六章原子发射光谱分析法

合集下载

材料研究方法 6 光谱分析

材料研究方法 6 光谱分析

-吸收光谱的特征
(1)比较吸收光谱法 根据化合物吸收光谱的形状、吸收峰的数目、强度、位臵进行定性分 析 (2)计算max的经验规律
2)、定量分析
应用范围:无机化合物,测定主要在可见光区,大约可测定50多种元素 有机化合物,主要在紫外区 单组分物质的定量分析
测定条件: 选择合适的分析波长(λmax)
3)、 → * 跃迁
→ * 能量差较小 所需能量较低 吸收峰紫外区 ( 200nm左右)
不饱和基团(—C=C—,—C = O )或体系共轭,E更小,λ更 大
4)、n → * 跃迁
含有杂原子的不饱和基团,如 -C=O,-CN 等的化合物, 在杂原子上有未成键的 n 电子,能级较高。激发 n 电子跃迁 到* ,即n → * 跃迁所需能量较小,λ 200~700nm(近紫 外区)
→ *
>
n→*

→*
> n→ *
200nm以下
150~250nm
200nm
200~700nm
2.紫外光谱中常用的光谱术语
1)、发色团和助色团
(1)生色团(发色团):具有 轨道的不饱和官能团称为发色团 有机化合物:具有不饱和键和未成对电子的基团 具n 电子和π电子的基团 产生n→ π*跃迁和π→ π*跃迁 跃迁E较低
A 试样状态
B 溶剂极性
C. 诱导效应
羰基的伸缩振动频率
1715cm-1
<
1780cm-1
<
1827cm-1
<
1876cm-1
<
1942cm-1
吸电子基团通过诱导效应,将使基团振动向高频转移。
D. 共轭效应
碳碳双键的伸缩振动频率

原子发射光谱分析法

原子发射光谱分析法
原子发射光谱分析法
2023-11-06
目录
• 原子发射光谱分析法概述 • 原子发射光谱仪 • 分析方法与样品处理 • 原子发射光谱法的应用 • 原子发射光谱法的优缺点 • 研究成果与应用实例
01
原子发射光谱分析法概述
定义与原理
定义
原子发射光谱分析法是一种基于原子发射光谱学的方法,通过对样品中原子 或离子的特征光谱进行分析,实现对其成分和含量的测定。
原理
当样品被加热或受到能量激发时,原子会从基态跃迁到激发态,并释放出特 征光谱。通过对这些光谱进行分析,可以确定样品中元素的种类和含量。
发展历程与重要性
发展历程
原子发射光谱分析法自19世纪末发展至今,经历了从经典光谱分析到现代光谱仪 器分析的演进过程。
重要性
原子发射光谱分析法在科学研究和工业生产中具有广泛的应用价值,为材料科学 、环境科学、生命科学等领域提供了重要的分析手段。
03
该方法广泛应用于地质、环保、生物医学等领域,用于研究复杂样品中元素的 含量、分布和化学形态。
05
原子发射光谱法的优缺点
优点
高灵敏度
原子发射光谱法可以检测到低浓度的元素 ,具有很高的灵敏度。
无需样品处理
原子发射光谱法不需要对样品进行复杂的 处理,可以直接进行分析。
快速分析
该方法可以实现多元素同时分析,大大缩 短了分析时间。
发和激发。
光谱仪的构造
包括入射狭缝、准直镜、光栅 、聚焦镜和ቤተ መጻሕፍቲ ባይዱ射狭缝。
光谱仪工作原理
样品被激发后,原子会产生不 同波长的光谱,通过光栅分光 后形成光谱,再经过聚焦镜聚 焦到出射狭缝,最后由检测器
进行检测。
光谱仪的分类与特点

原子发射光谱分析法

原子发射光谱分析法
(1)样品的组成对分析结果的影响比较显著。因此, 进行定量分析时,常常需要配制一套与试样组成相仿 的标准样品,这就限制了该分析方法的灵敏度、准确 度和分析速度等的提高。
(2)发射光谱法,一般只用于元素分析,而不能用来 确定元素在样品中存在的化合物状态,更不能用来测 定有机化合物的基团;对一些非金属,如惰性气体、 卤素等元素几乎无法分析。
在正常状态下,元素处于基态,元素在受到外界能量(热能或电能)激发时 ,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱)。
热能、电能
基态元素M
E
激发态M*
2020/10/13
特征辐射
激发电位:原子中某一外层电子由基态激发到高能级所需要 的能量称为激发电位(Excitation potential)(or激发 能)。
1.玻耳兹曼分布定律 原子由某一激发态 i 向基态或较低能级 j 跃迁
,所发射的谱线强度与激发态原子数成正比。
在热力学平衡时,单位体积的基态原子数N0与激发态原子数Ni的之
间的分布遵守玻耳兹曼分布定律:
Ni
gi g0
Ei
N0 e kT
gi 、g0为激发态与基态的统计权重; Ei :为激发能;k为玻耳兹曼常数;T为
Self-absorption and self reversal of spectrum line
2020/10/13
• 定量分析阶段
• 19世纪20年代至50年代,罗马金和赛伯分别提出定 量分析的经验公式,把光谱线强度和物质浓度联系 了起来。
• 罗马金进一步提出了罗马金-赛伯公式的物理意义, 完善了定量分析的基础。使AES成为广泛应用的成 分分析手段。
• 现代阶段
• 开始于20世纪60年代,由于光电谱仪在工业中广泛 应用,Fassel and Greefield 把电感耦合等离子体电 源(ICP)应用于发射光谱的手段,使分析性能有了 显著的提高,成为分析分析中最能用的多元素分析

