开环幅相曲线绘制.ppt

合集下载

5.3.15.2.2开环幅相特性曲线学习资料

5.3.15.2.2开环幅相特性曲线学习资料

j
1)
2 (1
k
0.25 2 )(1 2 ) [(1
2.5 2 )
j(0.5 2 )]
Im[ GK ( j)] 0.5 2
0
,求得
2 x
0.5 ,因此求得幅相曲线与实轴得交点为:Re[GK ( jx )] 2.67k
概略幅相曲线见右图:
入坐标原点;
n m 2 时, G( j) 0 180 0 ,Nyquist图从负实轴的方向进
入坐标原点;
n m 3时, G( j) 0 270 0 ,Nyquist图从正虚轴的方向进
入坐标原点。
图2
3)穿越实轴的位置。
令频率特性 G( j) 的虚部为零,即 Im[G( j)] 0 ,并求得相应的频率 x ,然后将此频率 x 代入 频率特性G( j) 的实部,则 Re[G( jx )] 就是Nyquist图与实轴的交点。
图1
5.2.2 开环幅相特性曲线
三要素
2)终点确定。
Nyquist图的终点是 时 G( j) 在复平面上的位置。
G(
j)
b0 s m a0 s n
b1sm1 a1sn1
... ...
bm1s an1s
bm an
b0 a0
(
1 j)nm
b0 / a0 ( j)nm
(3)
n m 1时, G( j) 0 900 ,Nyquist图从负虚轴的方向进
1)起点确定。
Nyquist图的起点是 0 时 G( j0 ) 在复平面上
的位置。
G(
j0 )
(
K
j)
G0 (
j)
0
(
K
j)
(2)

系统开环频率特性的绘制

系统开环频率特性的绘制

5.3 系统开环频率特性的绘制对自动控制系统进行频域分析时,通常是根据开环系统的频率特性来判断闭环系统的稳定性和估算闭环系统时域响应的各项性能指标,或者根据开环系统的频率特性绘制闭环系统的频率特性,然后再分析及估算时域性能指标。

因此,掌握开环系统的频率特性曲线的绘制和特点是十分重要的。

5.3.1 开环幅相曲线的绘制开环系统的幅相频率特性曲线简称为开环幅相曲线。

准确的开环幅相曲线可以根据系统的开环幅频特性和相频特性的表达式,用解析计算法绘制。

显然,这种方法比较麻烦。

在一般情况下,只需要绘制概略开环幅相曲线,概略开环幅相曲线的绘制方法比较简单,但是概略曲线应保持准确曲线的重要特征,并且在要研究的点附近有足够的准确性。

下面首先介绍幅相频率特性曲线的一般规律与特点,然后举例说明概略绘制开环幅相曲线的方法。

设系统开环传递函数的一般形式为)1()1()()(11++=∏∏-==s T s s K s H s G j vn j v mi i τ )(m n ≥ (5-49)式中,K 为开环增益;v 为系统中积分环节的个数。

则系统的开环频率特性为)1()()1()()(11∏∏-==++=v n j jvmi i Tj j j K j H j G ωωωτωω (5-50)1.开环幅相曲线的起点在低频段当0→ω时,由式(5-50)可得 )90(0lim)(lim)()(lim ︒⋅-→→→==v j vve Kj K j H j G ωωωωωωω (5-51)由式(5-51)可知,当0→ω时,开环幅相曲线的起点取决于开环传递函数中积分环节的个数v 和开环增益K ,参见图5-23(a )。

0型(v =0)系统,开环幅相曲线起始于实轴上的)0,(j K 点。

Ⅰ型(v =1)系统,开环幅相曲线起始于相角为︒-90的无穷远处。

当+→0ω时,曲线渐近于与虚轴的平行的直线,其横坐标[])()(Re lim 0ωωωj H j G V x +→= (5-52)Ⅱ型(v =2)系统,开环幅相曲线起始于相角为︒-180的无穷远处。

自动控制原理 第5章 频率法_2-1

自动控制原理 第5章 频率法_2-1

1 2
)
(5-28)
M (w )
0.2 0.5
1
0.9
0
Mr
wr
wn w c
w
振荡环节的幅频特性
2 2
1 Tw 1 2 2 2 1 T w 2
这是一个标准圆方程,其圆心坐标是 1 ,0 , 2 半径为 1 。且当ω 由 0 时, G( jw ) 由 0 90 , 2 说明惯性环节的频率特性在 G( jw ) 平面上是实轴下 方半个圆周。
20
1 T

