,例如等边三角形。

四、8. 点A的新坐标为(4, -3)。

9. 根据旋转对称图形的定义,旋转后的图形与原图形形状相同,位置不同,具体图形需根据题目要求绘制。

五、10. 旋转在几何证明中常用于证明图形的全等或相似,例如利用旋转证明两个三角形全等。

具体例子需根据题目要求给出。

人教版九年级上学期数学《旋转》单元测试题(附答案)

人教版九年级上学期数学《旋转》单元测试题(附答案)
轴对称图形的特性:关于某直线对称的两个图形是全等的;图形的对应点连线段被同一条直线垂直平分;对应线段或延长线与对称轴交于一点.
二、填空题(每小题3分,共24分)
11.请写出一个是中心对称图形的几何图形的名称:.
[答案]平行四边形(答案不唯一).
[解析]
解:平行四边形是中心对称图形.
故答案可为:平行四边形.
三、解答题(共66分)
19.如图,A C是正方形A B C D的对角线,△A B C经过旋转后到达△AEF的位置.
(1)指出它 旋转中心;
(2)说出它的旋转方向和旋转角是多少度;
(3)分别写出点A,B,C的对应点.
20.如图,已知四边形A B C D,画四边形A1B1C1D1,使它与四边形A B C D关于C点中心对称.
答案:D.
点睛:此类题目综合考查了旋转、平移及轴对称的特性:
旋转的特性:不改变图形的形状和大小;经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.对应角相等,对应线段也相等.
平移的特性:平移只改变图形的位置,不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.
14.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为________.
15.如图,将等边 绕顶点A顺时针方向旋转,使边A B与A C重合得 , 的中点E的对应点为F,则 的度数是_______.
16.如图所示,已知抛物线C1,抛物线C2关于原点中心对称.如果抛物线C1的解析式为y= (x+2)2-1,那么抛物线C2的解析式为:___________________________

人教版九年级上册数学《旋转》单元综合测试(带答案)

人教版九年级上册数学《旋转》单元综合测试(带答案)
(3)根据图2,请直接写出AD、BD、CD三条线段之间的数量关系.
附加题(20分,不计入总分)
26.如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE 数量系是_____;
(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
人教版数学九年级上学期
《旋转》单元测试
(满分120分,考试用时120分钟)
一、选择题(每小题3分,共30分)
1.下列图形是中心对称图形的是【】
A. B. C. D.
2.观察下列图案,能通过左图顺时针旋转90°得到的()
A. B. C. D.
3.在平面直角坐标系中,点M(3,-5)关于原点对称的点的坐标是()
8. 如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()
A. 4,30°B. 2,60°C. 1,30°D. 3,60°
9.如图,在 中, .将 绕点 按顺时针方向旋转 度后得到 ,此时点 在 边上,斜边 交 边于点 ,则 的大小和图中阴影部分的面积分别为()
C. 黑(3,3),白(3,1)D. 黑(3,1),白(3,3)
7.有两个完全重合 矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②……则第10次旋转后得到的图形与图①~④中相同的是().
A 图①B.图②C.图③D.图④
【答案】D

旋转单元测试(一)(人教版)(含答案)

旋转单元测试(一)(人教版)(含答案)

旋转单元测试(一)(人教版)试卷简介:测试学生对于旋转章节知识掌握情况,如旋转的性质,中心对称图形,关于原点对称的点的坐标特征,重点考查学生对于旋转性质的灵活应用情况,能否有序思考解决问题。

一、单选题(共15道,每道6分)1.已知点P(x,-3)和点Q(4,y)关于原点对称,则x+y=( )A.1B.-1C.7D.-7答案:B解题思路:∵点P(x,-3)和点Q(4,y)关于原点对称,∴,∴.试题难度:三颗星知识点:关于原点对称的点的坐标2.下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有( )A.4个B.3个C.2个D.1个答案:A解题思路:题中的四个图案均满足既是中心对称图形又是轴对称图形,故均符合要求.试题难度:三颗星知识点:利用轴对称设计图案3.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到.则其旋转中心一定是( )A.点EB.点FC.点GD.点H答案:C解题思路:由旋转的性质:对应点到旋转中心的距离相等,我们知道旋转中心一定在对应点连线的垂直平分线上,则旋转中心是线段的垂直平分线的交点,易知是点G.试题难度:三颗星知识点:旋转的性质4.如图,若正方形EFGH是由正方形ABCD绕某点旋转得到的,则可以作为旋转中心的是( )A.M或O或NB.E或O或CC.E或O或ND.M或O或C答案:A解题思路:我们需要利用旋转的性质来进行分析.显然点A,B,C,D都不能作为旋转中心;假如旋转中心为点E,则点A,B,C,D与点E连成的四条线段中,没有一条能够与EH对应相等,对应关系不存在,所以点E不能为旋转中心;只能选A.以M为旋转中心时,是将正方形ABCD绕点M顺时针旋转90°;以O为旋转中心时,是将正方形ABCD绕点O顺时针旋转180°;以N为旋转中心时,是将正方形ABCD绕点N逆时针旋转90°.试题难度:三颗星知识点:旋转的性质5.如图,将△ABC绕点C(0,-1)旋转180°得到,设点A的坐标为(a,b),则点的坐标为( )A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b-2)答案:D解题思路:方法一:由旋转可知点C是线段的中点,则由中点坐标公式可以求得点的坐标;方法二:如图,过点分别作y轴的垂线,垂足分别为E,F.由题意可得,点的横坐标互为相反数,CE=CF=-1-b,∴点的横坐标为-a,OF=CF-1=-b-2,∴点的坐标为(-a,-b-2).试题难度:三颗星知识点:坐标与图形变化—旋转6.如图,点A,B,C的坐标分别为(0,-1),(0,2),(3,0).从M(3,3),N(3,-3),P(-3,0),Q(-3,1)这四个点中选择一个点,使得以A,B,C与该点为顶点的四边形不是中心对称图形,则该点是( )A.MB.NC.PD.Q答案:C解题思路:由图形可知M,N,Q这三个点都能与A,B,C三点构成平行四边形,而我们知道平行四边形是中心对称图形,故选C.试题难度:三颗星知识点:中心对称图形7.如图是跷跷板示意图,横板AB绕其中点O上下转动,立柱OC与地面垂直,设B点的最大高度为.若将横板AB换成横板,且,O仍为的中点,设点的最大高度为,则下列结论正确的是( )A. B.C. D.答案:C解题思路:当点B达到最高点时,过点B作BM⊥地面,垂足为M,此时线段OC是△ABM 的中位线,则BM=2OC,即.同理可得,,故.试题难度:三颗星知识点:旋转的性质8.如图,△ABC中,AB=AC,∠BAC=100°,把△ABC绕点A逆时针旋转20°得到△ADE(点D与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数为( )A.40°B.35°C.30D.25°答案:A解题思路:∵AB=AC,∠BAC=100°,∴∠ACB=40°,∵△ABC绕点A逆时针旋转20°得到△ADE,∴∠AED=∠ACB,AC=AE,∠CAE=20°,∴∠AEC=80°,∴∠CED=∠AEC-∠AED=80°-40°=40°.试题难度:三颗星知识点:旋转的性质9.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到的位置,使得∥AB,则=( )A.30°B.35°C.40°D.50°答案:A解题思路:由旋转可知,∵∥AB,∠CAB=75°,∴,∴,∴.试题难度:三颗星知识点:旋转的性质10.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠ABC=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至的位置,则点B′的坐标为( )A. B.C. D.答案:A解题思路:如图,连接OB,,过点作⊥x轴于点E,根据题意得,,∵四边形OABC是菱形,∴OA=AB,,∴△OAB是等边三角形,∴OB=OA=2,∴,∴,∴点的坐标为.试题难度:三颗星知识点:菱形的性质11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与交于点O,则线段的长为( )A. B.5C.4D.答案:B解题思路:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=60°,∠ACD=30°.∵旋转角为15°,∴=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴,AB⊥CO,∵=DC=7,∴=4,在Rt△中,.试题难度:三颗星知识点:旋转的性质12.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为( )A. B.C. D.答案:C解题思路:由旋转可知∠ECN=75°,∵∠ECD=45°,∴∠NCO=60°,∴∠ONC=30°,在Rt△NOC中,设OC=a,则CN=2a,∵CE=CN=2a,∴CD=,∴.试题难度:三颗星知识点:含30度角的直角三角形13.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长为( )A. B.C. D.答案:A解题思路:由题意得△ABP≌,且旋转角为90°,∴,则在Rt中,易得.试题难度:三颗星知识点:旋转的性质14.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积为( )A.8B.10C.12D.6答案:B解题思路:如图,过A作AG⊥BC于G,过E作EF⊥AD,交DA的延长线于F,则四边形AGCD是矩形,∴AD=GC=5,∴BG=9-5=4.∵∠EAF+∠FAB=90°,∠FAB+∠BAG=90°,∴∠EAF=∠BAG,又∵AB=AE,∴Rt△EAF≌Rt△BAG,∴EF=BG=4,则.试题难度:三颗星知识点:全等三角形的性质与判定15.如图,在等腰直角三角形ABC中,∠A=90°,AC=8,点O在AC上,且AO=2,点P是AB上一动点.连接OP,将线段OP绕点O逆时针旋转90°得到线段OD,要使点D恰好落在BC上,则AP的长度为( )A. B.6C.5D.4答案:D解题思路:如图,过点D作DE⊥AC于点E,可证得△DEO≌△OAP,∴DE=OA=CE=2,∴AP=OE=4.试题难度:三颗星知识点:全等三角形的判定与性质第 11 页共 11 页。

