浙江省诸暨市牌头中学人教版高一数学必修一2.3幂函数(练习) 答案和解析

合集下载

人教A版精编数学必修1练习:第二章 2.3 幂函数 Word版含解析

人教A版精编数学必修1练习:第二章 2.3 幂函数 Word版含解析

[课时作业][A组基础巩固]1.下列所给出的函数中,是幂函数的是( )A.y=-x3B.y=x-3C.y=2x3D.y=x3-1解析:由幂函数的定义可知y=x-3是幂函数.答案:B2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( ) A.y=x-2 B.y=x-1C.y=x2D.y=x 1 3解析:∵y=x-1和y=x 13都是奇函数,故B、D错误.又y=x2虽为偶函数,但在(0,+∞)上为增函数,故C错误.y=x-2=1x2在(0,+∞)上为减函数,且为偶函数,故A满足题意.答案:A3.如图,函数y=x 23的图象是( )解析:y=x 23=3x2≥0,故只有D中的图象适合.答案:D4.已知幂函数273225()(1)()t tf x t t x t N+-=-+⋅∈是偶函数,则实数t的值为( )A.0 B.-1或1 C.1 D.0或1解析:∵273225()(1)()t tf x t t x t N+-=-+⋅∈是幂函数,∴t2-t+1=1,即t2-t=0,∴t=0或t=1.当t=0时,f(x)=x 75是奇函数,不满足题设;当t =1时,f (x )=x 85是偶函数,满足题设.答案:C5.a ,b 满足0<a <b <1,下列不等式中正确的是( )A .a a <a bB. b a <b b C .a a <b a D .b b <a b 解析:因为0<a <b <1,而函数y =x a 单调递增,所以a a <b a .答案:C6.若函数则f {f [f (0)]}=________.解析:∵f (0)=-2,∴f (-2)=(-2+3)12=1,∴f (1)=1,∴f {f [f (0)]}=f [f (-2)]=f (1)=1.答案:17.下列命题中,①幂函数的图象不可能在第四象限; ②当α=0时,函数y =x α的图象是一条直线;③当α>0时,幂函数y =x α是增函数;④当α<0时,幂函数y =x α在第一象限内函数值随x 值的增大而减小.其中正确的序号为________.解析:当α=0时,是直线y =1但去掉(0,1)这一点,故②错误.当α>0时,幂函数y =x α仅在第一象限是递增的,如y =x 2,故③错误.答案:①④8.已知n ∈{-2,-1,0,1,2,3},若⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n ,则n =________. 解析:∵-12<-13,且⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n ,∴y =x n 在(-∞,0)上为减函数. 又n ∈{-2,-1,0,1,2,3},∴n =-1或n =2.答案:-1或29.点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x )、g (x )的图象上,问当x 为何值时,有①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).解析:设f (x )=x α,g (x )=x β,则(2)α=2,(-2)β=-12,∴α=2,β=-1.∴f (x )=x 2,g (x )=x -1.分别作出它们的图象如图所示,由图象可知,当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x );当x =1时,f (x )=g (x );当x ∈(0,1)时,f (x )<g (x ).10.已知幂函数y =x 223m m -- (m ∈N +)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)3m <(3a -2)3的a 的取值范围.解析: ∵函数在(0,+∞)上单调递减,∴m 2-2m -3<0,解得-1<m <3.∵m ∈N +,∴m =1,2.又∵函数图象关于y 轴对称,∴m 2-2m -3是偶数.又∵22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m =1.∴原不等式等价于(a +1)3<(3a -2)3.又∵y =x 3在(-∞,+∞)上是增函数,∴a +1<3a -2,∴2a >3,a >32,故a 的取值范围是a >32.[B 组 能力提升]1.设幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,设0<a <1,则f (a )与f (a -1)的大小关系是( )A .f (a -1)<f (a )B.f (a -1)=f (a ) C .f (a -1)>f (a ) D .不能确定解析:因为幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,设f (x )=x α,因为图象经过点⎝ ⎛⎭⎪⎫13,3,所以⎝ ⎛⎭⎪⎫13α=3,解得α=-12,所以f (x )=x 12-在第一象限单调递减. 因为0<a <1,所以a -1>a ,所以f (a -1)<f (a ). 答案:A2.若(a +1)12-<(3-2a )12-,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫12,23 B.⎝ ⎛⎭⎪⎫23,32 C.⎝ ⎛⎭⎪⎫23,2 D .⎝ ⎛⎭⎪⎫32,+∞ 解析:令f (x )=x 12-=1x,∴f (x )的定义域是(0,+∞),且在(0,+∞)上是减函数,故原不等式等价于⎩⎨⎧ a +1>0,3-2a >0,a +1>3-2a ,解得23<a <32.答案:B 3.已知(0.71.3)m <(1.30.7)m ,则实数m 的取值范围是________.解析:∵0<0.71.3<0. 70=1,1.30.7>1.30=1,∴0.71.3<1.30.7.而(0.71.3)m <(1.30.7)m ,∴幂函数y =x m 在 (0,+∞)上单调递增,故m >0.答案:(0,+∞)4.把⎝ ⎛⎭⎪⎫2313-,⎝ ⎛⎭⎪⎫3512,⎝ ⎛⎭⎪⎫2512,⎝ ⎛⎭⎪⎫760按从小到大的顺序排列________. 解析:⎝ ⎛⎭⎪⎫760=1,⎝ ⎛⎭⎪⎫2313->⎝ ⎛⎭⎪⎫230=1,⎝ ⎛⎭⎪⎫3512<1,⎝ ⎛⎭⎪⎫2512<1. ∵y =x 12为增函数,∴⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫760<⎝ ⎛⎭⎪⎫2313-.答案:⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫760<⎝ ⎛⎭⎪⎫2313- 5.已知幂函数f (x )=x 21()m m -+ (m ∈N +).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数f (x )经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解析:(1)∵m 2+m =m (m +1)(m ∈N +),而m 与m +1中必有一个为偶数,∴m 2+m 为偶数,∴函数f (x )=x 21()m m -+ (m ∈N +)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)∵函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即212=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2,又∵m ∈N +,∴m =1,f (x )=x 12.又∵f (2-a )>f (a -1), ∴⎩⎨⎧ 2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32, 故函数f (x )经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为1≤a <32. 6.已知函数f (x )=(m 2+2m )·x 21m m +-,求m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解析:(1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1,m 2+2m ≠0,解得m =1. (2)若f (x )为反比例函数,则⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0,解得m =-1.(3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2,m 2+2m ≠0,解得m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1, 解得m =-1±2.。