(w ) 45
0
的交点为
工程上常用简便的作图法来得到L(w曲线,方法如下:
w
1 T
L(w ) 20 lg
1 T w
2
2
0 (dB)
即当频率很低时, L(w可用零分贝线近似; 低频渐近线
w
1 T
L(w ) 20 lg
1 T w
2
2
20 lg wT (dB)
当 w 10 时,20 lg G( j10) 20 lg 10 20(dB)

8
设 w'
10w
'
,则有
(5-36)
dB L(w )
60
20 lg w 20 lg 10w 20 20 lg w
可见,积分环节的对数幅频特 性是一条在w=1(弧度/秒)处 穿过零分贝线(w轴),斜率为 -20dB/dec的直线。 几何 意义 积分环节的相频特性是
(1) 幅相曲线 振荡环节的传递函数为: ( s) G
1 T w j 2Tw 1
2 2

自动控制理论_19开环对数频率特性曲线的绘制

自动控制理论_19开环对数频率特性曲线的绘制

穿越法判断包围圈数 设 N 为开环幅相频率特性曲线穿越(- 1 , j0 ) 点左侧负实轴的次数, N +表示正穿越的次数(从 上往下穿越), N -表示负穿越的次数(从下往上 穿越),则
R 2N 2( N N )
5.2 例 系统开环传递函数为 G ( s) H ( s) 2 ( s 2)(s 2s 5)
圈时,F(s)总的相角增量为
n i 1
F ( s) ( s zi ) ( s pi )
i 1
n
( s z1 ) ( s z2 ) ( s zn ) ( s p1 ) ( s p2 ) ( s pn )
s
s zi
B
A
F ( s)
F
F
z 1 p1 z 2
z i 1
j
s
s zi
zi
s
j
B
A
F ( s)
F
F
z 1 p1 z 2
z i 1
S 平面上的闭合曲线 Γs 内部仅有 1 个 F(s) 的零点, F (s) 的其 它零极点如图所示。当闭合曲线Γs上任一点S沿顺时针方向转动一
第五章
频率域方法
5.3
开环对数频率特性曲线的绘制
根据叠加原理,绘出各环节的对数幅频特性 分量,再将各分量的纵坐标相加,就得到整个系 统的开环对数幅频特性;将各环节的相频特性分 量相加,就成为系统的开环对数相频特性。

10(0.5s 1) G( s) s ( s 1)(0.05s 1)
1 180 ,即A() 1 (-1,j0)点表示成幅角形式是 ( ) 180 而A(ω)=1对应于对数幅频坐标图上L(ω)=0 的水平线; () 180则对应于对数相频坐标图上- 180°的水平线。因此可以进行坐标系转换。

线性系统频域分析方法开环频率曲线绘制

线性系统频域分析方法开环频率曲线绘制

与实轴交点:
G( j)H ( j) K (T ) j(1T2 ) (1 T 22 )
x
1
T
G( jx )H ( jx ) K
2020/5/24
5-3开环频率曲线的绘制
12
二、开环幅相曲线的绘制(5)
例5.设系统开环传递函数为
G(s)H
(s)
s(Ts
K 1)(s 2
试绘制系统开环概略幅相曲线。
穿越频率: x
(3)变化范围(象限和单调性)。
Im[G( jx )H ( jx )] 0
(x ) G( jx )H ( jx ) k ; k 0, 1, 2,ggg
ReG( jx )H( jx ) G( jx )H( jx )
2020/5/24
5-3开环频率曲线的绘制
8
二、开环幅相曲线的绘制(2)
6)积分环节 1/ s
7)微分环节 s
(0 1)
2020/5/24
5-3开环频率曲线的绘制
3
一、典型环节及其频率特性(2)
非最小相位系统环节 1)比例环节 K (K 0) 2)惯性环节 1 / (1 Ts) (T 0)
3)一阶微分环节 1 Ts (T 0) 4)振荡环节 1/ (s2 / n2 2 s / n 1) (n 0, 0 1)
5)二阶微分环节 s2 / n2 2 s / n 1 (n 0,0 1)
2020/5/24
5-3开环频率曲线的绘制
4
一、典型环节及其频率特性(3)
Im
典型环节的幅相频率特性
⑴ 比例环节 G(s) K G( j) K
G K G 0
K Re
0 0
⑵ 微分环节 ⑶ 积分环节