人教版九年级上册数学《旋转》单元检测含答案

人教版九年级上册数学《旋转》单元检测含答案
A B.
C. D.
4.如图,△ABC与△A′B′C′成中心对称,下列说法不正确的是( )
A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′
C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ACO=S△A′B′O
5.如图,Rt△ABC向右翻滚,下列说法正确的有( )
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少?点C的坐标又是什么?
24.感知:如图①,在△ABC中,∠C=90°,AC=BC,D是边BC上一点(点D不与点B,C重合).连接AD,将AD绕着点D逆时针旋转90°,得到DE,连接BE,过点D作DF∥AC交AB于点F,可知△ADF≌△EDB,则∠ABE的大小为________.
正确的有三种,
故选C.
点睛:在平移和旋转图形中,对应角相等,平移中对应线段相等且平行,旋转图形对应线段相等但不一定平行.
6.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()
A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)
21.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.
(1)求证:OC=AD;
(2)求OC的长.
22.如图,在网格中有一个四边形图案.
(1)请你分别画出△ABC绕点O顺时针旋转90°的图形,关于点O对称的图形以及逆时针旋转90°的图形,并将它们涂黑;
8.如图,E,F分别是正方形ABCD的边CD,AD上的点,CE=DF,AE,BF相交于点O.下列结论:①AE=BF;②AE⊥BF;③△ABF与△DAE成中心对称.其中,正确的结论有( )

九年级上册数学《旋转》单元检测题(含答案)

九年级上册数学《旋转》单元检测题(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A...B...C...D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A...B...C...D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A...B...C...D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A...B...C...D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A...B...C...D.6.已知点是点关于原点的对称点,则的值为( )A...B.-..C...D.±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A...B...C...D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A.①②..B.①②..C.②③..D.①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A.1..B.1..C.4+5..D.4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A...B...C...D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A...B...C...D.【答案】D【解析】试题分析: 根据图形,由规律可循. 从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A...B...C...D.【答案】B【解析】试题分析: 根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点: 1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A...B...C...D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度. 点A 在第二象限的角平分线上,且OA= ,正好旋转到y轴正半轴. 则A点的对应点A1的坐标是(0, ).【详解】∵A的坐标是(-1,1),∴OA= ,且A1在y轴正半轴上,∴A1点的坐标是(0, ).【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A...B...C...D.【答案】A【解析】【分析】设A( ,1),过A作AB⊥x轴于B,于是得到AB=1,OB= ,根据边角关系得到∠AOB=30°,由于点( ,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A( ,1),过A作AB⊥x轴于B,则AB=1,OB= ,∴tan∠AOB= == ,∴∠AOB=30°,∵点( ,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点( ,1)绕原点顺时针旋转60°后得到点是( ,-1),故选: A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A...B...C...D.【答案】A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A.B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选: A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A...B.-..C...D.±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A'B'C..B.∠BOC=∠B'A'C.. C.AB=A'B..D.OA=OA'【答案】B【解析】【分析】根据中心对称的定义: 把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选: B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义. 也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段. 现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A.2..B.3..C.4..D.5条【答案】C【解析】试题分析: 直接利用轴对称图形的性质分别得出符合题意的答案.解: 如图所示: 能满足条件的线段有4条.故选:C.考点: 利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A...B...C...D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项: 最小旋转角度= =120°;B.最小旋转角度= =90°;C.最小旋转角度= =72°;D.最小旋转角度= =60°;综上可得: 旋转的角度最大的是A.故选: A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A.2..B.3..C.4..D.5种【答案】C【解析】试题分析: 利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解: 如图所示: 组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评: 此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A.①②..B.①②..C.②③..D.①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是: ①②④是中心对称图形;而③不是中心对称图形.故选: B.【点睛】考查了中心对称图形的概念. 在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A.1..B.1..C.4+5..D.4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选: D.【点睛】考查图形的平移变换和弧长公式的运用. 在平面直角坐标系中,图形的平移与图形上某点的平移相同. 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A.(1, 2..B.(2, 1..C.(1, 1..D.(2, 2)【答案】B【解析】【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选: B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A...B...C...D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得: 图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等. 要注意旋转的三要素: ①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案.. (1).中心对.. (2).对称中心【解析】【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心. 故答案是: 中心对称,对称中心.【点睛】考查了中心对称图形的概念: 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为: 4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题的关键.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是: 四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点, ,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点, ,保持,我们把这种对应点连线相等的变换称为“同步变换”. 对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是: ①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是: 60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是: (-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形. 请你用这种瓷砖拼出三种不同的图案. 使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示. 答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题. 关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解: 根据图形可知: , , ,各点关于原点对称的点的坐标分别是: , , ,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标. 关键是掌握关于原点对称的两个点的坐标特点是: 横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知, 绕点逆时针旋转得到,恰好在上,连接.(1) 与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2) .【解析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B.∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补. 理由如下:由旋转的性质知: ,∴,∵,∴,因此与互补;线段. 理由如下:由旋转知: , , ,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示: ,即为所求,点的坐标为: ;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。

旋转知识点单元测试题及答案

旋转知识点单元测试题及答案

旋转知识点单元测试题及答案一、选择题1. 平面内,一个点绕着一个定点旋转多少度后,它的位置不变?A. 0度B. 180度C. 360度D. 90度2. 旋转变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置3. 在数学中,旋转对称图形至少有几个对称轴?A. 1个B. 2个C. 3个D. 4个二、填空题1. 旋转变换是一种保持图形______不变的几何变换。

2. 旋转中心是旋转变换中的______点。

3. 旋转角度是旋转变换中图形绕旋转中心旋转的______。

三、简答题1. 请简述旋转的性质有哪些?2. 如何确定一个图形是否是旋转对称图形?四、计算题1. 若点P(3,4)绕原点O(0,0)顺时针旋转90度,求旋转后点P的新坐标。

五、解答题1. 给定一个正方形,其四个顶点分别位于(1,1), (1,-1), (-1,-1), (-1,1),请说明如何通过旋转变换将该正方形绕原点O(0,0)旋转45度。

答案:一、选择题1. C2. A, B3. B二、填空题1. 形状和大小2. 固定不动3. 角度三、简答题1. 旋转的性质包括:保持图形的形状和大小不变,图形上任意两点与旋转中心连线的夹角等于旋转角度。

2. 确定一个图形是否是旋转对称图形,需要检查图形是否在绕某一点旋转一定角度后能与原图形重合。

四、计算题1. 点P(3,4)顺时针旋转90度后,新坐标为(4,-3)。

五、解答题1. 将正方形绕原点O(0,0)旋转45度,可以通过以下步骤实现:- 首先,将正方形的每个顶点分别与原点O(0,0)相连。

- 然后,计算每个顶点绕原点旋转45度后的新位置。

这可以通过计算旋转矩阵来实现。

- 最后,将旋转后的顶点坐标连接起来,形成新的正方形。

结束语:通过本次单元测试,我们复习了旋转的基本概念、性质和应用。

希望同学们能够熟练掌握旋转变换的相关知识,并在实际问题中灵活运用。

旋转单元测试题(3)doc

旋转单元测试题(3)doc

第 页 共 2 页1 第二十三章 《旋转》测试题(A)(40分钟)班级: 学号: 姓名: 成绩:一、选择题:(每题4分,共28分)1.下列图不是中心对称图形的是( ) A .①③ B .②④ C .②③ D .①④2.如右上图所示,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是 ( ) A .30° B .60° C .72° D .90° 3.在线段,等腰梯形,平行四边形,矩形,正五角星,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A.3个B.4个C.5个D.6个 4.如右上图,四边形ABCD 是正方形,ΔADE 绕着点A 旋转900后到达ΔABF 的位置,连接EF , 则ΔAEF 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 5.已知点P (-b,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .-1,3 B .1,-3 C .-1,-3 D . 1,3 6.如图,将正方形图案绕中心O 旋转180°后,得到的图案是( )7.下列命题中的真命题是 ( )A .全等的两个图形是中心对称图形.B .关于中心对称的两个图形全等.C .中心对称图形都是轴对称图形.D .轴对称图形都是中心对称图形. 二、填空题(每空3分,共27分) 8.如图,将矩形ABCD 绕点A 顺时针旋转90゜后,得到矩形AB ′C ′D ′,如果CD=2DA=2, 那么CC ′=_________.9.直线y =x +3上有一点P (3,2m ),则P 点关于原点的对称点P ′为______.10.已知a <0,则点P (-a 2,-a +1)关于原点的对称点P 1在 象限。

11.如右上图,矩形ABCD 的长和宽分别为2和1,以D 为圆心,AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 ; 12.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上一点, 且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是__ __ _;13.如图,ΔABC 按顺时针方向旋转一个角后成为ΔADE .已知∠B =93°,∠AED =48°,则旋转角等于 °。

九年级上册数学《旋转》单元测试附答案

九年级上册数学《旋转》单元测试附答案
6.如图图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
7.已知点A(a,﹣1)与B(2,b)是关于原点O的对称点,则()
A.a=﹣2,b=﹣1B.a=﹣2,b=1C.a=2,b=﹣1D.a=2,b=1
8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()
A 黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)
9.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()
A. B. C. D.
10.如图,将△ABC绕点A逆时针旋转100°,得到△ADE,若点D在线段BC的延长线上,则∠B的大小为( )
A. B. C. D.
二.填空题(共8小题)
21.如图,△ABC中,AD是中线,将△ACD旋转后与△EBD重合.
(1)旋转中心是点,旋转了度;
(2)如果AB=7,AC=4,求中线AD长的取值范围.
22.如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.
23.如图,△A1AC1是由△ABC绕某点P按顺时针方向旋转90°得到的,△ABC的顶点坐标分A(﹣1,6),B(﹣5,0),C(﹣5,6).
A. 点AB. 点BC. 点CD. 点D
【答案】C
【解析】
【分析】
旋转前后对应点的连线段的垂直平分线的交点是旋转中心.
【详解】由旋转的性质可得,旋转前后对应点的连线段的垂直平分线交于一点,如图所示
故选C.
【点睛】本题考查的是旋转中心,熟练掌握旋转中心的性质是解题的关键.