人教版高一数学必修一2.3幂函数

人教版高一数学必修一2.3幂函数

2.3幂函数班级______________座号_________学生_______________一. 选择题:1.已知,则( )A . B. C. D. 2. 设1{1,1,,3}2α∈-,则使幂函数y x α=的定义域为R 且为奇函数的所有α的值为( )A. 1,3B. -1,1C.-1,3D.-1,1,33. 已知幂函数()a x x f =的图像经过点()2,2,函数g (x )= log ()a x k +,若0<x 时()0≥x g 无解,则k 的范围是( )A.2≥kB.1-≤kC.11≤≤-kD.1≤k4.已知函数:,当时,下列选项正确的是 ( )A. B.C. D.二.填空题:5. 已知幂函数f (x )=(m 2-2m -2) 21m m x +-的图像与坐标轴没有交点,则 m =__________________.6. 已知函数()()()⎩⎨⎧<≥+=01012x x x x f ,则满足不等式()()x f x f 212>-的x 的范围是_____.7. 若关于x 的一元二次方程030112=++-a x x 的两根均大于5,求实数a 的取值范围4213332,3,25a b c ===b a c <<a b c <<b c a <<c a b <<22(),()2,()log x f x x g x h x x ===(4,)a ∈+∞()()()f a g a h a >>()()()g a f a h a >>()()()g a h a f a >>()()()f a h a g a >>三.解答题:8.已知函数f(x)=(a2-3a+2)x a2-5a+5(a为常数),问a为何值时,f(x)(1)是幂函数;(2)是正比例函数;(3)是反比例函数。