原子发射光谱法测定方法

原子发射光谱法测定方法

原子发射光谱法测定方法原子发射光谱法是一种用于元素分析的传统方法,也是目前最常用的表征原子能级结构的方法。

本文将详细介绍原子发射光谱法的原理、测定方法以及应用。

一、原理原子发射光谱法基于原子能级结构的理论,利用激发源将样品原子激发为激发态,然后通过介质,将这些激发态原子的电子跃迁回到较低的能级,从而实现发射光谱。

每种元素的原子发射光谱是独特的,可以根据这些发射光谱来确定样品中各种元素的含量。

二、测定方法1. 原子发射光谱法的装置原子发射光谱法的装置一般包括以下部分:样品供给装置、激发源、光谱仪、信号放大器和信息处理装置。

2. 样品处理样品处理的重要性不言而喻,因为精确的分析结果必须从准确的样品中获得。

可以通过显微观察或分析其外观和颜色来确定样品中的化学成分和杂质。

灰吸收法和氮化方法常用于消除样品的有机和无机杂质。

3. 激发源激发源是原子发射光谱法中最关键的部分,它负责激发样品原子的电子从基态跃迁到激发态,强制性激发分为热力学激发和非热力学激发。

热力学激发是通过样品表面的火焰或电弧等电离条件来完成的,使原子达到雇员,它们可以受激光量输入并产生较高的激发能量。

非热力学激发则是通过化学气氛或单独的电离源激发,也必须使用高能量输入的激发源。

4. 光谱仪当样品中的原子被激发时,它们将发出放射性,从而产生辐射谱线。

重要的是收集这些发光谱线并将其分解成其组成部分。

这可以通过光谱仪完成,光谱仪利用棱镜或光栅将光谱分离成单色光信号并记录光谱。

光谱准确度与光谱仪精度有关,应选择质量好,精度高的光谱仪。

5. 信号放大器和信息处理信号放大器和信息处理是相互关联的,在信号处理程序中可以调整放大器的控制,以及记录和处理光谱图的算法和软件。

在信号放大器和信息处理的整个过程中,确定计算要素浓度的算法和过程是至关重要的。

三、应用原子发射光谱法在我们的日常工作中有着广泛应用的地方,如石化、机械、金属、环保、农业、医药、食品等各个领域。

原子发射光谱分析

原子发射光谱分析

ICP的分析特点 的分析特点
1. 对大多数元素有高的灵敏度 检测限达 -9-10-11 检测限达10 g·L-1因为温度高(等离子体核处 因为温度高(等离子体核处10000K,中央 ,中央6000- - 8000K);惰性气氛,有利于难熔物质分解。 );惰性气氛 );惰性气氛,有利于难熔物质分解。 2. 测定线性范围宽 因趋肤效应而无自吸现象。 因趋肤效应而无自吸现象 自吸现象。 高频电流密度在导体截面呈不均匀分布, 趋肤效应 高频电流密度在导体截面呈不均匀分布,集 中在导体表层的现象。 中在导体表层的现象。 3. 碱金属电离不造成干扰,因电流密度大。 碱金属电离不造成干扰,因电流密度大。 4. 无电极污染 因是无极放电。 因是无极放电。 5. 耗样量小 载气流速低,试样在中央通道充分激发 载气流速低, 6. 背景干扰小 因工作气体氩气是惰性气体不产生其 它物质。 它物质。
第一共振线 原子由第一激发态跃迁到基态发射的谱线。 原子由第一激发态跃迁到基态发射的谱线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 原子获得足够的能量(电离能)产生电离。 原子获得足够的能量(电离能)产生电离。失去一个电 子形成一级离子,再失去一个电子形成二级离子。 子形成一级离子,再失去一个电子形成二级离子。 离子由第一激发态跃迁到基态发射的谱线。 电离线 离子由第一激发态跃迁到基态发射的谱线。与电 离能大小无关,离子的特征共振线。 离能大小无关,离子的特征共振线。 识别元素的特征光谱鉴别元素的存在 定性分析 测定特征谱线的强度测定元素的含量 定量分析
R 镇流电阻 调节 和稳定电流 L 减小电流波动
直流电弧工作原理
电弧点燃后,热电子流高速通过分析间隔冲击阳极, 电弧点燃后,热电子流高速通过分析间隔冲击阳极, 产生高热,试样蒸发并原子化, 产生高热,试样蒸发并原子化,电子与原子碰撞电离出 正离子冲向阴极。电子、原子、离子间的相互碰撞, 正离子冲向阴极。电子、原子、离子间的相互碰撞,使 原子跃迁到激发态,返回基态时发射出该原子的光谱。 原子跃迁到激发态,返回基态时发射出该原子的光谱。 弧焰温度: 多种元素激发 弧焰温度:4000~7000 K,可使 多种元素激发。 ~ ,可使70多种元素激发。 绝对灵敏度高,背景小,适合定性分析。 特 点:绝对灵敏度高,背景小,适合定性分析。