初三旋转单元测试题及答案

初三旋转单元测试题及答案

初三旋转单元测试题及答案一、选择题(每题2分,共10分)1. 若点A(1,2)绕原点顺时针旋转90°后,其坐标变为:A. (2,1)B. (-2,1)C. (1,-2)D. (-2,-1)2. 一个正方形绕中心点旋转90°后,其形状:A. 变成圆形B. 变成长方形C. 保持不变D. 变成椭圆形3. 若一个图形绕某点旋转180°后,其形状和位置:A. 发生变化B. 形状不变,位置改变C. 形状和位置都不变D. 形状改变,位置不变4. 一个正六边形绕其中心点旋转多少度后,能与自身完全重合?A. 30°B. 45°C. 60°D. 90°5. 一个图形绕某点旋转后,其面积:A. 变大B. 变小C. 不变D. 无法确定二、填空题(每题2分,共10分)6. 若点P(-3,4)绕原点逆时针旋转180°后,其坐标变为______。

7. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状变为______。

8. 一个圆绕圆心旋转任意角度,其______不变。

9. 若一个图形绕某点旋转后,其对应点的连线都经过该点,并且对应点到旋转中心的距离相等,则该图形绕该点旋转的角度为______。

10. 一个图形绕某点旋转后,其对应线段的夹角等于旋转角,该性质称为______。

三、解答题(每题5分,共20分)11. 已知点A(2,3),点B(-1,-2),求点A绕点B顺时针旋转45°后的坐标。

12. 一个边长为4的正方形,绕其中心点顺时针旋转45°后,求正方形的一个顶点的新坐标。

13. 已知一个等边三角形ABC,其中A(0,0),B(1,√3),C(-1,√3),求三角形绕点A逆时针旋转60°后的顶点坐标。

14. 解释什么是旋转对称图形,并给出一个例子。

四、综合题(每题10分,共20分)15. 若一个图形绕某点旋转θ度后,其面积和周长都不变,试证明该图形为圆。

九年级上册数学《旋转》单元测试卷(含答案)