2019-2020学年高一数学人教A版必修1练习:2.3 幂函数 Word版含解析

2019-2020学年高一数学人教A版必修1练习:2.3 幂函数 Word版含解析

2.3 幂函数课后篇巩固提升基础巩固1.函数y=3x α-2的图象过定点( )A.(1,1)B.(-1,1)C.(1,-1)D.(-1,-1)2.在下列幂函数中,既是奇函数又在区间(0,+∞)上是增函数的是( )A.f (x )=x -1B.f (x )=x -2C.f (x )=x 3D.f (x )=x 123.下列结论中,正确的是( )A.幂函数的图象都过点(0,0),(1,1)B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,时,幂函数y=x α都是增函数12D.当幂指数α=-1时,幂函数y=x α在其整个定义域上是减函数4.已知当x ∈(1,+∞)时,函数y=x α的图象恒在直线y=x 的下方,则α的取值范围是( )A.0<α<1 B.α<0C.α<1D.α>1α<1.5.已知a=1.,b=0.,c=,则( )2129-121.1A.c<b<a B.c<a<b C.b<a<c D.a<c<b0.,c==1.,9-12=(910)-12=(109)121.1112∵>0,且1.2>>1.1,12109∴1.>1.,即a>b>c.212>(109)121126.如图是幂函数y=x m 与y=x n 在第一象限内的图象,则( )A.-1<n<0<m<1B.n<-1,0<m<1C.-1<n<0,m>1D.n<-1,m>1y=x m 在(0,+∞)上单调递增,且为上凸函数,故0<m<1.由于y=x n 在(0,+∞)上单调递减,且在直线x=1的右侧时,y=x n 的图象在y=x -1的图象的下方,故n<-1.故选B .7.若(a+1<(3-2a ,则a 的取值范围是 .)13)13f (x )=的定义域为R ,且为单调递增函数,x 13所以由不等式可得a+1<3-2a ,解得a<.23-∞,23)8.已知幂函数f (x )=(m ∈Z )的图象关于y 轴对称,并且f (x )在第一象限内是单调递减函数,则m= .x m 2-2m -3f (x )=(m ∈Z )的图象关于y 轴对称,所以函数f (x )是偶函数,所以m 2-2m-3为偶数,所x m 2-2m -3以m 2-2m 为奇数.又因为f (x )在第一象限内是单调递减函数,故m=1.9.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y=x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是 .y=x α(α是常数)是一个幂函数模型,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=,则y=.由=3,得x=9,即明文是9.12x 12x 1210.已知函数y=(a 2-3a+2)(a 为常数),问:x a 2-5a +5(1)当a 为何值时,此函数为幂函数?(2)当a 为何值时,此函数为正比例函数?(3)当a 为何值时,此函数为反比例函数?.由题意知a 2-3a+2=1,即a 2-3a+1=0,解得a=.3±52(2)由题意知解得a=4.{a 2-5a +5=1,a 2-3a +2≠0,(3)由题意知解得a=3.{a 2-5a +5=-1,a 2-3a +2≠0,11.已知幂函数f (x )=(2m 2-6m+5)x m+1为偶函数.(1)求f (x )的解析式;(2)若函数y=f (x )-2(a-1)x+1在区间(2,3)上为单调函数,求实数a 的取值范围.由f (x )为幂函数知2m 2-6m+5=1,即m 2-3m+2=0,得m=1或m=2,当m=1时,f (x )=x 2,是偶函数,符合题意;当m=2时,f (x )=x 3,为奇函数,不合题意,舍去.故f (x )=x 2.(2)由(1)得y=x 2-2(a-1)x+1,函数的对称轴为x=a-1,由题意知函数在(2,3)上为单调函数,∴a-1≤2或a-1≥3,相应解得a ≤3或a ≥4.能力提升1.已知幂函数g (x )=(2a-1)x a+2的图象过函数f (x )=32x+b 的图象所经过的定点,则b 的值等于( )A.-2B.1C.2D.4g (x )=(2a-1)x a+2为幂函数,则2a-1=1,∴a=1,函数的解析式为g (x )=x 3,幂函数过定点(1,1),在函数f (x )=32x+b 中,当2x+b=0时,函数过定点,据此可得-=1,故b=-2.故选A .(-b 2,1)b 22.函数f (x )=(m 2-m-1)是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足>0,若a ,b ∈R ,且xm 2+m -3f (x 1)-f (x2)x 1-x 2a+b>0,ab<0,则f (a )+f (b )的值( )A.