原子荧光光谱分析法

原子荧光光谱分析法
*
阶跃线荧光:
光照激发,非辐射方式释放部分能量后,再发射荧光返回基态;荧光波长小于激发线波长(荧光能量间隔大于激发线能量间隔);非辐射方式释放能量:碰撞,放热; 光照激发,再热激发,返至高于基态的能级,发射荧光,图(c)B、D ;
Cr原子:吸收线359.35nm;再热激发,荧光发射线357.87nm,图(c)B、D
01
If = Ia 在理想情况下:
02
I0 原子化火焰单位面积接受到的光源强度;A为受光照射在检测器中观察到的有效面积;K0为峰值吸收系数;l 为吸收光程;N为单位体积内的基态原子数;
03
*
三、原子荧光光度计
1.仪器类型
单通道:每次分析一个元素; 多通道:每次可分析多个元素; 色散型:带分光系统; 非色散型:采用滤光器分离分析线和邻近线;
a b c d
*
anti-Stokes荧光:
a b c ห้องสมุดไป่ตู้ d
荧光波长小于激发线波长;先热激发再光照激发(或反之),再发射荧光直接返回基态;图(d) ; 铟原子:先热激发,再吸收光跃迁451.13nm;发射荧光410.18nm, 图(d)A、C ;
*
直跃线荧光(Stokes荧光)
Pb原子:吸收线283.13 nm;荧光线407.78nm; 同时存在两种形式:
铊原子:吸收线337.6 nm;共振荧光线337.6nm; 直跃线荧光535.0nm;
a b c d
特点:
光源与检测器成一定角度;
*
多道原子荧光仪
多个空心阴极灯同时照射,可同时分析多个元素
*
2.主要部件
光源:高强度空心阴极灯、无极放电灯、可调频激光器; 可调频激光器:高光强、窄谱线; 原子化装置:与原子吸收法相同; 色散系统:光栅、滤光器; 检测系统:

原子发射光谱分析法(1)

原子发射光谱分析法(1)
应用:易熔金属合金、难激发元素及高含量元素的定量分析。
C、电感耦合等离子体光源〔ICP〕
ICP时二十世纪六十年代提出、七十年代得到迅速开展的一种新型光源。 与其它光源相比,ICP具有稳定性好,样品组成影响小、线性分析范围大及无 电极污染等优点,因而是发射光谱法最有前途和竞争力的光源之一。
1、等离子体的一般概念
三股氩气流分别由三个同心石英管进入炬管。在管子的 上部环绕着一水冷却感应线圈。当高频发生器供电时,线圈 轴线方向上产生强烈振荡的磁场。用高频火花等方法时中间 流动的工作气体电离,产生的离子和电子再与感应线圈所产 生的起伏磁场作用。这一相互作用使线圈内的离子和电子沿 封闭环路流动,它们对这一运动的阻力那么导致欧姆加热作 用。由于强大的电流产生的高温,使气体加热,从而形成火 炬状的等离子体。
简单平安。
〔4〕缺点: 放电稳定性差,试样耗量大,电极易烧坏变形,重
现性差等。
〔5〕应用: 矿物和金属材料中痕量元素的定性、半定量分析,
特别是难熔氧化物中痕量元素的定性、半定量分析;不 宜用于定量及低熔点元素的分析。
B、高压火花
〔1〕 线路图及根本原理
变压器T将电源E提供的220V电压升至10~25KV,然后对电容器C充电,当 电容器C的电压到达分析间隙G的击穿电压时,通过电感L向间隙G放电,产生电火花 放电。放电完毕后,又重新充电,放电,这个过程的不断重复,到达维持火花放电的 目的。
单位:nmmm ,或是每1mm 内所包含的波长范围。
〔5〕未采用电极:不存在电极的玷污问题;
〔6〕应用范围广,检测线性范围宽:可用于周期表中绝大多数元素〔约70多 种〕的测定:线性范围可达4~5个数量级,从ppt到百分之几十的高含量元素 的测定。
趋肤效应

原子发射光谱法练习题

原子发射光谱法练习题

第六章原子发射光谱法一、选择题1、下列各种说法中错误的是()A、原子发射光谱分析是靠识别元素特征谱线来鉴别元素的存在B、对于复杂组分的分析我们通常以铁光谱为标准,采用元素光谱图比较法C、原子发射光谱是线状光谱D、原子发射光谱主要依据元素特征谱线的高度进行定量分析2、原子发射光谱中,常用的光源有()A、空心阴极灯B、电弧、电火花、电感耦合等离子炬等C、棱镜和光栅D、钨灯、氢灯和氘灯3、谱线强度与下列哪些因素有关:①激发电位与电离电位;②跃迁几率与统计权重;③激发温度;④试样中元素浓度;⑤电离度;⑥自发发射谱线的频率()A、①,②,③,④B、①,②,③,④,⑤C、①,②,③,④,⑥D、①,②,③,④,⑤,⑥4、用原子发射光谱分析法分析污水中的Cr、Mn、Cu、Fe等(含量为10-6数量级),应选用下列哪种激发光源()A、火焰B、直流电弧C、高压火花D、电感耦合等离子炬5、原子发射光谱的产生是由于:( )A、原子的次外层电子在不同能态间跃迁B、原子的外层电子在不同能态间跃迁C、原子外层电子的振动和转动D、原子核的振动6、矿石粉未的定性分析,一般选用下列那种光源为好( )A、交流电弧B、直流电弧C、高压火花D、等离子体光源二、填空题:1、原子发射光谱分析中,对激发光源性能的要求是,。