九年级上册数学《旋转》单元测试卷(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(每小题3分,共36分)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D . 2.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 A .30° B . 90° C .120° D .180°3.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A′B′C′的位置后,再沿CB 方向向左平移,使点B′落在原三角板ABC 的斜边AB 上,则三角板A′B′C′平移的距离为( )A. 6 cmB. 4 cmC. (6-23)cmD. (43-6)cm4.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( ) A .点M B .格点N C .格点P D .格点Q5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45 后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A.22,22⎛⎫-⎪⎪⎝⎭B.(1,0)C.22,22⎛⎫--⎪⎪⎝⎭D.(0,1)-6.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°7.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2 019的坐标为( )A.(1010,0) B.(1310.5,32) C.(1345,32) D.(1346,0)9.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则PAB △的面积为( )A .10B .8C .6D .310.如图,正方形ABCD 的边长为2,点E ,F 分别在边AD ,CD 上,若∠EBF =45°,则△EDF 的周长等于( )A .22B .3C .4D .4211.如图,将一个三角板ABC ∆,绕点A 按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A .62-B .6C .2D .112.如图,△ABC 中,∠A=30°,∠ACB=90°,BC=2,D 是AB 上的动点,将线段CD 绕点C 逆时针旋转90°,得到线段CE ,连接BE ,则BE 的最小值是( )A.3-1 B.32C.3D.2二、填空题(每小题3分,共18分)13.一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为__________.14.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)15.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.16.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B 按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.17.已知两个完全相同的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC 恰有一边与DE 平行的时间为__________s18.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线CH 相交于点P ,若2,75AB DBP ︒=∠=,则2DP 的值是____.三、解答题(共46分)19.(6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平面直角坐标系中直线AB 上的一个动点,点N 是x 轴上的一个动点,且以O 、A 2、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.21、(8分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.22.(8分)如图1,点B在线段CE上,Rt△ABC≌Rt△BAC∠=︒,1∠=∠=︒,30ABC CEFCEF,90BC=.(1)点F到直线CA的距离是_________;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;=时,求OF的长.②如图2,在旋转过程中,线段CF与AB交于点O,当OE OB23.(8分)如图,正方形ABCD中,点P从点A出发沿AD边向点D运动,到达点D停止.作射线CP,将CP绕着点C逆时针旋转45°,与AB边交于点Q,连接PQ(1)画图,完善图形.(2)三条线段DP,PQ,BQ之间有无确定的数量关系?请说明理由.⊥于H.若线段CP的最大值为4,求点H运动的路径长.(3)过点C作CH PQ24.(8分)在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(6,0)A ,点(0,8)B .以A 点为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点,,O B C 的对应点分别为,,D E F ,记旋转角为(090)αα︒︒<<.(1)如图①,当30α︒=时,求点D 的坐标;(2)如图②,当点E 落在AC 的延长线上时,求点D 的坐标;(3)当点D 落在线段OC 上时,求点E 的坐标(直接写出结果即可).参考答案一、选择题(每小题3分,共36分)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A.B.C.D.【答案】C【解析】A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选C.【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后两部分重合.2.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.3.如图,直角三角板ABC的斜边AB=12 cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A. 6 cmB. 4 cmC. (6-23)cmD. (43-6)cm【答案】C【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.【解析】∵AB=12cm,∠A=30°,∴BC=12AB=12×12=6cm,由勾股定理得,AC=22AB BC-=22126-=63cm, ∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′, ∴B′C′=BC=6cm,∴AB′=AC-B′C′=63-6,过点B′作B′D⊥AC交AB于D,则B′D=33AB′=33×(63-6)=(6-23)cm.故选C.【点睛】本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.4.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是() A.点M B.格点N C.格点P D.格点Q【答案】B【分析】此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【解析】如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选B.【点睛】熟练掌握旋转的性质是确定旋转中心的关键所在.5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .2222⎛- ⎝⎭B .(1,0)C .22,22⎛-- ⎝⎭ D .(0,1)-【答案】A【分析】根据旋转的性质分别求出点A 1、A 2、A 3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案. 【解析】四边形OABC 是正方形,且OA 1=,()A 0,1∴,将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,∴由勾股定理得:点A 1的横坐标为22,点A 1的纵坐标为22,122A ∴⎝⎭, 继续旋转则()2A 1,0,322A ⎝⎭,A 4(0,-1),A 522⎛ ⎝⎭,A 6(-1,0),A 72222⎛⎫- ⎪ ⎪⎝⎭,A 8(0,1),A 92222⎛ ⎝⎭,......,发现是8次一循环,所以20198252÷= (3)∴点2019A 的坐标为22,22⎛⎫- ⎪ ⎪⎝⎭,故选A .【点睛】本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.6.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°【答案】C【分析】由旋转的性质和平行线的判定依次判断,可求解.【解析】当∠EAB=30°时.∵∠CAB=90°,∴∠CAE=60°=∠E,∴AC∥DE,故A不合题意;当∠EAB=45°,∴∠BAD=45°=∠B,∴BC∥AD,故B不合题意;当∠EAB=60°时,三角尺不存在一组边平行.当∠EAB=75°时,如图,延长AB交DE于点M,∴∠BAD=15°,∴∠EMA=∠D+∠MAB=45°=∠ABC,∴BC∥DE.故选C.【点睛】本题考查了旋转的性质,平行线的判定,熟练运用旋转的性质是本题的关键.7.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大【答案】A【分析】根据正方形性质得出∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,求出∠BOM=∠CON,根据ASA证△BOM≌△CON,推出两个正方形的重叠部分四边形OMCN的面积等于S△BOC=14S正方形ABCD,即可得出选项.【解析】∵四边形ABCD、四边形OEFG是两个边长相等正方形,∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,∴∠BOC-∠COM=∠EOG-∠COM,即∠BOM=∠CON,∵在△BOM和△CON中BOM CONOB OCOBM OCN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOM≌△CON,∴两个正方形的重叠部分四边形OMCN的面积是S△COM+S△CNO=S△COM+S△BOM=S△BOC=14S正方形ABCD,即不论旋转多少度,阴影部分的面积都等于14S正方形ABCD,故选A.【点睛】本题考查了正方形性质和全等三角形的性质和判定的应用,关键是求出△BOM≌△CON,即△BOM得面积等于△CON的面积.8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2 019的坐标为( )A.(1010,0) B.(1310.5,3C.(1345,3D.(1346,0)【答案】D【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2019=336×6+3,因此点3B 向右平移1344(即3364 )即可到达点2019B ,根据点3B 的坐标就可求出点2019B 的坐标.【解析】连接AC ,如图所示.∵四边形OABC 是菱形,∴OA =AB =BC =OC .∵∠ABC =60°,∴△ABC 是等边三角形.∴AC =AB .∴AC =OA .∵OA =1,∴AC =1.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B 3向右平移1344(即336×4)到点B 2019.∵B 3的坐标为(2,0),∴B 2019的坐标为(1346,0),故选:D【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.9.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则PAB △的面积为( )A .10B .8C .6D .3【答案】D【分析】将△BPC 绕点B 逆时针旋转60°得△BEA ,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长BP ,作AF ⊥BP 于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF的长,根据三角形的面积公式即可得到结论.【解析】∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=12AP=32,∴△PAB的面积=12PB•AF=12×4×32=3,故选:D.【点睛】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.10.如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于( )A.22B.3 C.4 D.42【答案】C【分析】根据正方形的性质得AB=BC,∠BAE=∠C=90°,根据旋转的定义,把把△ABE绕点B顺时针旋转90°可得到△BCG,根据旋转的性质得BG=BE,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∠EBG=∠ABC=90°,于是可判断点G在CB的延长线上,接着利用“SAS”证明△FBG≌△EBF,得到EF=CF+AE,然后利用三角形周长的定义得到答案.【解析】∵四边形ABCD为正方形,∴AB=BC,∠BAE=∠C=90°,∴把△ABE 绕点B 顺时针旋转90°可得到△BCG ,如图,∴BG =BE ,CG =AE ,∠GBE =90°,∠BAE =∠C =90°,∴点G 在DC 的延长线上,∵∠EBF =45°,∴∠FBG =∠EBG ﹣∠EBF =45°,∴∠FBG =∠FBE ,在△FBG 和△EBF 中,BF =BF ,∠FBG =∠FBE ,BG =BE∴△FBG ≌△FBE (SAS ),∴FG =EF ,而FG =FC +CG =CF +AE ,∴EF =CF +AE ,∴△DEF 的周长=DF +DE +CF +AE =CD +AD =2+2=4,故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和正方形的性质. 11.如图,将一个三角板ABC ∆,绕点A 按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A .62-B .6C .2D .1【答案】A【分析】连接BD ,延长BE 交AD 于点F ,根据旋转性质可知AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,由此得出△ABD 为等边三角形,然后进一步通过证明△BAE ≅△BDE 得出∠ABE=∠DBE ,根据等腰三角形“三线合一”可知BF ⊥AD ,且AF=DF ,由此利用勾股定理分别计算出AB 、BF 的长,最后通过BE=BF −EF 进一步计算即可得出答案.