恒大于0B.恒小于0C.等于0D.无法判断f (x )=(m 2-m-1)是幂函数,可得m 2-m-1=1,解得m=2或m=-1,x m 2+m -3当m=2时,f (x )=x 3,当m=-1时,f (x )=x -3,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足>0,f (x 1)-f (x 2)x1-x 2函数是单调增函数,所以m=2,此时f (x )=x 3.又a+b>0,ab<0,可知a ,b 异号,且正数的绝对值大于负数的绝对值,则f (a )+f (b )恒大于0,故选A .3.已知幂函数f (x )=mx n 的图象过点(,2),设a=f (m ),b=f (n ),c=f (ln 2),则( )22A.c<b<a B.c<a<bC.b<c<aD.a<b<cf (x )=mx n 的图象过点(,2),则所以幂函数的解析式为f (x )=x 3,且函数f (x )为22{m =1,(2)n =22⇒{m =1,n =3,单调递增函数.又ln 2<1<3,所以f (ln 2)<f (1)<f (3),即c<a<b ,故选B .4.给出幂函数:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=.其中满足条件f (x 2>x 1>0)x 1x (x 1+x 22)>f (x 1)+f (x 2)2的函数的个数是( )A.1B.2C.3D.4,只有上凸的函数才满足题中条件,所以只有④满足,其他四个都不满足,故选A .5.若幂函数y=(m ,n ∈N *且m ,n 互质)的图象如图所示,则下列说法中正确的是 . x m n①m ,n 是奇数且<1;②m是偶数,n 是奇数,且>1;③m 是偶数,n 是奇数,且<1;④m ,n 是偶数,且>1.m n m n m n m n ,函数y=为偶函数,m 为偶数,n为奇数,又在第一象限向上“凸”,所以<1,选③.x mn m n 6.幂函数f (x )=(m 2-3m+3)·在区间(0,+∞)上是增函数,则实数m= . x m 2-2m +1f (x )=(m 2-3m+3)是幂函数,得m 2-3m+3=1,解得m=2或m=1.当m=2时,f (x )=x 是增函数;当x m 2-2m +1m=1时,f (x )=1是常函数.7.已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是 .{2x ,x ≥2,(x -1)3,x <2.,则当0<k<1时,关于x 的方程f (x )=k 有两个不同的实根.8.已知幂函数f (x )=(m-1)2在(0,+∞)上单调递增,函数g (x )=2x -k.x m 2-4m +2(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B=A ,求实数k 的取值范围.依题意得(m-1)2=1.∴m=0或m=2.当m=2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去.∴m=0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增.∴集合A=(1,4],B=(2-k ,4-k ].∵A ∪B=A ,∴B ⊆A.∴{2-k ≥1,4-k ≤4.∴0≤k ≤1.∴实数k 的取值范围是[0,1].9.已知幂函数f (x )=x (2-k )(1+k ),k ∈Z ,且f (x )在(0,+∞)上单调递增.(1)求实数k 的值,并写出相应的函数f (x )的解析式.(2)若F (x )=2f (x )-4x+3在区间[2a ,a+1]上不单调,求实数a 的取值范围.(3)试判断是否存在正数q ,使函数g (x )=1-qf (x )+(2q-1)x 在区间[-1,2]上的值域为,若存在,求出q 的值;[-4,178]若不存在,请说明理由.由题意知(2-k )(1+k )>0,解得-1<k<2.又k ∈Z ,∴k=0或k=1,分别代入原函数,得f (x )=x 2.(2)由已知得F (x )=2x 2-4x+3.要使函数在区间[2a ,a+1]上不单调,则2a<1<a+1,则0<a<.12(3)由已知,g (x )=-qx 2+(2q-1)x+1.假设存在这样的正数q 符合题意,则函数g (x )的图象是开口向下的抛物线,其对称轴为x==1-<1,因而,函数g (x )在[-1,2]上的最小值2q -12q 12q 只能在x=-1或x=2处取得,又g (2)=-1≠-4,从而必有g (-1)=2-3q=-4,解得q=2.此时,g (x )=-2x 2+3x+1,其对称轴x=∈[-1,2],∴g (x )在[-1,2]上的最大值为g =-2×+3×+1=,符合题34(34)(34)234178意.∴存在q=2,使函数g (x )=1-qf (x )+(2q-1)x 在区间[-1,2]上的值域为.[-4,178]。