3、开环幅相曲线绘制开环幅相曲线绘制方法(1)由开环零点-极点

3、开环幅相曲线绘制开环幅相曲线绘制方法(1)由开环零点-极点

)
2型系统包含两个积分环节,例如
G(s)
K
s 2 (T1s 1)(T2 s 1)
G( j)
K
K
( j) 2 ( jT1 1)( jT2 1) 2 1 T12 2
() 180 arctgT1 arctgT2
2020/11/13
Automatic Control Theory
e j ( )
1 T22 2
起点: G( j0) A(0) K 终点: G( j) A() 0
G( j0) (0) 0o G( j) () 180o
与实轴的交点: Q(x ) 0 Q() K (T1 T2 ) /(1 T12 2 )(1 T22 2 ) 0
x 0
与虚轴的交点: P( y ) 0
P() K (1 T1T2 2 ) /(1 T12 2 )(1 T2 2 2 )
Hale Waihona Puke 变化的。例如P(0) K
0
G(s)
K(T1s 1)
(T2 s 1)(T3s 1)(T4 s 1)
n 3, m 1
G( j0) K0o , G( j) 0(1 3)90o 0 180o
2020/11/13
Automatic Control Theory
7
开环传递函数含有积分环节时的开环幅相曲线
T RC u r
C R uc
G(s) Ts s Ts 1 s 1/ T
试绘制其幅相特性。
2020/11/13
Automatic Control Theory
1
G( j) j T
T
j
(
arc
tgT
)
e2
jT 1 1 2T 2

自动控制原理(胡寿松版)完整第五章ppt课件

自动控制原理(胡寿松版)完整第五章ppt课件

-20
φ (ω )
ω=0.1 L(ω )=20lg0.1=-20dB 90
对数相频特性:φ (ω )=90o 0 0.1
1
10ω
第二节 典型环节与系统的频率特性
4).惯性环节
G(s)=Ts1+1
G(ωj
)=

1 T+1
(1) 奈氏图
A(ω
)=
1 1+(ω T)2
φ (ω )= -tg-ω1 T
取特可殊以点证:绘明ω制:=0奈氏图近似方I法m : AA图心半A点(ω(ω(是 , 圆ω,))=以 以 。惯=)0然=根ωω0(1性.171==/后据0/环2∞27为T将幅1节φ,jφo半φ它频的(ω)(ω径为(ω奈们特))=的圆)=氏平-性=09-o0滑4和o5连o相ω接频起∞特来0性-。求45ω=出T1特殊ω1=0Re
5)二阶微分环节 s 2 /n 2 2s /n 1(n 0 ,0 1 )
6)积分环节 1 / s
7)微分环节 s
第二节 典型环节与系统的频率特性
(2)非最小相位系统环节
1)比例环节 K (K0)
2)惯性环节 1/( T s1 ) (T0) 3)一阶微分环节 Ts1 (T0)
4)振荡环节 1 /( s 2 /n 2 2 s /n 1 )(n 0 ,0 1 )
第一节 频率特性
系统输入输出曲线 定义频率特性为:
r(t) c(t)
r(t)=Asinωt
G(ωj )
=|G(jω)|e j G(jω) =A(ω )e φj (ω )
A 0
幅频特性: t A(ω )=|G(jω)|
G(jω)
A G(jω )
相频特性: φ (ω )= G(jω)

5.3 开环频率特性曲线的绘制

5.3  开环频率特性曲线的绘制
20 40log
B、低频渐近线的参考点
10(1 j ) 2 G ( s) 2 1 2 ( j 1)1 j 2 4 20 20

为计算方便,取 =1。此时,其相应的复制对数幅值为
0
180
1 j
90
90
90
270
( )
(4)与实轴的交点

Im[G( j )] 0

1 2 0
此时,与负实轴相交于
1
1 x 0.833 1.2
(5)幅相频率曲线(: 0 ) 的大致走向:
A、在第3、2象限。 B、 = 0 时,以x = -1.2为渐 近线,且
90 90 0 180
1 1 jT2
K
0 0 0
( )
(4)与实轴的交点

ImG( j ) 0

(T1 T2 ) 0

0
这意味着,除 0 外,曲线与实轴不相交。
(5)幅相频率曲线(: 0 )的 大致走向: A 在第4、3象限。 B 除 = 0 外,幅相曲线与实轴 不相交。 C 由于该系统由2个惯性环节构 成,所以幅相曲线的幅值随频率的 增加是“单调”减小的。
5[(6 2 ) j5] 2 2 , 5 ( 6 ) 0 , 令 Im[ G ( j )] 0 , 即 1, 1 G( j) 2 (1 j) 5(5 j5) G( j1) 25与负实轴相交于 25处。 (1 j)
【例5-3】绘制如下非最小相位开环传递函数的幅相频率 特性曲线。
2s 1 G( s) s( s 1)