【解析】如图,连接BD ,延长BE 交AD 于点F ,由旋转可知,AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,∴△ABD为等边三角形,∴AB=BD,在△BAE与△BDE中,∵AE=DE,BA=BD,BE=BE,∴△BAE≅△BDE(SSS),∴∠ABE=∠DBE,根据等腰三角形“三线合一”可得BF⊥AD,且AF=DF,∵AC=BC=2,∠ACB=90°,∴AB=222222+=,∴AB=BD=AD=22,∴AF=2,∴BF=226AB AF-=,∵∠AED=90°,AE=DE,∴∠FAE=45°,∵BF⊥AD,∴∠FEA=45°,∴EF=AF=2,∴BE=BF−EF=62-,故选:A.【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.12.如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是()A.3-1 B.32C.3D.2【答案】A【分析】过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB 的延长线于点J;通过证明△CKD≌△CHE (ASA),进而证明所构建的四边形CKJH是正方形,所以当点E 与点J重合时,BE的值最小,再通过在Rt△CBK中已知的边角条件,即可求出答案.【解析】如图,过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB 的延长线于点J ;∵将线段CD 绕点C 逆时针旋转90° ,得到线段CE ∴∠DCE=∠KCH = 90°∵∠ECH=∠KCH - ∠KCE ,∠DCK =∠DCE-∠KCE ∴∠ECH =∠DCK又∵CD= CE ,CK = CH ∴在△CKD 和△CHE 中90ECH DCK CK CHDKC EHC ∠=∠=⎧∠=∠=︒⎪⎨⎪⎩∴△CKD ≌△CHE (ASA) ∴∠CKD=∠H=90°,CH=CK ∴∠CKJ =∠KCH =∠H=90°∴四边形CKJH 是正方形 ∴CH=HJ=KJ=C'K∴点E 在直线HJ 上运动,当点E 与点J 重合时,BE 的值最小∵∠A= 30° ∴∠ABC=60°在Rt △CBK 中, BC= 2, ∴勾股定理得:CK =3,BK= = 1∴KJ = CK =3,所以BJ = KJ-BK=31-;BE 的最小值为31-.故选A.【点睛】本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键.二、填空题(每小题3分,共18分)13.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为__________.【答案】15°或45°.【解析】分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,∠BAD=45°,即α=45°.故答案为:15°或45°.【点睛】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.14.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)【答案】2﹣1.【解析】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFDE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=﹣1.故答案为﹣1.【考点】本题主要考查了以正方形旋转为载体的求线段长度.15.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.【答案】(﹣2,﹣2).【解析】作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【考点】本题主要考查了以等边三角形和坐标系旋转为载体的求点的坐标.16.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B 按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.【答案】y=x﹣1.【解析】∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣2,令y=0,则x=1,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO+∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△AFE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.【考点】本题主要考查了以线段旋转和一次函数为载体的求解析式.17.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB 与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s【答案】3秒或12秒或15秒【解析】①如图(2),当AC∥DE时,∵AC∥DE,∴∠ACB=∠CHD=90°.∵∠E=30°,∴∠D=60°,∴∠HFD=90°-60°=30°,∴t=30°÷10°=3.②如图3,当BC∥DE时,∵BC∥ED,∴∠BFE=∠E=30°,∴∠BFD=30°+90°=120°,∴t=120°÷10=12.③如图4,当BA ∥ED 时,延长DF 交DA 于G .∵∠E=30°,∴∠D=60°,∵BA ∥ED ,∴∠BGD=180°-∠D=120°,∴∠BFD=∠B+∠BGF=30°+120°=150°,∴t=150°÷10°=15. 故答案为3秒或12秒或15秒【点睛】本题主要考查平行线的性质.分三种不同的情况讨论,解题的关键是画出三种情况的图形.18.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线CH 相交于点P ,若2,75AB DBP ︒=∠=,则2DP 的值是____. 【答案】53+【分析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .首先证明∠CPB =90°,求出DT ,PT 即可解决问题.【解析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .∵四边形ABCD 是正方形,∴AC ⊥BD ,AE =EB ,∠EAM =∠EBN =45°,∵四边形EFGH 是正方形,∴∠MEN =∠AEB =90°,∴∠AEM =∠BEN ,∴△AEM ≌△BEN (ASA ),∴AM =BN ,EM =EN ,∠AME =∠BNE ,∵AB =BC ,EF =EH ,∴FM =NH ,BM =CN ,∵∠FMB =∠AME ,∠CNH =∠BNE ,∴∠FMB =∠CNH ,∴△FMB ≌△HNC (SAS ),∴∠MFB =∠NHC ,∵∠EFO +∠EOF =90°,∠EOF =∠POH ,∴∠POH +∠PHO =90°,∴∠OPH =∠BPC =90°, ∵∠DBP =75°,∠DBC =45°,∴∠CBP =30°,∵BC =AB =2,∴由勾股定理:PB 3PR =12PB 3RC =12, ∵∠RTD =∠TDC =∠DCR =90°,∴四边形TDCR 是矩形,∴TD =CR =12,TR =CD =AB =2, 在Rt △PDT 中,PD 2=DT 2+PT 2=2213()(25232++=+故答案为53+【点睛】本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于常考题型.三、解答题(共46分)19.(6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平面直角坐标系中直线AB 上的一个动点,点N 是x 轴上的一个动点,且以O 、A 2、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.【答案】(1)、(2)答案见解析;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1.(2)利用网格特点和平移的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2.(3)讨论:当OA2为平行四边形的边时,利用平行四边形的判定和点平移的坐标特征确定N点坐标;当OA2为平行四边形的对角线时,利用平行四边形的性质和点平移的坐标特征确定N点坐标.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质和平行四边形的判定.20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【答案】(1)B;(2)(1)(3)(5);(3)C;(4)见解析【分析】(1)根据旋转对称图形的定义进行判断;(2)先分别求每一个图形中的旋转角,然后再进行判断;(3)根据旋转对称图形的定义进行判断;(4)利用旋转对称图形的定义进行设计.【解析】解:(1)矩形、正五边形、菱形、正六边形都是旋转对称图形,但正五边形不是中心对称图形,故选:B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为:(1)(3)(5).(3)①中心对称图形,旋转180°一定会和本身重合,是旋转对称图形;故命题①正确;②等腰三角形绕一个定点旋转一定的角度α(0°<α≤180°)后,不一定能与自身重合,只有等边三角形是旋转对称图形,故②不正确;③圆具有旋转不变性,绕圆心旋转任意角度一定能与自身重合,是旋转对称图形;故命题③正确;即命题中①③正确,故选:C.(4)图形如图所示:【点睛】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21、(8分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.【答案】(1)证明见试题解析;(2)①证明见试题解析;②△DEP为等腰直角三角形.【分析】:(1)由旋转的性质得到∠BCP=∠DCQ,即可证明△BCP≌△DCQ;(2)①由全等的性质和对顶角相等即可得到答案;②由等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,即可判断△DEP的形状.【解析】(1)∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,∵BC=CD,∠BCP=∠DCQ,PC=QC,∴△BCP≌△DCQ;(2)①如图b, ∵△BCF≌DCQ, ∴∠CBF=∠EDF, 又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ②∵△BCP为等边三角形,∠BCP=60°,∴∠PCD=30°,又CP=CD,∠CPD=∠CDP=75° ,又∠BPC=-60° ,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形.【考点】1.四边形综合题;2.正方形的性质;3.旋转的性质;4.全等三角形的判定与性质;5.综合题.22.(8分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【答案】(1)1;(2)12π;(3)23OF = 【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF =∠ECF =30°,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点F 到直线CA 的距离即为EF 的长,于是可得答案;(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt △CEF 求出CF 和CE 的长,然后根据S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )即可求出阴影面积;②作EH ⊥CF 于点H ,如图4,先解Rt △EFH 求出FH 和EH 的长,进而可得CH 的长,设OH=x ,则CO 和OE 2都可以用含x 的代数式表示,然后在Rt △BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【解析】(1)∵30BAC ∠=︒,90ABC ∠=︒,∴∠ACB =60°,∵Rt △ABC ≌Rt △CEF ,∴∠ECF =∠BAC =30°,EF =BC =1,∴∠ACF =30°,∴∠ACF =∠ECF =30°,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF =1;故答案为:1;(2)①线段EF 经旋转运动所形成的平面图形如图3中的阴影所示:在Rt △CEF 中,∵∠ECF =30°,EF =1,∴CF =2,CE 3由旋转的性质可得:CF=CA =2,CE=CG 3,∠ACG =∠ECF =30°,∴S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )=S 扇形ACF -S 扇形CEG =2230330236036012πππ⨯⨯-=; 故答案为:12π;②作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F =60°,EF =1, ∴13,2FH EH ==∴CH =13222-=, 设OH=x ,则32OC x =-,222222334OE EH OH x x =+=+=+⎝⎭, ∵OB=OE ,∴2234OB x =+, 在Rt △BOC 中,∵222OB BC OC +=,∴2233142x x ⎛⎫++=- ⎪⎝⎭, 解得:16x =,∴112263OF =+=. 【点睛】本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.23.(8分)如图,正方形ABCD 中,点P 从点A 出发沿AD 边向点D 运动,到达点D 停止.作射线CP ,将CP 绕着点C 逆时针旋转45°,与AB 边交于点Q ,连接PQ(1)画图,完善图形.(2)三条线段DP ,PQ ,BQ 之间有无确定的数量关系?请说明理由.(3)过点C 作CH PQ ⊥于H .若线段CP 的最大值为4,求点H 运动的路径长.【解析】(1)画图,如图1.(2)DP ,PQ ,BQ 之间有确定的数量关系,PQ DP BQ =+.理由如下:如图1,∵ABCD 是正方形,∴可将DCP ∆绕点C 逆时针旋转90°到BCM ∆. ∴DCP BCM ∆∆≌,90PCM ∠=︒.∴DP BM =,CP CM =,190D ∠=∠=︒.∴Q ,B ,M 在同一条直线上.∵45PCQ ∠=︒,∴45MCQ ∠=︒.∴PCQ MCQ ∠=∠.∵CQ CQ =,∴()SAS PCQ MCQ ∆∆≌.∴PQ MQ =. ∴PQ DP BQ =+.(3)如图2,由(2),2M ∠=∠.∵3190∠=∠=︒,∴(AAS)PCH MCB ∆∆≌.∴CH CB =.当点P 还在点A 处时,CP 是正方形的对角线,此时最长.即正方形的对角线为4. ∴正方形的边长22CB =∴22CH =当点P 从A 到点D 时,点H 从点B 沿圆弧到点D ,圆心角90BCD ∠=︒.∴点H 运动的路径长为1224CB ππ⨯⋅=.。