对照明系统的要求是,。

2、等离子体光源(ICP)具有 , , , 等优点,它的装置主要包括 , , 等部分。

3、在进行光谱定性分析时,在“标准光谱图上”,标有102852Mgr I ,符号,其中Mg 表示 ,I 表示 ,10表示 ,r 表示 ,2852表示 。

4、原子发射光谱定量分析的基本关系是 。

三、解释术语1、激发电位和电离电位2、共振线、灵敏线和最后线3、谱线自吸 四、简述题:1、原子发射光谱的分析过程。

2、简述原子发射光谱定性、定量分析的依据及方法。

3、简述影响谱线强度的因素。

4、写出光谱定量分析的基本关系式,并说明光谱定量分析为什么需采用内标法6、何谓分析线对选择内标元素及分析线对的基本条件是什么第三章答案:一、选择题:1-6:D B D D B B (因直流电弧电极头温度高,有利于蒸发,且它的激发能力已能满足一般元素激发的要求,样品又是矿石粉未。

原子发射光谱分析内标法

原子发射光谱分析内标法

原子发射光谱分析内标法
在化学分析领域,原子发射光谱分析内标法是一种重要的分析技术,它是基于原子发射光谱(AES)技术来进行物质成分分析的分析技术。

它利用一种特殊的内标技术,结合原子发射光谱技术,可以准确、灵敏地测定复杂物质中化合物的组成成分。

原子发射光谱分析内标法是一种十分有效的分析技术,其分析过程以“内标-外标”两种模式进行,以增强检测的灵敏度和精确度。

确定一种有系统的内标组合,并且要满足原子发射光谱分析的要求,来满足物质分析中各种成分的检测。

此外,为了使检测结果更准确,还可以使用固定比例内标成分和固定比例内标成分的补偿因子来计
算量。

原子发射光谱分析内标法的实现细节是检测信号的准确度的关键。

内标法要求检测信号的精度高、稳定度好,所以检测仪器的精度要求也就比较高。

一般情况下,原子发射光谱仪的精度在0.05%以上,能够满足大多数检测需求。

此外,原子发射光谱分析内标法的实施还需要一定的操作规程,包括样品的精制、样品的稀释溶液、分析标准液的稳定性检验、检测仪器的调整和维护等操作,以确保检测结果的准确。

原子发射光谱分析内标法在很多领域都有广泛的应用,如金属冶炼、制药、食品检测等,能够准确、快速地检测出物质中的化学成分,进而控制物质的质量、检出污染物和有毒物质等。

由于其具有检测灵敏度高、准确度高等优点,原子发射光谱分析内标法已经成为化学分
析的重要手段之一。

总的来说,原子发射光谱分析内标法是一种有效的分析技术,它具有检测灵敏度高、准确度高,能够准确、快速地测定物质中的化学成分,并且在很多领域都有重要的应用。

实施这项技术需要精确的操作技术和准确的检测仪器,以及科学的操作规程,以确保检测的准确性。

仪器分析第6章 原子吸收光谱

仪器分析第6章 原子吸收光谱
火焰类型正确。根据燃气与助燃气比例可将火焰 分为:化学计量火焰,富燃火焰,贫燃火焰。
化学计量火焰 由于燃气与助燃气之比与化学计量 反应关系相近,又称为中性火焰,这类火焰,温 度高、稳定、干扰小背景低,适合于许多元素的 测定。
富燃火焰 指燃气大于化学元素计量的火焰。其特 点是燃烧不完全,温度略低于化学火焰,具有还 原性,适合于易形成难解离氧化物的元素测定; 干扰较多,背景高。
(3)原子吸收法的选择性高,干扰较少且易于克服
(4)原子吸收条件下,原子蒸气中基态原子比激发 态原子数目多得多,所以测定的是大部分原子,这 就使得原子吸收法具有较高的灵敏度
原子吸收光谱的特点:
优点: (1) 检出限低,10-10~10-14g; (2) 准确度高,RSD约1%~5%; (3) 选择性高,一般情况下共存元素不干扰; (4) 应用广,可测定70多个元素(各种样品中) 局限性:难熔元素、非金属元素测定困难;不能同 时多元素测定
澳大利亚物理学家瓦尔西发表了著名论文:《原 子吸收光谱法在分析化学中的应用》奠定了原子吸收 光谱法的基础,之后原子吸收光谱法迅速发展。
原子吸收光谱与原子发射光谱的比较:
(1)原子吸收光谱分析利用的是原子吸收现象,而 发射光谱分析则基于原子发射现象
(2)原子吸收线比发射线的数目少的多,这样谱线 的重叠概率小
✓ 单道双光束型:利用参比光束补偿 光源引起的基线漂移。
1. 光源
作用:辐射待测元素的特征光谱(共振线和其它 非吸收谱线),以供测量之用。
要求: A. 能辐射锐线光源 B. 辐射的光强度必须足够、稳定且背景小 C. 灯供电稳定,以确保光强度稳定 空心阴极灯、蒸气放电灯、无极放电灯
空心阴极灯结构
♫ 干燥:试液随升温脱水干燥,由液体转化为固 体。一般情况下,90~120℃,15 ~ 30 s。