奈氏稳定判据课件

奈氏稳定判据课件
0
F
F (s)平面
8
1 、 奈氏判据数学基础…
j
z1
s
p1
0
z2
p2
s平面
s F(s) 映射
j F(s)
F(s)
0
F
F (s)平面
幅角原理: R=P-Z Z — s平面闭合曲线Γ包围F(s)的零点个数 P — s平面闭合曲线Γ包围F(s)的极点个数 R — 当s沿Γ顺时针运动一周,F(s)平面上闭合曲线гF 逆时针包围原点的圈数。
G( j0 )H( j0 )
14
1 、 奈氏判据数学基础…
3)G(S)H(S)含等幅振荡环节:
G(s)H (s)
(s2
1
2 n
)1
G1 ( s)
G(s)H (s) s jn e j
1
(2 jne j 2e2 j )1
G1( jn
e j )
j
jn
e j
e j( 90o )v1
(2n )v1
G1(
z1 )( s p1 )( s
z2 ) p2 )
F (s) s z1 s z2 s p1 s p2
F (s) s z1 s z2 s p1 s p2
2 0 (2 ) (2 ) 2
j
j
F(s)
z1
s
p1
0
z2
p2
s平面
s F(s) 映射
F(s)
重点回顾
幅相曲线绘制三要素
(1)开环幅相曲线的起点( 0)和终点( )
(2)开环幅相曲线与实轴的交点
交点处的频率 x -------穿越频率
x : Im[G( jx )H ( jx )] 0 或 (x ) G( jx )H ( jx ) k , k 0,1,2 交点处坐标 Re[G( jx )H ( jx )]

开环幅相曲线绘制

开环幅相曲线绘制

( jω ) 2 + j 2ζω nω + ω n 2
ωn 2
1) 极坐标图
Im
ωn 2
2) 伯德图
ω 2 2 ω = (1 − ( ) ) + j 2ζ ωn ωn
40dB/dec ω
L(ω)/dB
ω =ωn
ω →∞ 0 ω →0 Re 1 1 φ(ω)/(o) 180 90 0 -90 ω
27
10
0 10
0
10
1
10
2
Frequenc y (rad/s ec )
(ω ) = 20 log [1 + (ωT ) 2 ] ≈ 20 log ωT ( dB )
26
5.3. 二阶微分环节
G ( s) = T 2 s 2 + 2ζ Ts + 1 = G ( jω ) = s 2 + 2ζω n s + ωn 2
Im ω →∞ Re
ϕ +90 对数相频特性: (ω ) = +90 对数相频特性:
L(ω)/dB 20dB/dec 0 1 φ(ω)/(o) 90 10 ω
o
0 ω →0
0 -90
ω
24
思考:一阶微分环节与惯性环节的 bode图之间的关系?
5.2 一阶微分环节 G(s)=1+Ts G(jω)= 1+jωT Im ω →∞ 1) 极坐标图 2 2 ω →0 幅频特性: 幅频特性:A(ω ) = 1 + ω T 0 1 ϕ 相频特性: 相频特性: (ω ) = arctan ωT 2) 伯德图
18
取一次近似, 取一次近似,且令
19
20
21

自动控制原理

自动控制原理

幅频特性和相频特性分别为
G( j )H ( j ) K
1
1
T12 2 1 T22 2 1
G(
j )H (
j )
arctgT1
arctgT2
arctg
(T1 T2 ) 1 T1T2 2
34
1 极坐标图
当 0 时,G( j)H ( j) K,G( j)H ( j) 00
当 1
时,G( j )H ( j ) K T1T2 ,G( j )H ( j ) 900
对数相频特性
ω
tg1
2ζ Tω 1 T2ω2
低频段,即ωT<<1时
Lω 20lg1=0 dB
——低频渐近线为一条0dB的水平直线。
22
Lω 20lg 1 T2ω2 2 2ζ Tω 2
高频段,即ωT>>1时
L( ) 20 lg( 2T 2 ) 40 lg(T )
当ω增加10倍
部和虚部,求出渐近线;
5. 最后在G(jω)H(jω)平面上绘制出系统开环频率特性的
极坐标图。
2
绘制系统开环频率特性的极坐标图,需把系统所包含 的各个环节对应频率的幅值相乘,相角相加。
例5.2 :求如下传递函数的极坐标图。
Gjω ejω T
1 jω T 解: G(jω)可写为:
Gjω e jω T 1
0.1
0.2 0.3
0.7 1
0.1
0.2 0.3 0.7
1
0.2
0.4 0.6 0.8 1
/n
2
4 6 8 10
24
可见:当频率接近 ω ωn 时,将产生谐振峰
值。阻尼比的大小决定了谐振峰值的幅值。