人教版高中数学必修一《幂函数》综合练习题含答案

人教版高中数学必修一《幂函数》综合练习题含答案

数学1(必修)第三章 函数的应用(含幂函数)[基础训练A 组] 一、选择题1.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( )A .0个B .1个C .2个D .3个2.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点3.若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 21log 的关系是( )A .12log log a b a < B .12log log a b a =C .12log log a b a > D .12log log a b a ≤4. 求函数132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .45.已知函数)(x f y =有反函数,则方程0)(=x f ( ) A .有且仅有一个根 B .至多有一个根 C .至少有一个根 D .以上结论都不对6.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞7.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩二、填空题1.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f = 。

2.幂函数()f x 的图象过点(,则()f x 的解析式是_____________。

高一数学上册 第二章初等函数之幂函数知识点及练习题(含答案)

高一数学上册 第二章初等函数之幂函数知识点及练习题(含答案)

〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.2.3幂函数的图象及性质1.下列函数中,其定义域和值域不同的函数是( )A .y =x 13 B .y =x -12 C .y =x 53D .y =x 232.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-123.以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错 4.函数f(x)=(1-x)0+(1-x)12的定义域为________. 5.已知幂函数f(x)的图象经过点(2,22),则f(4)的值为( ) A .16 B.116 C.12D .26.下列幂函数中,定义域为{x|x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13D .y =x -347.已知幂函数的图象y =x m2-2m -3(m ∈Z ,x≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3 8.下列结论中,正确的是( )①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④9.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( )A .1个B .2个C .3个D .4个10.幂函数f(x)的图象过点(3,3),则f(x)的解析式是________ .11.函数f(x)=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,试确定m 的值.12.已知函数f(x)=(m 2+2m)·x m2+m -1,m 为何值时,f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?13.已知幂函数y =x m2-2m -3(m ∈Z)的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.答案1. 解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同. 2.解析:选B.当x =2时,22>212>2-12>2-2,即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2.3.解析:选C.∵y =x 0,可知x≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.解析:⎩⎪⎨⎪⎧1-x≠01-x≥0,∴x<1.答案:(-∞,1)5 解析:选C.设f(x)=x n ,则有2n =22,解得n =-12,即f(x)=x -12,所以f(4)=4-12=12.6 解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x≥0;C.y =x -13=13x,x≠0;D.y =x-34=14x 3,x >0.7 解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B.8 解析:选D.y =x α,当α=0时,x≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.9 解析:选B.y =x 2与y =x 0是幂函数.10 解析:设f(x)=x α,则有3α=3=312⇒α=12.答案:f(x)=x 1211 解:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f(x)=x 2在(0,+∞)上是增函数;当m =-2时,f(x)=x -3在(0,+∞)上是减函数,不符合要求.故m =3.12 解:(1)若f(x)为正比例函数,则⎩⎪⎨⎪⎧m 2+m -1=1m 2+2m≠0⇒m =1. (2)若f(x)为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m≠0⇒m =-1. (3)若f(x)为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m≠0⇒m =-1±132.(4)若f(x)为幂函数,则m 2+2m =1,∴m =-1±213 解:由已知,得m 2-2m -3≤0,∴-1≤m≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意. ∴m =±1或m =3.当m =-1或m =3时,有y =x 0,其图象如图(1).当m =1时,y =x -4,其图象如图(2)..。

人教新课标版数学高一-必修一练习2.3幂函数

人教新课标版数学高一-必修一练习2.3幂函数

1.下列函数中,是幂函数的为( )A .y =-x 12B .y =3x 2C .y =1xD .y =2x解析:幂函数的形式为y =x α,A是y =-1×x 12;B 是y =3×x 2;D 是指数函数,故A 、B 、D 都不是幂函数.只有C :y =1x=x -1符合幂函数的定义. 答案:C2.给出四个说法:①当α=0时,y =x α的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y =x α在第一象限为减函数,则α<0.其中正确的说法个数是( )A .1B .2C .3D .4 解析:显然①错误;②中y =x -1的图象不过(0,0);根据幂函数图象可知,③④正确. 答案:B3.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4解析:∵f (x )=x α为奇函数,∴α=-1,13,1,3. 又∵f (x )在(0,+∞)上为减函数,∴α=-1.答案:A4.函数f (x )=(m 2-m +1)x m 2+2m -3是幂函数,且在x ∈(0,+∞)时是减函数,则实数m =( )A .0B .1C .2D .0或1解析:由m 2-m +1=1,得m =0或m =1,再把m =0和m =1分别代入m 2+2m -3<0检验,得m =0.答案:A5.已知幂函数y =f (x )的图象过点⎝⎛⎭⎫2,22,则f (9)=________. 解析:设幂函数f (x )=x α.∵过点⎝⎛⎭⎫2,22,∴2α=22, ∴α=-12,∴f (x )=x 12-, ∴f (9)=912-=13. 答案:13 6.已知幂函数f (x )=x12-,若f (a +1)<f (10-2a ),则a 的取值范围是________. 解析:∵f (x )=x 12-=1x(x >0),故易知f (x )在(0,+∞)上为减函数.又f (a +1)<f (10-2a ), ∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.答案:(3,5)7.比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5; (2)(-23)-1与(-35)-1; (3)(23)34与(34)23.解:(1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的, 又25>13,∴(25)0.5>(13)0.5. (2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35, ∴(-23)-1>(-35)-1. (3)∵函数y 1=(23)x 为减函数, 又34>23,∴(23)23>(23)34. 又∵幂函数y 2=x 23在(0,+∞)上是增函数,且34>23, ∴(34)23>(23)23. ∴(34)23>(23)34. 8.已知函数y =(m 2-3m +3)x 213m -为幂函数,求其解析式,并讨论函数的单调性和奇偶性. 解:由题意得m 2-3m +3=1,即m 2-3m +2=0. ∴m =1或m =2.当m =2时,y =x 13,定义域为R , y =x 13在(-∞,+∞)上是增函数且是奇函数. 当m =1时,y =x23-,定义域为(-∞,0)∪(0,+∞). 因为y =x 23-=1x 23=13x 2,∴函数y =x 23-为偶函数.又-23<0,∴y =x 23-在(0,+∞)上是减函数,在(-∞,0)上是增函数.。