6-原子吸收光谱

6-原子吸收光谱

二、原子化器:
作用:
原子化器的功能是提供能量,使试样干燥、蒸发并原 子化,产生原子蒸气。 要求: ●原子化效率要高。 ●稳定性要好。雾化后的液滴要均匀、粒细; ●低的干扰水平。背景小,噪声低; ●安全、耐用,操作方便。
火焰原子化系统 原子化系统类型 非火焰原子化系统
1、火焰原子化系统:
火焰原子化系统是由化学火焰热能提供能量。
★ 分析速度快,仪器比较简单,操作方便,应用比较广。
缺点:
1. ★除了一些现成、先进的仪器可以进行多元素的测定外,
目前大多数仪器都不能同时进行多元素的测定; 2. ★由于原子化温度比较低,对于一些易形成稳定化合物的 元素,如W、Ni、Ta等稀土等以及非金属元素,原子化效 率低,检出能力差; 3. ★非火焰的石墨炉原子化器虽然原子化效率高,检测限低 ,但是重现性和准确性较差; 4. 对复杂样品分析干扰也较严重。
宽度(mm)。
四、检测系统
定量分析方法
1.标准曲线法
配制一系列不同浓度的标准试样,由低到高依次分析, 将获得的吸光度A数据对应于浓度作标准曲线,在相同条件下 测定试样的吸光度A数据,在标准曲线上查出对应的浓度值;
应注意的问题:
1. 所配置的标准溶液的浓度,应在吸光度和浓度呈直 线关系的范围内。 2. 由于雾化效率和火焰状态经常变动,标准曲线的斜 率也随之变动,每次测定前应用标准溶液对吸光度 进行检测。 3. 在整个分析过程中操作条件应保持不变。 4. 标准样品与待测试样的组成应保持一致。
(3)压力变宽(劳伦兹变宽,赫鲁兹马克变宽)ΔVL
由于原子相互碰撞使能量发生稍微变化。 劳伦兹(Lorentz)变宽: 待测原子和其他原子碰撞。 赫鲁兹马克(Holtsmark)变宽(共振变宽): 同种原子碰撞。浓度高时起作用,在原子吸收中可忽略 (4)场致变宽 外界电场、带电粒子、离子形成的电场及磁场的作用使 谱线变宽的现象;影响较小; 在一般分析条件下温度变宽和劳伦兹为主

第6章原子发射光谱法

第6章原子发射光谱法

影、定影等过程后,制得光谱底片,其上有许多黑度不同
的光谱线。
然后用映谱仪观察谱线位置及大致强度,进行光谱定 性及半定量分析。
用测微光度计测量谱线的黑度,进行光谱定量分
析。
H = E •t=KIt 黑度S定义为透过率倒数的对 数,故
S = lg1/T = lg i0 / i
感光板上谱线黑度,一般用测 微光度计测量。
(2)ICP的分析性能 ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电。 优点: Ⅰ、温度高(5000-8000K),惰性气氛,原子化条件好,有利于 难熔化合物的分解和难激发元素激发,可测定70多种元素。 Ⅱ、试样在光源中停留时间长,有利于试样的原子化、电离和 激发。氩气的环境使化学干扰和基体效应小,有很高的灵敏度。 Ⅲ、放电的稳定性很好,分析的精密度高,相对误差1%左右 。
分辨率(resolving power): 摄谱仪的光学系统能够正确分辨出紧邻两条 谱线的能力。可用两条可分辨开的光谱线波长 的平均值λ与其波长差△λ之比值来表示。即: R= λ/ △λ 集光本领 指摄谱仪的光学系统传递辐射的能力,大型 摄谱仪的集光本领较中型摄谱仪弱。
摄谱法是用感光板记录光谱。将光谱感光板置于摄谱 仪焦面上,接受被分析试样的光谱作用而感光,再经过显
原子发射光谱法的应用:在地质、冶金、机械、环境、 生命及医学等领域得到广泛应用。
第二节 原子发射光谱法的基本原理
一、原子发射光谱的产生
一般情况下,物质的原子处于基态,通过电致激发、
热致激发等激发光源作用下,原子获得能量,外层电子从 基态跃迁到较高能态变为激发态 ,约经10-8 s,外层电子就 从高能级向较低能级或基态跃迁,能量以光辐射形式发射 出去,这样就得到发射光谱。 热能、电能