线性系统的频域分析方法教学课件PPT开环频率曲线的绘制

线性系统的频域分析方法教学课件PPT开环频率曲线的绘制

h
7
二、开环幅相曲线的绘制(1)
绘制方法 (1)起点 0 和终点 ; (2)与实轴的交点 ( x , 0 ) ; 穿越频率: x
(3)变化范围(象限和单调性)。
Im [G (j x)H (j x)] 0 (x ) G ( jx ) H ( jx ) k ;k 0 , 1 , 2 ,
G( jx )H( jx ) K
25.11.2020
h
12
二、开环幅相曲线的绘制(5)
例5.设系统开环传递函数为
试绘制系统开环概G 略(s)幅H (相s)曲s 线(T s 。 1 )(K s2 n 2 1 ); K ,T0
解:
起点: G (j0 )H (j0 ) 9 0 终点: G (j )H (j )0 3 6 0
h
2
10
二、开环幅相曲线的绘制(4)
例3 已知单位反馈系统开环传递函数为
G (s ) K (s 1 ) ; s (T 1 s 1 )(T 2 s 1 )
K ,T 1 ,T 2 , 0
试绘制系统概略开环幅相曲线。
解:起点: Gj090
终点:
Gj0180
25.11.202曲线的绘制(5)
25.11.2020
h
3
一、典型环节及其频率特性(2)
非最小相位系统环节 1)比例环节 K (K0) 2)惯性环节 1/(1 T s) (T0 )
3)一阶微分环节 1Ts (T0)
4)振荡环节 1 /( s 2 /n 2 2 s /n 1 )(n 0 ,0 1 )
5)二阶微分环节 s 2 /n 2 2 s /n 1(n 0 ,0 1 )
第五章 线性系统的频域分析法
5-1 引言 5-2 频率特性 5-3 开环频率特性曲线的绘制 5-4 频域稳定判据 5-5 稳定裕度 5-6 闭环系统的频域性能指标

自动控制_05c开环频率特性曲线的绘制

自动控制_05c开环频率特性曲线的绘制

K (1 T1T2 2 ) Q( ) (1 T12 2 )(1 T22 2 )
而 A( ) K
1
1 T
2 1
2

1 1 T
2 2 2
( ) 90 arctanT1 arctanT2 ,
当ω=0时 P(0) K (T1 T2 ),Q() , A(0) , (0) 90 表 明低频率段的渐近线是一条过实轴-K(T1+T2)点且平行于 虚轴的直线。 当ω→∞时 P() 0, Q() 0, A() 0, () 90 90 90 270 可见,此时高频段是以-270°作为极限角而卷入坐标原点 的。
设系统开环传递函数 G ( s ) 中含有V个积分环节,其相应 的频率特性为 m1 m2 2 2 ( 1 j ) [ ( j ) 2 k k ( j ) 1] i k K i 1 k 1 G ( j ) n1 n2 v ( j ) (1 jT j ) [Tl 2 ( j ) 2 2 lTl ( j ) 1]
图5-26 例5-2系统的幅相频率特性
在绘制系统的开环极坐标时,应注意曲线所具 有的一些特征。例如:当ω→0时低频段曲线从何 处出发?而当 ω→∞时的高频段特性曲线以什么姿 态卷向原点?曲线在ω值为多大时跨越实轴或虚轴? 跨越点的坐标值如何?等等。后两个问题我们已经 作过说明,下面讨论前两个问题。
K (1 jT1 )(1 jT2 ) G ( j ) (1 jT1 )(1 jT2 )(1 jT1 )(1 jT2 )
K [(1 T1T2 2 ) j (T1 T2 ) ] 2 2 2 2 (1 T1 )(1 T2 ) K (1 T1T2 2 ) K (T1 T2 ) j 2 2 2 2 (1 T1 )(1 T2 ) (1 T12 2 )(1 T22 2 )