高一数学幂函数试题答案及解析

高一数学幂函数试题答案及解析

高一数学幂函数试题答案及解析1.如图所示,函数的图像大致为().A B C D【答案】C【解析】的定义域为,,图像关于轴对称,可排除选项A,B;又因为当时,,所以选C.【考点】函数的图像与性质.2.幂函数的图象经过点,则()A.B.C.D.【答案】C【解析】因为函数的图象经过点,则有,解得,所以.【考点】幂函数的解析式与图象.3.已知幂函数的图像过点,则【答案】【解析】因为幂函数的图像过点,所以得,因此故.【考点】幂函数的解析式.4. .(填“”或“”).【答案】【解析】幂函数在上单调递增,,所以【考点】幂函数的性质5.对于幂函数,若,则,大小关系是()A.B.C.D.无法确定【答案】A【解析】根据幂函数在(0,+∞)上是增函数,图象是上凸的,则当0<x1<x2时,应有成立,故答案选A.【考点】幂函数的单调性点评:本题主要考查幂函数的单调性,幂函数的图象特征,属于中档题.6.三个数,,之间的大小关系为()A.a<c<b B.a<b<c C.b<a<c D.b<c<a【答案】C【解析】因为对于比较大小,先分析各自的大致范围,然后确定大小关系。

由于根据指数函数和幂函数和对数函数的性质可知,,,,那么可知选择C.【考点】本试题主要是考查了幂函数、对数函数与指数函数的单调性,以及值域的应用。

属于基础题。

点评:解决该试题的核心是对于幂值、对数值和指数值范围的判定,先分类,再在各个类里面比较大小,注意常用中间变量0,1来比较大小。

7.设f(x)=,用二分法求方程=0在内近似值的过程中得f(1) < 0,f(1.5) > 0,f (1.25) < 0,则方程的根落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定【答案】B【解析】因为f(1) < 0,f(1.5) > 0,f (1.25) < 0,所以由函数零点存在定理知,方程的根落在区间(1.25,1.5),选B.【考点】本题主要考查函数零点存在定理。