原子发射光谱法

原子发射光谱法
a
b
二、定量分析基础-谱线强度
在i, j两能级间跃迁,谱线强度可表示为:
I ij= Ni Aij hυij (1) (Aij 为跃迁几率)
在高温下,处于热力学平衡状态时, 单 Ni位之体间积遵的守基Bo态ltz原m子an数n分N布0与定激律发态原子数
Ni = N0 gi/g0 e-E/kT (2)
第三节 原子发射光谱仪
原子发射光谱法仪器分为三部分:光源、分光 仪和检测器。
一、光源 光源的作用: 蒸发、解离、原子化、激发、 跃迁。 光源的类型:
直流电弧 交流电弧 电火花 电感耦合等离子体(ICP) (Inductively coupled plasma)
主要部分:
1. 高频发生器 2. 等离子体炬管 3. 试样雾化器 4. 光谱系统
R = I / I0 =Acb 取对数,得
lgR = blgc + lgA
此式为内标法光谱定量分析的基本关系式。
2. 校准曲线法: 在确定的分析条件下,用三个或三个以上
含有不同浓度被测元素的标准样品与试样 在相同的条件下激发光谱,以分线强度I或 内标分析线对强度比R或lgR对浓度c或lgc做 校准曲线。再由校准曲线求得试样被测元 素含量。
为(Bgoi,ltgz0m为an激n常发数态,和T基为态温的度统。计) 权,Ei为激发电位,K
把(2)代入(1)得:
Iij=gi/g0AijhυijN0e-Ei/kT
此式为谱线强度公式。 Iij 正比于基态原子N0 ,也就是说 Iij ∝C,这就 是定量分析依据。
影响谱线强度的因素为:
(1)统计权重(gi/g0)
影响谱线强度的因素为:
(4)激发温度(T)
温度升高,谱线强度增大。但温度升高, 电离的原子数目也会增多,而相应的原子 数减少,致使原子谱线强度减弱,离子的 谱线强度增大。

原子发射光谱

原子发射光谱

原子核外电子的壳层结构
单价电子原子:主量子数n、角量子数l、 磁量子数 m 、自旋量子数 s 磁量子数( m ): 描述核外电子云沿磁场方向的分量,即决 定了电子绕核运动的角动量沿磁场方向的 分量。 m = 0、1、 2、 3、……、 l
原子核外电子的壳层结构
单价电子原子:主量子数n、角量子数l、 磁量子数 m 、自旋量子数 s 自旋量子数( s ): 描述核外电子云自旋方向,即自旋角动量 沿磁场方向的分量。电子自旋的空间取向 只有两个,顺磁场和反磁场。s = 1/2 Na:(1s)2(2s)2(2p)6(3s)1 (3s)1 n = 3 l = 0 m=0
2、原子线和离子线
原子线(Ⅰ) :原子核外激发态电子跃迁回基态 所发射出的谱线,用罗马字母Ⅰ 标识,通常也指电弧线。 M*M (I) 离子线(Ⅱ,Ⅲ) : 离子核外激发态电子跃迁回基态 所发射出的谱线,用罗马字母Ⅱ Ⅲ等表示一级电离、二级电离离子 发射的谱线,通常也指火花线。 M+ * M+ (Ⅱ ) M2+* M2+ (Ⅲ )
光谱项
n2S+1LJ 或者nM LJ 原子发射光谱是由原子或离子的核外电子 在高低能级间跃迁而产生的,原子或离子的 能级通常用光谱项来表示。 n:主量子数; L:总角量子数; S:总自旋量子数; M=2S+1,体现了谱线的多重性 J:内量子数;又称光谱支项。
Na (1s)2(2s)2(2p)6(3s)1
原子核外电子的壳层结构
单价电子原子:主量子数n、角量子数l、 磁量子数 m 、自旋量子数 s 角量子数( l ):
描述核外电子云的形状,决定了电子绕核运 动的角动量,同一主量子数 n 下,按不同角 量子数 l 可分为n个亚层。 l = 0、1、 2、 3、 4、…… 符号: s、p、d、 f、 g、……

原子发射光谱

原子发射光谱

ICP-AES 特点
feature of ICP-AES
(1)温度高,惰性气氛,原子化条件好,有利于难熔化合
物的分解和元素激发,有很高的灵敏度和稳定性;
(2)“趋肤效应”,涡电流在外表面处密度大,使表面温 度高,轴心温度低,中心通道进样对等离子的稳定性影响小 。也有效消除自吸现象,线性范围宽(4~5个数量级); (3) ICP中电子密度大,碱金属电离造成的影响小; (4) Ar气体产生的背景干扰小; (5) 无电极放电,无电极污染; ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电; 缺点:固体进样困难,对非金属测定的灵敏度低,仪器昂贵 ,操作费用高。
1. 高频发生器 高频发生器的作用是产生高频磁 场以供给等离子体能量。 应用最广泛的是利用石英晶体压 电效应产生高频振荡的他激式高频 发生器,其频率和功率输出稳定性 高。频率多为27-50 MHz,最大输 出功率通常是2-4kW。 感应线圈一般以圆铜管或方铜管 绕成的2-5匝水冷线圈。
2. 炬管与雾化器
R 309.418 309.271 2.1 10
R KN Klb
由于 R实>R,所以可以分开两条谱线。
二、光谱仪