《第23章旋转》单元测试含答案解析

《第23章旋转》单元测试含答案解析

《第23章旋转》一、选择题1.下面的图形中,是中心对称图形的是()A. B. C.D.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图 C.C图 D.D图5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对 B.2对 C.3对 D.4对8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30°B.45°C.60°D.90°9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个 B.3个 C.2个 D.l个10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A 点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过,并且被平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是三角形.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P在第象限.116.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为.18.如图,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,若线段AE=5,则S 四边形ABCD = .三、解答题(共66分)19.如图,四边形ABCD 的∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A 是旋转中心,那么点B 经过旋转后,点B 旋转到什么位置?20.如图,请画出△ABC 关于点O 点为对称中心的对称图形.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(4,﹣1).(1)把△ABC 向上平移5个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出C 1的坐标;(2)以原点O 为对称中心,再画出与△A 1B 1C 1关于原点O 对称的△A 2B 2C 2,并写出点C 2的坐标.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.25.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.26.如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF 与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.27.将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.参考答案与试题解析一、选择题1.下面的图形中,是中心对称图形的是()A. B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张【考点】中心对称图形.【分析】旋转前后图形的形状一样,从而可判断旋转的那一张牌是中心对称图形,由此可得出答案.【解答】解:旋转前后图形的形状一样,图1中从左边数第二、三张扑克牌旋转180度后,图形不能和原来的图形重合,而第一张旋转180度后正好与原图重合.故选A.【点评】本题考查的是中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图 C.C图 D.D图【考点】旋转的性质;平移的性质.【专题】操作型.【分析】根据平移和旋转的性质解答【解答】解:A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.故选B.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.准确的找到对称中心和旋转角是解题的关键.5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格【考点】生活中的轴对称现象;生活中的平移现象.【专题】压轴题;网格型.【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格.故选D.【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念,分析各组大写英文字母的特征求解.【解答】解:A、有轴对称图形A、E,有中心对称图形N;B、有轴对称图形K、B、X,有中心对称图形X、N;C、所有字母既是轴对称,又是中心对称;D、有轴对称图形D、W、H,有中心对称图形Z、H.故不同于另外三组的一组是C,这一组的特点是各个字母既是轴对称,又是中心对称.故选:C.【点评】本题考查利用轴对称与中心对称解决问题的能力,分析字母的结构特点是解决本题的关键.7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对 B.2对 C.3对 D.4对【考点】旋转的性质;全等三角形的判定;等边三角形的性质.【分析】根据等边三角形的三边相等、三个角都是60°,以及全等三角形的判定方法(SSS、SAS、ASA、AAS),进行证明.【解答】解:△EBC≌△DAC,△GCE≌△FCD,△BCG≌△ACF.理由如下:∵∠ACB=∠ECD,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD∴△EBC≌△DAC.∴△GCE≌△FCD.∴△BCG≌△ACF.故选:C.【点评】本题考查的是全等三角形的判定、等边三角形的性质以及旋转的性质的综合运用.8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30°B.45°C.60°D.90°【考点】利用旋转设计图案.【分析】观察每一个图案都可以由一个“基本图案”通过连续旋转得到,就是看这个图形可以被通过中心的射线平分成几个全等的部分,即可确定旋转的角度.【解答】解:每一个图案都可以被通过中心的射线平分成6个全等的部分,则旋转的角度是60度.故选C.【点评】本题中确定旋转角的方法是需要掌握的内容.9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个 B.3个 C.2个 D.l个【考点】生活中的旋转现象.【分析】根据旋转的性质,找出图中图形的关键处(旋转中心和对应点)按顺时针方向旋转90°后的形状即可选择答案.21世纪教育网版权所有【解答】解:根据旋转的性质可知,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的是和.故选C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A 点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【考点】旋转的性质;等腰直角三角形.【专题】应用题.【分析】图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图2中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.【点评】本题考查了旋转的性质、等腰直角三角形的性质,解题的关键是理解旋转的性质,能找对旋转中心、旋转角.二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.【考点】中心对称.【分析】中心对称的性质:对称点的连线都经过对称中心,并且被对称中心平分.【解答】解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.【点评】本题考查成中心对称的两个图形的性质:对称点的连线都经过对称中心,并且被对称中心平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形和中心对称图形的概念作答.【解答】解:两者都是的是矩形,菱形,正方形;其中平行四边形只是中心对称图形;等腰梯形只是轴对称图形.故既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【点评】考查了轴对称图形和中心对称图形的概念,能够正确判断特殊图形的轴对称性.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是90°.【考点】生活中的旋转现象.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.【点评】此题主要考查了旋转及钟面的认识,解决本题的关键是在钟面上指针每走一个数字,绕中心轴旋转30°.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是等边三角形.21教育名师原创作品【考点】等边三角形的判定;旋转的性质.【分析】由旋转的性质可得AB=AB′,∠BAB′=60°,即可判定△ABB'是等边三角形.【解答】解:因为,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则AB=AB′,∠BAB′=60°,所以△ABB'是等边三角形.【点评】此题主要考查学生对等边三角形的判定及旋转的性质的理解及运用.在第三象限.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P1【考点】关于原点对称的点的坐标.所在象限.【分析】首先根据a的符号判断得出P点所在象限,进而得出关于原点的对称点P1【解答】解:∵a<0,∴a2>0,﹣a+3>0,∴P点在第一象限,∴关于原点的对称点P在第三象限.1故答案为:三.【点评】此题主要考查了关于原点对称点的性质,根据题意得出P点位置是解题关键.16.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是60 °.【考点】旋转的性质.【分析】由旋转角∠AOC=40°,∠AOD=90°,可推出∠COD的度数,再根据点C恰好在AB上,OA=OC,∠AOC=40°,计算∠A,利用内角和定理求∠B,根据对应关系可知∠D=∠B.【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A==70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.【点评】本题考查了旋转性质的运用,等腰三角形的性质运用,角的和差关系问题.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为2π.【考点】轴对称的性质;圆的认识.【专题】压轴题.【分析】结合图形,不难发现阴影部分的面积是圆面积的一半.【解答】解:∵大圆的面积=π×22=4π,∴阴影部分面积=×4π=2π.故答案为:2π.【点评】利用图形特点把阴影部分的面积整体计算.18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD= 25 .【考点】全等三角形的判定与性质.【专题】计算题.【分析】过A点作AF⊥CD交CD的延长线于F点,由AE⊥BC,AF⊥CF,∠C=90°可得四边形AECF为矩形,则∠2+∠3=90°,而∠BAD=90°,根据等角的余角相等得∠1=∠2,加上∠AEB=∠AFD=90°和AB=AD,根据全等三角形的判定可得△ABE≌△ADF,由全等三角形的性质有AE=AF=5,S△ABE =S△ADF,则S四边形ABCD=S正方形AECF,然后根据正方形的面积公式计算即可.【解答】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE⊥BC,AF⊥CF,∴∠AEC=∠CFA=90°,而∠C=90°,∴四边形AECF为矩形,∴∠2+∠3=90°,又∵∠BAD=90°,∴∠1=∠2,在△ABE和△ADF中∴△ABE≌△ADF,∴AE=AF=5,S △ABE =S △ADF ,∴四边形AECF 是边长为5的正方形,∴S 四边形ABCD =S 正方形AECF =52=25.故答案为25.【点评】本题考查了全等三角形的判定与性质:有两组对应角相等,并且有一条边对应相等的两个三角形全等;全等三角形的对应边相等;全等三角形的面积相等.也考查了矩形的性质.三、解答题(共66分)19.如图,四边形ABCD 的∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A 是旋转中心,那么点B 经过旋转后,点B 旋转到什么位置?【考点】旋转的性质;正方形的性质.【分析】(1)根据图形确定旋转中心即可;(2)对应边AE 、AF 的夹角即为旋转角,再根据正方形的每一个角都是直角解答;(3)因为△AFD ≌△AEB ,所以可知点B 旋转到什么位置是点D .【解答】解:(1)由图可知,点A 为旋转中心;(2)∠EAF 为旋转角,在正方形AECF 中,∠EAF=90°,所以,旋转了90°;(3)∵△BEA 旋转后能与△DFA 重合,∴△BEA ≌△DFA ,∴可知点B 旋转到什么位置是点D .【点评】本题考查了旋转的性质,正方形的性质以及旋转中心的确定,旋转角的确定,以及旋转变换只改变图形的位置不改变图形的形状与大小的性质.20.如图,请画出△ABC 关于点O 点为对称中心的对称图形.【考点】作图-旋转变换.【专题】作图题.【分析】连接AO 并延长至A ′,使A′O =AO ,连接BO 并延长至B′,使B′O=BO,连接CO 并延长至C′,使C′O=CO,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用旋转变换作图,熟练掌握旋转的性质并确定出对应点的位置是解题的关键.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(4,﹣1).(1)把△ABC 向上平移5个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出C 1的坐标;(2)以原点O 为对称中心,再画出与△A 1B 1C 1关于原点O 对称的△A 2B 2C 2,并写出点C 2的坐标.【考点】作图-旋转变换;作图-平移变换.【专题】作图题;网格型.【分析】根据平移作图的方法作图即可.根据图形特征或平移规律可求得坐标为①C1(4,4);②C2(﹣4,﹣4).【解答】解:根据平移定义和图形特征可得:①C1(4,4);②C2(﹣4,﹣4).【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是:①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为16 ;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)【考点】利用平移设计图案.【专题】网格型.【分析】(1)求小鱼的面积利用长方形的面积减去周边的三角形的面积即可得到;(2)直接根据平移作图的方法作图即可.【解答】解:(1)小鱼的面积为7×6﹣×5×6﹣×2×5﹣×4×2﹣×1.5×1﹣××1﹣1﹣=16;www-2-1-cnjy-com(2)将每个关键点向左平移3个单位,连接即可.【点评】本题考查的是平移变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.2·1·c·n·j·y【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【分析】首先将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,进而得出△FBM≌△FBE,即可求出∠MBF=∠EBF,求出度数即可.2-1-c-n-j-y【解答】解:将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,则∠MBE=90°,AM=CE,BM=BE,∵CE+AF=EF,∴MF=EF,在△FBM和△FBE中,∵,∴△FBM≌△FBE(S.S.S),∴∠MBF=∠EBF,∴∠EBF=×90°=45°.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质,将△BCE逆时针旋转90°,使BC 落在BA边上,得△BAM是解题关键.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.【考点】利用旋转设计图案.【分析】仔细观察图形,基本图形可以不同,但对于不同的基本图形需要作的几何变换也不同.【解答】解:方法一:可看作整个花瓣的六分之一部分,图案为绕中心O依次旋转60°、120°、180°、240°、300°而得到整个图案.方法二:可看作是绕中心O依次旋转60°、120°得到整个图案的.【点评】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,本题还可以看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.25.(2009•株洲)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.【来源:21·世纪·教育·网】(1)线段OA1的长是 6 ,∠AOB1的度数是135°;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【考点】旋转的性质;平行四边形的判定.【分析】(1)图形在旋转过程中,边长和角的度数不变;(2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形;(3)平行四边形的面积=底×高=OA×OA1.【解答】(1)解:因为,∠OAB=90°,OA=AB,所以,△OAB为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,所以,∠AOB1的度数是90°+45°=135°.(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1,又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.(3)解:▱OAA1B1的面积=6×6=36.【点评】此题主要考查旋转的性质和平行四边形的判定以及面积的求法.26.(2004•厦门)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.21·cn·jy·com (1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF 与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.【出处:21教育名师】【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】几何图形问题;综合题.【分析】(1)显然,当A,F,B在同一直线上时,DF≠BF.(2)注意使用两个正方形的边和90°的角,可判断出△DAG≌△BAE,那么DG=BE.【解答】解:(1)不正确.若在正方形GAEF绕点A顺时针旋转45°,这时点F落在线段AB或AB的延长线上.(或将正方形GAEF 绕点A顺时针旋转,使得点F落在线段AB或AB的延长线上).如图:设AD=a,AG=b,则DF=>a,BF=|AB﹣AF|=|a﹣b|<a,∴DF>BF,即此时DF≠BF;(2)连接BE,可得△ADG≌△ABE,则DG=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.【点评】注意点在特殊位置时所得到的关系,判断边相等,通常要找全等三角形.27.(2008•太原)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC 和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.【考点】全等三角形的判定;平行四边形的性质.【专题】压轴题;探究型.【分析】(1)要证∠AFD=∠DCA,只需证△ABC≌△DEF即可;(2)结论成立,先证△ABC≌△DEF,再证△ABF≌△DEC,得∠BAF=∠EDC,推出∠AFD=∠DCA;(3)BO⊥AD,由△ABC≌△DEF得BA=BD,点B在AD的垂直平分线上,且∠BAD=∠BDA,继而证得∠OAD=∠ODA,OA=OD,点O在AD的垂直平分线上,即BO⊥AD.【解答】解:(1)∠AFD=∠DCA.证明:∵AB=DE,BC=EF,∠ABC=∠DEF,∴∠ACB=∠DFE,∴∠AFD=∠DCA;(2)∠AFD=∠DCA(或成立),理由如下:方法一:由△ABC≌△DEF,得:AB=DE,BC=EF(或BF=EC),∠ABC=∠DEF,∠BAC=∠EDF,∴∠ABC﹣∠FBC=∠DEF﹣∠CBF,∴∠ABF=∠DEC,在△ABF和△DEC中,,∴△ABF≌△DEC(SAS),∠BAF=∠EDC,∴∠BAC﹣∠BAF=∠EDF﹣∠EDC,∠FAC=∠CDF,∵∠AOD=∠FAC+∠AFD=∠CDF+∠DCA,∴∠AFD=∠DCA;方法二:连接AD,同方法一△ABF≌△DEC,∴AF=DC,∵△ABC≌△DEF,∴FD=CA,在△AFD和△DCA中,,∴△AFD≌△DCA,∴∠AFD=∠DCA;(3)如图,BO⊥AD.方法一:由△ABC≌△DEF,点B与点E重合,得∠BAC=∠BDF,BA=BD,∴点B在AD的垂直平分线上,且∠BAD=∠BDA,∵∠OAD=∠BAD﹣∠BAC,∠ODA=∠BDA﹣∠BDF,。

《旋转》单元测试卷

《旋转》单元测试卷

《旋转》单元测试卷一、精心选一选,相信你一定能选对。

(每小题3分,共36分) 1.下列现象中属于旋转的有( )个①地下水位逐年下降 ②传送带的移动 ③方向盘的转动 ④水龙头开关的转动 ⑤钟摆的运动 ⑥荡秋千运动 A .5B .4C .3D .22.下列四张图不能通过旋转得到的是( )3.下列图形中,既是中心对称图形,又是轴对称图形的是( ) A .等边三角形 B .平行四边形 C .等腰梯形 D .圆4.如图可以看作是一个等腰直角三角形旋转若干次而形成的,则每次旋转的度数可以是( )A .90°B .60°C .45°D .30° 5.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么它的旋转角可能是( ) A .70°B .60°C .90°D .50°6.下列说法中正确的个数是( )①两个全等的图形一定可以看作其中一个是另一个经过旋转得的;②经过旋转,任意一对对应点与旋转中心所连线段的夹角相等;③正六边形是中心对称图形; ④关于中心对称的两个图形是全等图形; ⑤关于中心对称的两个图形,对称点所连线段被对称中心平分. A .2B .3C .4D .57. …依次观察左边的三个图形,并判断此规律从左向右第四个图形是( )A .B .C .D .8.已知点P 与点P 1关于原点对称,点P 1的坐标为(3,4-),则点P 关于y 轴对称的点P 2的坐标为( ) A .(3,4)B .(4,3--)C .(3-,4)D .(4-,3)9.如图,图①中的梯形可以经过旋转和翻折形成图②,图①应符合的条件是( )A .一般梯形B .等腰梯形C .底角为60°的等腰梯形D .底角为60°且上底与两腰相等的等腰梯形 10.如图,△ABC 是等边三角形,D 是BC 的中点,以D 为旋转中心,把△ABC 顺时针旋转60°后,所成的图形是( )11.如图,已知△ABC 与△CDA 关于O 对称,过O 任作一直线EF 分别交AD 、BC 于点E 、F ,下列说法中:①点E 和点F ,点B 和点D 是关于中心O 的对称点;②直线BD 过点O ;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△AOE 与△COF 成中心对称,其中正确的个数为( ) A .1B .2C .3D .512.怎样将下图中的甲图案通过变形使之与乙图案重合( )A .先将甲旋转扶直,再平移B .先将甲旋转扶直,再作它的轴对称图案C .先将甲平移,再扶直D .先作轴对称图案,再平移二、细心填一填,相信你填得又快又准。