人教版数学高一A版必修1练习 2.3 幂函数

人教版数学高一A版必修1练习 2.3 幂函数

第二章 2.31.下列函数是幂函数的是( ) A .y =5xB .y =x 5C .y =5xD .y =(x +1)3解析:函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数. 答案:B2.函数y =x 43 的图象是( )解析:y =x 43 为偶函数,图象关于y 轴对称,又43>1,在第一象限内,图象为下凸递增的.答案:A3.下列命题中,不正确的是( )A .幂函数y =x -1是奇函数B .幂函数y =x 2是偶函数C .幂函数y =x 既是奇函数又是偶函数D .y =x 12 既不是奇函数,又不是偶函数解析:∵x -1=1x ,1-x =-1x,∴A 正确; (-x )2=x 2,∴B 正确;-x =x 不恒成立,∴C 不正确;y =x 12 定义域为[0,+∞),不关于原点对称,∴D 正确.故选C.答案:C4.已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________.解析:f (-1)=-a +2=4,所以a =-2.答案:-25.幂函数f (x )=x α的图象过点(3,9),那么函数f (x )的单调增区间是________. 解析:由题设知f (3)=9,即3α=9,∴α=2.∴f (x )=x 2,其增区间为[0,+∞).答案:[0,+∞)6.已知函数y =(a 2-3a +2)x a 2-5a +5(a 为常数).问:(1)a 为何值时此函数为幂函数?(2)a 为何值时此函数为正比例函数?解:(1)根据幂函数的定义,得a 2-3a +2=1,即a 2-3a +1=0,解得a =3±52. (2)根据正比例函数的定义,得 ⎩⎪⎨⎪⎧a 2-5a +5=1,a 2-3a +2≠0, 解得a =4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省诸暨市牌头中学人教版高一数学必修一2.3幂函数(练习)学校:___________姓名:___________班级:___________考号:___________一、单选题1.以下四个函数:y=x 0;y=2x -;y=()21x +;132y x =⋅中是幂函数的有 ( ) A .1个B .2个C .3个D .4个2.下列命题中:①幂函数的图象都经过点(1,1)和点(0,0); ②幂函数的图象不可能在第四象限;③当n=0时,幂函数y=x n 的图象是一条直线; ④当n >0时,幂函数y=x n 是增函数;⑤当n <0时,幂函数在第一象限内的函数值随x 的值增大而减小. 其中正确的是 ( ) A .①和④B .④和⑤C .②和③D .②和⑤3.如下图所示曲线是幂函数y =x α在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2 B .2,12,-12,-2 C .-12,-2,2,12D ..2,12,-2,-124.设p∈1112,1,,,,1,2,3232⎧⎫---⎨⎬⎩⎭,则使p y x =的图象关于原点对称且通过原点的p 值个数是 ( ) A .1B .2C .3D .45.下列函数中是R 上增函数的是( ) A .1y x -= B .2yxC .35y x =D .2yx6.已知53()8af x x bx x=++-,且f (-2)=10,则f (2)= ( ) A .-26 B .-18C .-10D .10二、填空题7.121.2a =,120.9b -=,121.1c =的大小关系为________.8.当01x <<时,幂函数p y x =的图象在直线y=x 的上方,则p 的取值范围是________。

9.函数()()331f x x =-+的图象的对称中心是________。

10.若123x x >成立,则x 的取值范围是___________.三、解答题 11.已知函数()22pp y x p N --=∈的图象与x 、y 轴都无公共点,且关于y 轴对称,求p 的值,并画出图象. 12.已知()23()*m f x xm N -+=∈,且()()35f f <。