(1)感光板与谱线黑度 感光板主要由玻璃片基和感光层组成, 感光层又称乳剂,它是由感光物质卤化银、 明胶和增感剂等物质组成。元素发射出的光 谱使感光板感光,然后在暗室显影、定影, 感光层中金属银析出,形成黑色的光谱线。
二、光谱仪



色散率:指将不同波长的光分散开的能 力,色散率可分为线色散率和角色散率。 分辨率是指摄谱仪的光学系统能够正确 分辨出相邻两条谱线的能力。 聚光本领指摄谱仪的光学系统传递辐射 的能力。
2、光栅光谱仪的光学特性

仪器分析原子发射光谱法

仪器分析原子发射光谱法

△E = E2-E1 = hυ= hc/λ Na (1s)2 (2s)2 (2p)6 (3s)1, 3p1、3d1、4s1、4p1、4d1、4f1、 ……
每一条发射谱线的波长取决于跃迁前后两个能级(E2, E1)的差。由于各种元素的原子具有不同的核外电子结构, 根据光谱选律,特定元素的原子可产生一系列不同波长的特 征光谱(组)。原子的能级是量子化的,原子光谱是线状光 谱。通过光谱的辨认和谱线强度的测量可进行元素的定性、 定量分析,这就是原子发射光谱法(AES)。
原子光谱是原子外层电子在不同能级间跃迁的结果。在量 子力学中,电子的运动状态可用四个量子数, 即主量子数n、 角量子数l、磁量子数ml和自旋量子数ms来描述。
主量子数n表示核外电子离核的远近,n值越大,电子的能 量越高,电子离核越远。n值取为1,2,3,…任意正整数。
角量子数l 表示电子在空间不同角度出现的几率,即电子云 的形状,也代表电子绕核运动的角动量。 l 取小于n的整数, 0,1,2,…,n-1。相对应的符号是什么?
在n、L、S、J四个量子数中,n、L、S 确定后,原子 的能级也就基本确定了,所以根据n、L、S 三个量子数 就可以得出描述原子能级的光谱项:
n2S+1L
式中2S+1叫做谱项的多重性。在L≥S 时,2S+1就是内 量子数J可取值的数目,也就是同一光谱项中包含的J 值相同、能量相近的能量状态数。习惯上将多重性为1、 2、3的光谱项分别称作单重态、双重态和三重态。把J 值不同的光谱项称为光谱支项。用下式表示:
1、光源 将试样中的元素转变为原子(或离子) 的过程称为原子化。原子化、激发和发射是在 光源中进行的。
原子发射光谱分析使用的仪器设备主要包括 激发光源和光谱仪两个部分。