人教新版数学九年级上学期《第23章旋转》单元测试(含答案)

人教新版数学九年级上学期《第23章旋转》单元测试(含答案)

人教新版数学九年级上学期《第23章旋转》单元测试一.选择题(共10小题)1.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种2.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.3.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70°B.80°C.84°D.86°4.如图,E是正方形ABCD的边CB延长线上的一点.把△AEB绕着点A逆时针旋转后与△AFD重合,则旋转的角度可能是()A.90°B.60°C.45°D.30°5.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°6.已知点A关于x轴的对称点坐标为(﹣1,2),则点A关于原点的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)7.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)8.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)9.将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(﹣2,0),∠ABO=30°.则△AOB旋转过程中所扫过的图形的面积为()A.B.C.D.10.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n的坐标是()+1A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)二.填空题(共6小题)11.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.12.下图右侧有一盒拼板玩具,左侧有五块板a、b、c、d、e,如果游戏时可以平移或旋转,但不能翻动盒中任何一块,那么a、b、c、d、e中,是盒中找不到的?(填字母代号)13.将一副三角板的两个直角顶点叠放在一起拼成如下的图形.若∠EAB=40°,则∠CAD=;将△ABC绕直角顶点A旋转时,保持AD在∠BAC的内部,设∠EAC=x°,∠BAD=y°,则x与y的关系是.14.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=秒时,点P与点C中心对称,且对称中心在直径AB上.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),以O旋转中心,将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,OP n(n为正整数),则点P6的坐标是;△P5OP6的面积是.16.在五行五列的方格棋盘上沿骰子的某条棱翻动骰子,骰子在棋盘上只能向它所在格的左、右、前、后格翻动.开始时骰子在3C处,如图1,将骰子从3C处翻动一次到3B处,骰子的形态如图2;如果从3C处开始翻动两次,使朝上,骰子所在的位置是.三.解答题(共7小题)17.如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.18.如图,已知平面直角坐标系中两点A(﹣1,5)、B(﹣4,1).(1)将A、B两点沿x轴分别向右平移5个单位,得到点A1、B1,请画出四边形ABB1A1,并直接写出这个四边形的面积;(2)画一条直线,将四边形ABB1A1分成两个全等的图形,并满足这两个图形都是轴对称图形.19.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.20.在△ABC中,AB=AC,∠BAC=100°.将线段CA绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<360°,连接AD、BD.(1)如图1,当α=60°时,∠CBD的大小为;(2)如图2,当α=20°时,∠CBD的大小为;(提示:可以作点D关于直线BC的对称点)(3)当α为°时,可使得∠CBD的大小与(1)中∠CBD的结果相等.21.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.22.在学习了第四章《基本的平面图形》的知识后,小明将自己手中的一副三角板的两个直角顶点叠放在一起拼成如下的图形1和图形2.(1)在图1中,当AD平分∠BAC时,小明认为此时AB也应该平分∠FAD,请你通过计算判断小明的结论是否正确.(2)小明还发现:只要AD在∠BAC的内部,当△ABC绕直角顶点A旋转时,总有∠FAB=∠DAC(见图2),请你判断小明的发现是否正确,并简述理由.(3)在图2中,当∠FAC=x,∠BAD=y,请你探究x与y的关系.23.如图,在等边△ABC中,点D是AC边上一点,连接BD,过点A作AE⊥BD 于E.(1)如图1,连接CE并延长CE交AB于点F,若∠CBD=15°,AB=4,求CE的长;(2)如图2,当点D在线段AC的延长线上时,将线段AE绕点A逆时针旋转60°得到线段AF,连接EF,交BC于G,连接CF,求证:BG=CG.参考答案一.选择题1.C.2.D.3.B.4.A.5.B.6.A.7.B.8.B.9.D.10.C.二.填空题11.13.12.D.13.40°,y=180﹣x.14.或或或.15.512.16.2B或4B.三.解答题17.解:注:本题画法较多,只要满足题意均可,画对一个得(1分).18.解:(1)如图所示的四边形ABB1A1即为要求画的四边形,S四边形ABB1A1=5×(5﹣1)=20(平方单位);(2)如图所示:∵四边形ABB1A1是平行四边形,∴直线AB1即为所要求画的直线.19.(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF≌△DMF,∴EF=MF;(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB﹣AE=3﹣1=2,BM=BC+CM=3+1=4,∴BF=BM﹣MF=4﹣x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,则EF的长为.20.解:(1)∵∠BAC=100°,AB=AC,∴∠ABC=∠ACB=40°,当α=60°时,由旋转的性质得AC=CD,∴△ACD是等边三角形,∴∠DAC=60°,∴∠BAD=∠BAC﹣∠DAC=100°﹣60°=40°,∵AB=AC,AD=AC,∴∠ABD=∠ADB==70°,∴∠CBD=∠ABD﹣∠ABC=70°﹣40°=30°,故答案为:30°;(2)如图2所示;作点D关于BC的对称点M,连接AM、BM、CM、AM.则△CBD≌△CBM,∴∠BCM=∠BCD=∠ACD=20°,CD=CA=CM,∴∠ACM=60°,∴△ACM是等边三角形,∴AM=AC=AB,∠MAC=60°,∴∠BAM=40°,∵∠CAD=∠CDA=(180°﹣20°)=80°,∴∠BAD=∠CAD=20°,∵AD=AD,∴△DAB≌△DAM,∴BD=DM,∵BD=BM,∴BD=DM=BM,∴∠DBM=60°,∴∠DBC=∠CBM=30°,故答案为30°(3)①由(1)可知,∠α=60°时可得∠BAD=100°﹣60°=40°,∠ABC=∠ACB=90°﹣=40°,∠ABD=90°﹣∠BAD=120°﹣=70°,∠CBD=∠ABD﹣∠ABC=30°.②如图3,翻折△BDC到△BD1C,则此时∠CBD1=30°,∠BCD=60°﹣∠ACB=﹣30°=20°,∠α=∠ACB﹣∠BCD1=∠ACB﹣∠BCD=﹣20°=20°;③以C为圆心CD为半径画圆弧交BD的延长线于点D2,连接CD2,∠CDD2=∠CBD+∠BCD=30°+﹣30°=50°,∠DCD2=180°﹣2∠CDD2=180°﹣100°=80°,∠α=60°+∠DCD2=140°.综上所述,α为60°或20°或140°时,∠CBD=30°.故答案为60或20或140.21.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.22.解:(1)小明的结论正确,理由如下:∵AD平分∠BAC,∠BAD+∠CAD=90°,∴∠BAD=∠CAD=45°.∵∠FAB+∠BAD=90°,∴∠FAB=45°,∴∠FAB=∠BAD,∴AB平分∠FAD.(2)小明的结论正确,理由如下:∵∠BAD+∠CAD=90°,∠FAB+∠BAD=90°,∴∠FAB=∠DAC.(3)∵∠FAC=∠FAB+90°,∴∠FAB=∠FAC﹣90°.∵∠BAD=90°﹣∠FAB,∴∠BAD=180°﹣∠FAC,即y=180°﹣x(90<x<180°).23.解:(1)∵△ABC为等边三角形∴AB=BC=AC=4,∠BAC=60°且∠DBC=15°∴∠ABE=45°且AE⊥BD∴∠BAE=∠ABE=45°∴AE=BE,且AC=BC∴CF垂直平分AB即AF=BF=2,CF⊥AB∵∠ABE=45°∴∠FEB=∠ABE=45°∴BF=EF=2,∵Rt△BCF中,CF==2∴CE=2﹣2(2)如图2:过点M作CM∥BD∵将线段AE绕点A逆时针旋转60°得到线段AF∴AE=AF,∠EAF=60°,∴△AEF为等边三角形∴∠AFE=∠AEF=60°∴∠FAC+∠EAC=60°,且∠BAE+∠EAC=60°∴∠BAE=∠CAF,且AB=AC,AE=AF∴△ABE≌△ACF∴BE=CF,∠AEB=∠AFC=90°∴∠BEF=150°,∠MFC=30°∵MC∥BD∴∠BEF=∠GMC=150°,∴∠CMF=30°=∠CFM∴CM=CF且CF=BE∴BE=CM且∠BGE=∠CGM,∠BEG=∠CMG ∴△BGE≌△GMC∴BG=GC。

第23章 旋转单元测试试题(含解析)

第23章 旋转单元测试试题(含解析)