求满足()()132m m a a --+<-的实数a 的取值范围。

13.已知函数()()232m m f x x m Z +-=∈为偶函数,且在()0,∞+上为增函数.(1)求m 的值;(2)若()()()()log 0,1a g x f x ax a a =->≠在[2,3]上为增函数,求实数a 的取值范围.参考答案1.B 【解析】形如(y x αα=为常数)的函数为幂函数,所以只有y=x 0;y=2x -为幂函数.故选B. 2.D 【解析】当1y x -=时,不过(0,0)点,①错误;当0x >时,0y >,故幂函数的图象不可能在第四象限内,故②对 当0n =时,ny x =中0x ≠,故其图象是去掉(0,0)点的一条直线,③错;2y x =在(−∞,0)上是减函数,(0,+∞)上是增函数,④错.幂函数ny x =,当n 0<时,在第一象限内函数值随x 值的增大而减小.⑤对 故选D. 3.B 【分析】在图象中,作出直线1x m =>,根据直线x m =和曲线交点的纵坐标的大小,可得曲线1C ,2C ,3C ,4C 相应的α应是从大到小排列.【详解】在图象中,作出直线1x m =>,直线x m =和曲线的交点依次为,,,A B C D ,所以A B C D y y y y >>>,所以C A B D m m m m αααα>>>, 所以A B C D αααα>>>,所以可得曲线1C ,2C ,3C ,4C 相应的α依次为 2,12,-12,-2 故选:B 【点睛】本题主要考查幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 4.C 【解析】p y x =的图象关于原点对称,即函数为奇函数,所以排除122--,,12,2. 函数通过原点,所以0p >,排除122--,,1-. 所以p 的可能值为1,1,33. 故选C. 5.C 【解析】A.1y x -=在(),0∞-和()0,∞+单调递减;B.2 y x =在(),0∞-单减,在()0,∞+单调递增;C.35 y x ==R 上单增;D.221y x x-==,偶函数,在(),0∞-单增,在()0,∞+单调递减. 故选C.点睛:对于形如n my x =的幂函数,研究函数性质时,可以将函数化简为y ,可知定义域及函数奇偶性,幂函数的单调性可以只研究第一象限,再结合奇偶性即可得结论. 6.A 【解析】()538a f x x bx x=++-,()()()()538a f x x b x x -=-++---. ()() 16f x f x +-=-.()210f -=,所以()()216226f f =---=-.故选A.点睛:本题主要考查函数的中心对称性,由()()2f x f x m +-=,知函数()f x 关于()0,?m 中心对称;由()()2f x a f a x m ++-=, 知函数()f x 关于()n,?m 中心对称. 7.1211221.20.91.1a b c -=>=>=【解析】121.2a =,1122100.9()9b -==,121.1c =.令()12f x x=,函数在()0,∞+单调递增,所以()()101.1 1.29f f f ⎛⎫<< ⎪⎝⎭,即1112221.20.9 1.1a b c -=>=>=. 8.1p < 【解析】当01x <<时,幂函数py x =的图象都在直线y =x 的上方, 则此时p x x >, ∵01x <<,∴1p <, 9.(3,1) 【解析】易知函数()3g x x =为奇函数,即函数关于原点对称,()() 31f x g x =-+,即将()g x 的图象向右平移3个单位,再向上平移1个单位得到()f x .所以函数()()331f x x =-+的图象的对称中心是(3,1).点睛:本题主要考查函数的中心对称性,由()()2f x f x m +-=,知函数()f x 关于()0,?m 中心对称;由()()2f x a f a x m ++-=, 知函数()f x 关于()n,?m 中心对称,也可以通过奇函数平移得到对称中心. 10.()(),01,-∞⋃+∞【详解】如图所示,分别画出函数2yx 与13y x =的图象,由于两函数的图象都过点(1,1),由图象可知不等式123x x >的解集为()(),01,-∞⋃+∞. 11.p=0,1或2 【解析】 已知函数()22p p y x p N --=∈的图象与x 、y 轴都无公共点可知:22p p --≤0,即12p -≤≤. 因为p N ∈,所以p 的可能取值为0、1、2. 因为函数()22pp y x p N --=∈的图象关于y 轴对称,所以22p p --为偶数, 故p =0、1p =都不符合题意. 所以p =0或1p =.当p =2时,有0y x =,其图象如图(1). 当p =0或1p =时,2y x -=,其图象如图(2).12.()23,1,32⎛⎫-∞- ⎪⎝⎭【解析】试题分析:根据幂函数单调性可以确定指数230m -+>,进而根据参数为非负整数,即可确定指数,进而利用函数1y x=的单调性解不等式即可. 试题解析:()()23*m f x x m N -+=∈是幂函数,且()()35f f <所以230m -+>,解得32m <,又*m N ∈,所以1m =. ()()132mma a --+<-即为()()1111132132a a a a--+<-⇒<+-. 10320132a a a a +<⎧⎪-<⎨⎪+>-⎩或10320a a +<⎧⎨->⎩或10320132a a a a +>⎧⎪->⎨⎪+>-⎩解得:1a <-或2332a <<. 答案为:()23,1,32⎛⎫-∞-⋃⎪⎝⎭. 13.(1)1m =;(2)12a << 【详解】试题分析:(1)根据幂函数的性质,在()0,∞+上为增函数,则指数大于0,结合参数为整数,检验奇偶性即可;(2)根据符合函数“同增异减”的原则求参即可,注意定义域保证真数部分大于0. 试题解析:(1)1m =;(2)12a <<(1)函数()232m m f x x +-=是幂函数,且在()0,∞+上为增函数,所以2320m m +->.得:31m 2-<<.又m Z ∈,所以01m =,. 又函数()()232m mf x x m Z +-=∈为偶函数,当0m =时,()3f x x =,不成立;当1m =时,()2f x x =,成立.所以1m =.(2)()()()()()2log log ,0,1a a g x f x ax x ax a a =-=->≠.()()2log a g x x ax =-由log a y u =和2u x ax =-复合而成当01a <<时log a y u =减函数,故2u x ax =-在[2,3]为减函数,故不满足条件. 当1a >时,log a y u =增函数,故2u x ax =-在[2,3]为增函数,只需:222220aa ⎧≤⎪⎨⎪->⎩求得12a <<.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增. 简称为“同增异减”.同时,在解决复合函数问题时要注意定义域.。

相关文档
最新文档