《仪器分析》原子发射光谱法

《仪器分析》原子发射光谱法

ms =±1/2,±3/2,∙∙∙,±S (当S为半整数时)
共有2S+1个值。
总角动量量子数(也称总内量子数)J等于L和S的矢量和, 即J=L+S。J的取值为: J=L+S,L+S-1,L+S-2,∙∙∙,| L-S | 若L≥S ,数值从J=L+S到L-S,共有(2S+1)个; 若L<S,数值从J=L+S到S-L,共有(2L+1)个。 例如,L=2,S=1,即2S+1=3, 则J=3,2,1,有 3个J值。
n是主量子数。 L是原子总角量子数,用大写英文字母S,P,D,F ∙∙∙ 表示。 L = 0 , 1 , 2 , 3 , ∙∙∙ ,( 2S + 1 )的数值写在 L 符号的左上角, (2S+1)为光谱项的多项性,也可以用符号M表示。 因每一个光谱项有(2S+1)个不同的J值,把J值注在L的右 下角表示光谱支项,每一个光谱项有(2S+1)个光谱支项。 由于 L 与 S 的相互作用,光谱支项的能级略有不同,这( 2S +1)个略有不同的能级在光谱中形成(2S+1)条距离很短的 线,称为多重线。若2S+1等于2或者3,分别称为二重线和三重 线。 当 L<S 时,每一个光谱支项只有( 2L + 1 )个支项,但( 2S +1)还称为多重性,所以“多重性”的定义是(2S+1),不 一定代表光谱支项的数目。
原子发射光谱法(AES)
原子发射光谱是基于当原子或离子受激发的外 层电子从较高的激发态跃迁到较低的能级或者基态 能级,多余的能量以光的形式辐射出来,从而产生 发射光谱。这样产生的光谱是线光谱。
原子的线光谱是元素的特征,不同的元素具有 不同的特征光谱,是定性定量分析的基础。原子发 射光谱法是元素分析的重要方法之一。
跃迁的谱线称为第一共振线或主共振线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01:42:05
b. 电极
电极材料:采用光谱纯的碳或石墨,特殊情况采用铜电极; 电极尺寸:直径约6mm,长3~4 mm; 试样槽尺寸:直径约3~4 mm,
深3~6 mm;
试样量:10 ~20mg ; 放电时,碳+氮产生氰 (CN),
氰分子在358.4~ 421.6 nm产生带 状光谱,干扰其他元素出现在该区 域的光谱线,需要该区域时,可采 用铜电极,但灵敏度低。
第六章 原子发射光谱
分析法
atomic emission spectrometry,AES
第四节 定性、定量分析方法
qualitative and quantitative analysis
methods
一、光谱定性分析 qualitative spectrometric analysis 二、光谱定量分析 quantitative spectrometric analysis 三、特点与应用 feature and applications
01:42:05
(2) 内标法基本关系式
影响谱线强度因素较多,直接测定谱线绝对强度计算难以
获得准确结Leabharlann ,实际工作多采用内标法(相对强度法)。
在被测元素的光谱中选择一条作为分析线(强度I),再选
择内标物的一条谱线(强度I0),组成分析线对。则: I a cb
相对强度R:
I0 a0 c0b0
R
I I0
标准谱图:将其他元素的分析线标记在铁谱上,铁谱起 到标尺的作用。
谱线检查:将试样与纯铁在完全相同条件下摄谱,将两 谱片在映谱器(放大器)上对齐、放大20倍,检查待测元素的 分析线是否存在,并与标准谱图对比确定。可同时进行多元 素测定。
01:42:05
01:42:05
3. 定性分析实验操作技术
(1) 试样处理 a. 金属或合金可以试样本身作为电极,当试样量很少
01:42:05
2. 光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱中 存在着自吸现象,需要引入自吸常数 b ,则:
I a cb lg I b lg c lg a 发射光谱分析的基本关系式,称为塞伯-罗马金公式(经 验式)。自吸常数 b 随浓度c增加而减小,当浓度很小,自 吸消失时,b=1。
01:42:05
c.标准加入法
无合适内标物时,采用该法。 取若干份体积相同的试液(cX),依次按比例加入不同量的 待测物的标准溶液(cO),浓度依次为:
cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO …… 在相同条件下测定:RX,R1,R2,R3,R4……。 以R对浓度c做图得一直线,图中cX点即待测溶液浓度。
时,将试样粉碎后放在电极的试样槽内; b. 固体试样研磨成均匀的粉末后放在电极的试样槽内; c. 糊状试样先蒸干,残渣研磨成均匀的粉末后放在电极
的试样槽内。液体试样可采用ICP-AES直接进行分析。 (2) 实验条件选择
a. 光谱仪 在定性分析中通常选择灵敏度高的直流电弧;狭缝宽度5 ~7m;分析稀土元素时,由于其谱线复杂,要选择色散率较 高的大型摄谱仪。
01:42:05
(3)摄谱过程
摄谱顺序:碳电极(空白)、铁谱、试样; 分段暴光法:先在小电流(5A)激发光源摄取易挥发元素 光谱调节光阑,改变暴光位置后,加大电流(10A),再次暴光 摄取难挥发元素光谱; 采用哈特曼光阑,可多 次暴光而不影响谱线相对位 置,便于对比。
01:42:05
二、 光谱定量分析
01:42:05
一、 光谱定性分析
qualitative spectrometric analysis
定性依据:元素不同→电子结构不同→光谱不同→特征光谱
1. 元素的分析线、最后线、灵敏线
分析线:复杂元素的谱线可能多至数千条,只选择其中几条 特征谱线检验,称其为分析线; 最后线:浓度逐渐减小,谱线强度减小,最后消失的谱线; 灵敏线:最易激发的能级所产生的谱线,每种元素都有一条 或几条谱线最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线;通常也是最 灵敏线、最后线;
01:42:05
2. 定性方法
标准光谱比较法: 最常用的方法,以铁谱作为标准(波长标尺);为什么选铁谱?
01:42:05
标准光谱比较定性法
为什么选铁谱? (1)谱线多:在210~660nm范围内有约4600条谱线; (2)谱线间距离分配均匀:容易对比,适用面广; (3)定位准确:已准确测量了铁谱每一条谱线的波长。
a cb a0 c0b0
A cb
lg R b lg c lg A
A为其他三项合并后的常数项,内标法定量的基本关系式。
01:42:05
内标元素与分析线对的选择:
a. 内标元素可以选择基体元素,或另外加入,含量固定; b. 内标元素与待测元素具有相近的蒸发特性; c. 分析线对应匹配,同为原子线或离子线,且激发电位相近( 谱线靠近),“匀称线对”; d. 强度相差不大,无相邻谱线干扰,无自吸或自吸小。
quantitative spectrometric analysis 1. 光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范围; 应用:用于钢材、合金等的分类、矿石品位分级等大批 量试样的快速测定。 谱线强度比较法:测定一系列不同含量的待测元素标准 光谱系列,在完全相同条件下(同时摄谱),测定试样中待测 元素光谱,选择灵敏线,比较标准谱图与试样谱图中灵敏线 的黑度,确定含量范围。
01:42:05
(3) 定量分析方法
a. 内标标准曲线法 由 lgR = blgc +lgA 以lgR 对应lgc 作图,绘制标准曲线,在相同条件下,测定 试样中待测元素的lgR,在标准曲线上求得未知试样lgc; b. 摄谱法中的标准曲线法
S = lgR = blgc + lgA 在完全相同的条件下,将标准样品与试样在同一感光板上 摄谱,由标准试样分析线对的黑度差(S )对lgc作标准曲线(三 个点以上,每个点取三次平均值),再由试样分析线对的黑度 差,在标准曲线上求得未知试样lgc 。该法即三标准试样法。
相关文档
最新文档