自动控制原理课件

自动控制原理课件

例 设Ⅰ型系统的开环传递函数为
K G (s) = s (1 + Ts )
试绘制系统的Bode图。 图 试绘制系统的 解 系统开环对数幅频特性和相频特性分别为
L(ω ) = L1 (ω ) + L2 (ω ) + L3 (ω ) = 20 lg K − 20 lg ω − 20 lg 1 + T 2ω 2
开环相频特性: 开环相频特性:
ϕ(ω) = ∠G( jω) = ∑ϕi (ω)
i =1
n
(5-20) 20)
结论: 由此看出, 结论: 由此看出,系统的开环对数幅频特性 L(ω)等于各个串联环节对数幅频特性之和;系 等于各个串联环节对数幅频特性之和; 统的开环相频特性 ϕ(ω) 等于各个环节相频特性 之和。 之和。
4
惯性环节
1 G4 ( jω) = j0.2ω +1
L4 (ω) = −20 lg 1 + (0.2ω)2
ϕ4 (ω) = −arctg0.2ω
1 ω4 = = 5rad ⋅ s −1 对数幅频特性渐 转折频率 , 0.2 近线类似于 L3 (ω),相频特性类似于ϕ3 (ω)。
比例微分环节
G5 ( jω) = 1 + j0.05ω
5.3
系统的开环频率特性
控制系统开环频率特性的典型环节分解 开环对数频率特性曲线的绘制( 开环对数频率特性曲线的绘制(Bode图) 图 开环幅相特性曲线的绘制( 开环幅相特性曲线的绘制(Nyquist图) 图 最小相位系统( 最小相位系统(minimum phase system) )
5.3.1 系统的开环对数频率特性 一、控制系统开环传递函数的典型环节分解
的零型系统的Bode图。 图 的零型系统的 解 系统开环对数幅频特性和相频特性分别

03-频率特性法——奈氏图和伯德图画法

03-频率特性法——奈氏图和伯德图画法
解: 典型环节传递函数表示的标准形式
G(s)H
(s)
40(0.5s 1) s(2s 1)( 1 s 1)
30
其对应的频率特性表达式为
G( j)H ( j)
40(0.5 j 1) j(2 j 1)( 1 j 1)
30
惯性环节
转折频率:0.5 2 30
低频段:V=1,在ω=1 处 20lgK=20lg40=32 , -20 dB/dec,
遇到惯性环节的转折频率,斜率减小20dB/dec 遇到一阶微分环节的转折频率,斜率增加20dB/dec 遇到二阶微分环节的转折频率,斜率增加40dB/dec 遇到振荡环节的转折频率,斜率减小40dB/dec
第11页,共23页。
例:绘制开环对数幅频渐近特性曲线,设开环传递函数为
G(s)H (s) 300 (s 2) s(s 0.5)(s 30)
系统的伯德图:
L(ω)/dB
ω=1
20lgK
L(ω)=20lgK
0
低频段的曲线与横轴
相交点的频率为ω0
-40dB/dec -20dB/dec
1 ω0 ωc ω
-40dB/dec
因为
20lgK lgω0-lg1
=40

第23页,共23页。
20lgK=40lgω0
K=ω02
渐近线。
第16页,共23页。
(5) 系统开环对数相频特性表达式为
( ) arctan 0.5 900 arctan arctan 0.05
逐点计算结果 系统开环相频特性数据
第17页,共23页。
-20dB/dec
20
-20dB/dec
-40dB/dec
-40dB/dec

第5章2——Nyquist曲线

第5章2——Nyquist曲线
11
2 n arc tg n 2 1 2 n 2 n arc tg n 2 1 2 n
2016/5/20
autocumt@
5-2 幅相频率特性——Nyquist曲线
d A( ) 0 d d 1 0 d 2 2 2 2 1 n n
S (T j S 1)
j 1
h
1 ( n h ) 2 j 1
2 2 ( T j S 2 jT j S 1)
开环传递函数分解成 典型环节串连形式
autocumt@ 1
G( S ) H ( S ) Gi ( S )
i 1
N
5-2 幅相频率特性——Nyquist曲线
谐振频率:r n 1 2 2 谐振峰值:M r 1 2 1
2
自动控制原理
Im 0
0 1 Re

1 2
n
M
r

A ( r )
r
2 谐振条件: 0 0.707 2
autocumt@ 12
振荡环节的幅相特性曲线
2016/5/20
A( ) 1 T 1
2 2
( ) arctan T
Im
A(0) 1; (0) 0 A() 0; () 90
0 45
1 0
Re

autocumt@ 6
1 T
2016/5/20
5-2 幅相频率特性——Nyquist曲线
i 1
结论:开环幅频特性是串联环节幅频特性幅值之积 开环相频特性是串联环节相频特性相角之和
autocumt@

第四章 频域分析(第三节)1

第四章 频域分析(第三节)1
v
G (s) =
jt m w )
? ( j w ) (1 + jT1 w )(1 + jT 2 w ) 鬃 (1 + jT n - v w )
(n
m)
其分母阶次为n-m,分子阶次为m,v=0,1,2…, 乃奎斯特图具有以下特点: (1) 当ω=0时,乃奎斯特图的起点取决于系统的型次:
0型系统(v=0) 起始于正实轴上某一有限点;
由系统的频率特性
G ( jw ) = = K j w (1 + jT w ) - KT 1+ T w
2 2
= - K
K j w (1 - jT w )
( j w ) (1 + jT w )(1 - jT w )
w (1 + T w
2 2
2
+ j
)
- KT
则系统的实频特性为
U (w ) = R e 轾 ( jw ) = G 2 2 臌 1+ T w
ω=0