人教版九年级上册第23章旋转单元测试(时间100分钟,总分100分)一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.33.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70° B.35° C.40° D.50°4. 如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格5. 如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=()A.2 B.3 C.4 D.1.56.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′7. 如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45° B.60° C.90° D.120°8. 如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对 B.2对 C.3对 D.4对9. 如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°10. 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1二、填空(共8个小题,每题3分,共24分)11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是.12. △ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.14. 如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16. 如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B 运动的最短路径长为.17. 如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.18. 如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是(填序号)三、解答题(前3题每题7分,后三题分别为8、8、9分,共46分)19.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.20. 如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.22. 将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC 与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由。

数学九年级上册《旋转》单元检测卷(附答案)

数学九年级上册《旋转》单元检测卷(附答案)
【点睛】此类旋转往往是旋转直角三角形.如上题旋转的是两直角边分别为1,2的直角三角形,这样就很快知道旋转后的点到两坐标的距离,从而确定点的坐标.
6.下列图形中,既是中心对称又是轴对称的图形是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
三、解答题(共 4 小题 ,每小题 10 分 ,共 40 分 )
18. 如图 ,在正方形网格中,每个小正方形的边长均为 个单位.将 向绕点 逆时针旋转 ,得到 ,请你画出 (不要求写画法).
如图 ,已知点 和 ,试画出与 关于点 成中心对称的图形.
19.如图所示,已知 ,且 .
说明 经过怎样的变换后可与 重合;
二、填空题(共 5 小题 ,每小题 3 分 ,共 15 分 )
13.从数学对称的角度看:下面的几组大写英文字母:① ;② ;③ ;④ .不同于另外三组的一组是________,这一组的特点是________.
14.若点 与 关于原点 对称,则 ________且 ________.
15.如图,这个图形是由”基本图案” 绕着点________顺时针依次旋转________次得到的,则每次旋转的角度为________.
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
10.如图,将线段 绕点 顺时针旋转 后,得到线段 ,则点 的对应点 的坐标是()
A.(-3, 2)B.(2, 2)C.(3, 0)D.(2, 1)
【答案】C
【解析】
【分析】
根据旋转的性质得出BC=A′O,进而得出A′点坐标.

人教版数学九年级上册《旋转》单元测试题(含答案)

人教版数学九年级上册《旋转》单元测试题(含答案)
15.如图,直线y=﹣ x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A按逆时针旋转90°后得到△AO1B1,则点B1的坐标是_____.
16.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=_____(提示:可连接BE)
A.1∶ B.1∶2C. ∶2D.1∶
7.(2016黑龙江省牡丹江市)如图,在平面直角坐标系中,A(﹣8,﹣1),B(﹣6,﹣9),C(﹣2.﹣9),D(﹣4,﹣1).先将四边形ABCD沿x轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A1B1C1D1,最后将四边形A1B1C1D1,绕着点A1旋转,使旋转后的四边形对角线的交点落在x轴上,则旋转后的四边形对角线的交点坐标为( )
∴△ABP≌△CBP′(SAS),∴AP=P′C,
∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,
则△PBP′是等腰直角三角形,
∴∠BP′P=45°,PP′= PB,
∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,
∴△APP′是直角三角形,
设P′A=x,则AP=3x,根据勾股定理,PP′= = = x,
A.1∶ B.1∶2C. ∶2D.1∶
【答案】B
【解析】
【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,
在△ABP和△CBP′中,∵BP=BP′,∠ABP=∠CBP′,AB=BC,
5.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三章 旋转检测题
(时间:90分钟,分值:100分)
一、 选择题(每小题3分,共30分)
1.下面图形中,既是轴对称图形又是中心对称图形的是( )
2.下列图形中,是中心对称图形的有( )
A .4个
B .3个
C .2个
D .1个 3.在平面直角坐标系
中,已知点
,若将
绕原点逆时针旋转
得到

则点在平面直角坐标系中的位置是在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限 4.已知0a <,则点(2
,1a a --+)关于原点的对称点 在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 5.已知点、点关于原点对称,则的值为( ) A.1 B.3 C.-
1 D.-3 6.下列命题中是真命题的是( )
A.全等的两个图形是中心对称图形
B.关于中心对称的两个图形全等
C.中心对称图形都是轴对称图形
D.轴对称图形都是中心对称图形
7.四边形ABCD 的对角线相交于O ,且AO BO CO DO ===,则这个四边形( ) A.仅是轴对称图形 B.仅是中心对称图形 C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形 8.如图所示,A 、B 、C 三点在正方形网格线的交点处.若将△绕着点A 逆时针旋转到如图位置,得到△
,使
三点共线,则
的值为( )
A. 1
B.
223 C.3
10
D. 2
9.如图所示,在正方形中,,点在上,且,点是上一动点,连

,将线段
绕点逆时针旋转90°得到线段
.要使点
恰好落在 上, 则
的长是( )
A . 1
B .2
C .3
D .4 10.如图,在正方形网格中,将△
绕点旋转后得到△

则下列旋转方式中,符合题意的是( ) A.顺时针旋转90° B.逆时针旋转90° C.顺时针旋转45° D.逆时针旋转45° 二、填空题(每小题3分,共24分) 11.如图所示,把一个直角三角尺绕着
角的顶点顺时针旋转,使得点落在
的延
长线上的点处,则∠
的度数为_____ .
12.正方形是中心对称图形,它绕它的中心旋转一周和原来的图形重合________次.
13.如图所示,ABC △与DEF △关于O 点成中心对称.
则AB _______DE , ∥______,AC =________.
14.边长为的正方形绕它的顶点旋转,顶点所经过的路线长为______.
15.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.
16. 点(3
4)P -,关于原点对称的点的坐标为________. 17.已知点
与点
关于原点对称,则
的值是_______.
18.直线3y x =+上有一点
,则点 关于原点的对称点为________.
三、解答题(共46分) 19.(8分)如图所示,在△
中,90OAB ∠=︒,6OA AB ==,将OAB ∆ 绕点O
沿逆时针方向旋转90︒得到11OA B ∆.
(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连接1AA ,求证:四边形11OAA B 是平行四边形.
A B
O E D
F
C 第13题图
20.(8分)找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.
21.(8分)如图所示,网格中有一个四边形和两个三角形. (1)请你画出三个图形关于点的中心对称图形;
(2)将(1)中画出的图形与原图形看成一个整体图形,请你写出这个整体图形对称轴的条数; 这个整体图形至少旋转多少度与自身重合? 22.(6分)如图所示,已知是△的中线,画出以点为对称中心,与△•成中心对称的三角形.
23.(8分)图①②均为76 的正方形网格,点A B C 、、
在格点上.
(1)在图①中确定格点D ,并画出以 为顶点的四边形,使其为轴对称图形.(画出一个即可)
(2)在图②中确定格点E ,并画出以为顶点的四边形,使其为中心对称图形.(画出一个即可) 24.(8分)如图所示,将正方形中的△绕对称中心 旋转至△
的位置,


于.请猜想

有怎样的数量关系?
并证明你的结论.
D B
A C 第22题图 O
第20题图
第21题图
O
第24题图
G
A
D
E F
O
N
M
第二十三章 旋转检测题参考答案
1.C 解析:选项A 、B 是中心对称图形但不是轴对称图形,选项C 既是中心对称图形又是 轴对称图形,选项D 是轴对称图形但不是中心对称图形.
2.B 解析:第一、二、三个图形都是中心对称图形,第四个图形不是中心对称图形.
3.C 解析:已知点在第一象限,旋转后,则点应在第三象限.
4.D 解析:∵ 当时,点在第二象限,∴ 点关于原点的对称点 在第四象限.
5.D 解析:由点、点关于原点对称知,
所以
6.B 解析:由中心对称图形和轴对称图形的定义知,选项B 正确.
7.C 解析:因为AO BO CO DO ===,所以四边形ABCD 是矩形.
8.D 解析:过B 点作BD ⊥于点,由图可知,即
=2. 9.C 解析:由题意知,,又由
,知△
≌△
,所以
.
10.B 解析:根据图形可知:将△绕点逆时针旋转90°可得到△.故选B . 11.
解析:由题意得∠

,所以∠
.
12.4 解析:正方形的两条对角线的夹角为,且对角线分正方形所成的4个小三角形
都全等.
13.=,EF ,DF 14.4π 解析:∵ ∴ 顶点绕顶点旋转所经过的路径是个半圆弧,
所以顶点所经过的路线长为4π 15.120
16.(34)-, 解析:两个点关于原点对称时,它们的坐标符号相反,所以点的坐标为(34)-,.
17.2 解析:∵ 点
与点
关于原点对称,∴ 3,1b a ==-,
∴ 2a b +=. 18.(,) 解析:将点代入3y x =+,得6n =,∴ 对称点为().
19.(1)6,135°;
(2)证明:11190AOA OA B ∠=∠=︒,∴11//OA A B . 又11OA AB A B ==,∴四边形11OAA B 是平行四边形. 20.解:图中的旋转中心就是该图的几何中心,即点O.
该图绕旋转中心O旋转90180270360,
,,,都能与原来的图形重合,因此,它是一个中心对称图形.
21.解:(1)如图所示.(2)2条对称轴,这个整体图形至少旋转.
22.解:(1)延长,且使,点关于的对称点为
,点关于的对称
点为;
(2)连接. 则△为所求作的三角形(如图所示). 23.解:(1)如图①所示;(2)如图②所示.
24.解:.证明如下: 在正方形中,
为对角线,为对称中心,
∴.
∵ △为△
绕点旋转所得,∴

∴ .
在 △和△中,
∴ △≌△
,∴
.
D
'A
B ('
C )
A
C ('B )
第22题答图
第21题答图
O。

相关文档
最新文档