Im
K (T1T2 ) T1 T2
3 2
[G ( j )]
O ω=∞
Re
例 4-6 已 知 系 统 的 开 环 传 递 函 数 G (s) =
K (1 + T1 s ) s (1 + T 2 s )
(T1> T 2 ) , 试 绘 制 其 N y q u i s t 图 。
解 系统是由一个比例环节﹑一个积分环节﹑ 一个一阶微分环节和一个惯性环节串联组成, 其频率特性为 K (1 + jT1 w ) G ( jw ) = ( j w )(1 + jT 2 w ) = K (T1 - T 2 )
(1 + T 2 w

4.4.2 开环频率和奈奎斯特图

4.4.2 开环频率和奈奎斯特图

3. 如果Nyquist图经过(-1,j0),则系统临界稳定。
4. 如果Nyquist图的的变化范围为0到+∞, 那么Z=P-2N
推论:若Nyquist图顺时针包围(-1,j0)点,则系统一定不稳定。
(N = P - Z , 若N<0,P不会为负值,则必有Z ≥1)
k 例4-6 已知开环传递函数 G0 ( j ) ( T1 j 1 )( T2 j 1 ) 判断系统稳定性
C'
s 的第(4)部分无穷小半圆弧在 GH平面上的映射为顺时针旋转 的无穷大圆弧,旋转的弧度为 弧度。图 4-9(a)、(b)分别表 示当 v=1和v=2时系统的奈氏曲线,其中虚线部分是s 的无穷小半圆 弧在GH平面上的映射。

( 2)
j
S
R
0 I m
GH
k , k 100 例4-7 G0 ( j ) ( j 1)(0.5 j 1)(0.2 j 1)
画Nyquist图:
1
0
G0 ( j 0 ) 10000 G ( j ) 0 2700
2

0 单调变化
与实轴有交点,为-7.9
(分母有理化,按虚实部讨论)
j S 平面 j
2 1 - j D形围线 3
s
半径无限大
j j
S平面
Im G 平面 0

j
-1
Re
N= -2
Im G 平面 0
N= 0 • 注意域的映射关系
-1
Re
Nyquist稳定判据(在G0 (s)平面上) : 必须使得Z=0(Z为不稳定闭环特征根的个数)。 1. 若系统开环稳定,则闭环系统稳定的条件是Nyquist图不包 围(-1,j0)点。 (N = P - Z = 0-0 = 0) 2. 闭环系统稳定的充要条件是 N = P ( N = P - Z = P 所以 Z = 0 )

开环幅相特性曲线

开环幅相特性曲线

开环幅相特性曲线
如果是0型系统,幅相曲线就是奈奎斯特曲线,但如果它不是0型系统就要在幅相曲线补齐虚线才是奈奎斯特曲线。

幅频特性就是指系统频率响应的幅度随频率变化的曲线,幅度大的地方对应通带,也就是对应频率成分通过系统有较小衰减,幅度小的地方对应阻带,也就是对应频率成分通过系统有较大衰减,根据这个特性,可以用来观测比较滤波器的情况,观察其是否符合要求也就是作为滤波器的技术指标。

理想滤波器是分段常数型的,对应的脉冲响应是无限长的sinc函数,实际系统不可能实现,因此要对脉冲响应进行截断处理,这就在频域产生吉布斯效应,也就是在通带和阻带内形成波动,并且不再尖锐截止,产生过度带。

同时可以画幅频特性曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
j Im
起点与终点:
0
G( j0 ) 180o , G( j) 0 360o
当包含一阶微分环节,这时的幅相曲 线也可能出现凹凸,例如
G(s)
K (T3s 1)
s 2 (T1s 1)(T2 s 1)(T4 s 1)
起点与终点:
0
G( j0 ) 180o , G( j) 0 360o
G( j) 0 n 90o
2021/2/27
Automatic Control Theory
6
由此可见,若包含 n 个惯性环节,
m个一阶微分环节,则有
P(0) K
0
G( j) (m n) 90o
n2
n3
当开环传递函数包含有微分环节时,幅相
n4
曲线会出现凹凸,幅值和相位不再是单调
)
2型系统包含两个积分环节,例如
G(s)
K
s 2 (T1s 1)(T2 s 1)
G( j)
K
K
( j) 2 ( jT1 1)( jT2 1) 2 1 T12 2
() 180 arctgT1 arctgT2
2021/2/27
Automatic Control Theory
e j ( )
1 T22 2
0 Re
j Im
0 Re
若T1大于其它时间常数,幅相曲线如图所示,与实轴、虚轴的 交点可以用对应的实部、虚部表达式求出。
2021/2/27
Automatic Control Theory
11
基本规律:设
P( ) jQ( )
() 90 arctgT1 arctgT2 arctgT3
2021/2/27
Automatic Control Theory
8
j Im
G( j) K (T1 T2 T3 ) 3T1T2T3 (1 T12 2 )(1 T2 2 2 )(1 T32 2 )
x
起点: G( j0) A(0) K 终点: G( j) A() 0
G( j0) (0) 0o G( j) () 180o
与实轴的交点: Q(x ) 0 Q() K (T1 T2 ) /(1 T12 2 )(1 T22 2 ) 0
x 0
与虚轴的交点: P( y ) 0
P() K (1 T1T2 2 ) /(1 T12 2 )(1 T2 2 2 )
K (1 T1T2 2 ) 0
2021/2/27
y
1 T1T2
n
Automatic Control Theory
Q(
n
)
K
T1T2 T1 T2
5
K 0
0
P(0) K 0
0
1 / T1T2
K T1T2 T1 T2
由于含有两个惯性环节,当 G( j) 0 180o
由此可见,若包含 n 个惯性环节,则有
变化的。例如
P(0) K
0
G(s)
K(T1s 1)
(T2 s 1)(T3s 1)(T4 s 1)
n 3, m 1
G( j0) K0o , G( j) 0(1 3)90o 0 180o
2021/2/27
Automatic Control Theory
7
开环传递函数含有积分环节时的开环幅相曲线
例3 设某单位反馈系统的开环传递函数为 K
G(s) s(T1s 1)(T2 s 1)(T3s 1)
假设 T1 T2 T3 ,试概略绘制开环幅相曲线,并进行分析。
G( j)
K
j ( jT1 1)( jT2 1)( jT3 1)
K
e j ( )
1 T12 2 1 T2 2 2 1 T3 2 2
2
A 1/ T 0
概略地绘制开环幅相曲线应当反映开环频率特性的三个重要因素: (1)开环幅相曲线的起点 0 与终点 (2)开环幅相曲线与实轴、虚轴的交点 (3)开环幅相曲线的变化范围(象限、单调性)
2021/2/27
Automatic Control Theory2T 0ຫໍສະໝຸດ T 2021/2/27
P(0 ) Vx K (T1 T2 T3 )
2021/2/27
Automatic Control Theory
9
令 Q( ) 0 , x 1 / T1T2 T2T3 T3T1
P(
x
)
K (T1 T2 T3 ) x 2T1T2T3 (1 T12 x 2 )(1 T2 2 x 2 )(1 T3 2 x 2
Automatic Control Theory
3
例2 某零型反馈控制系统,系统开环传递函数
G(s)
K
(T1s 1)(T2 s 1)
试概略绘制系统的开环幅相曲线。
G( j)
K
G( j) e j() P() jQ()
( jT1 1)( jT2 1)
G( j )
K
(T1 ) 2 1 (T2 ) 2 1
G( j) () tg 1 T1 tg 1 T2
实部与虚部
P() K (1 T1T2 2 ) /(1 T12 2 )(1 T2 2 2 )
Q() K (T1 T2 ) /(1 T12 2 )(1 T2 2 2 )
2021/2/27
Automatic Control Theory
4
G( j0) K0o , G( j) 0 180o
T RC u r
C R uc
G(s) Ts s Ts 1 s 1/ T
试绘制其幅相特性。
2021/2/27
Automatic Control Theory
1
G( j) j T
T
j
(
arc
tgT
)
e2
jT 1 1 2T 2
G( j)
T
OP
j
P
1 2T 2 AP
G( j) arc tg T
3、开环幅相曲线绘制
开环幅相曲线绘制方法:
(1)由开环零点-极点分布图,用图解计算法绘制;
(2)由开环幅频特性和相频特性表达式,用计算法绘制。
(3)由开环频率特性的实部和虚部表达式,用计算法绘制。
概略地绘制幅相曲线的方法
例1 设 RC超前网络,其传递函数
G(s)
R
Ts
R (1/ Cs) Ts 1
Vx
0
Re
j K 1 2 (T1T2 T2T3 T3T1) (1 T12 2 )(1 T2 2 2 )(1 T32 2 )
P() jQ()
0
起点与终点: G( j0 ) 90o , G( j) 0 360o
0 幅相曲线的渐近线是横坐标为 V x ,平行与虚轴的直线
0
相关文档
最新文档