9第二次月考检测卷
2024-2025学年山东省德州市九年级(上)第二次月考数学模拟卷
2024-2025学年山东省德州市九年级(上)第二次月考数学模拟卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共12小题,每小题4分,共48分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列说法正确的是( )A. 打开电视,它正在播天气预报是不可能事件B. 要考察一个班级中学生的视力情况适合用抽样调查C. 在抽样调查过程中,样本容量越大,对总体的估计就越准确D. 甲、乙两人射中环数的方差分别为SS甲2=2,SS乙2=1,说明甲的射击成绩比乙稳定2.下列函数中,yy是xx的反比例函数的是( )A. yy=1xx2B. xxyy=4C. yy=1xx+1D. yy=5xx+13.在一个不透明的袋子里装有红球.黄球共20个,其中红球有2个.这些球除颜色外其他都相同,随机摸出1个球.摸出的是红球的概率是( )A. 12B. 15C. 110D. 1204.已知点(−2,1)在反比例函数yy=kk xx(kk≠0)的图象上,则kk的值为( )A. 2B. −2C. 12D. −125.已知点AA(xx1,yy1),BB(xx2,yy2)是反比例函数yy=−kk xx(kk≠0)的图象上的两点,且当xx1<xx2<0时,yy1< yy2,则一次函数yy=kkxx+kk(kk≠0)与反比例函数yy=−kk xx在同一平面直角坐标系中的图象可能是( )A. B.C. D.6.已知圆锥的底面半径为4cccc,母线长为6cccc,则圆锥的侧面积是( )A. 24cccc2B. 24ππcccc2C. 48cccc2D. 48ππcccc27.如图,在平面直角坐标系xxxxyy中,点AA,CC分别在坐标轴上,且四边形xxAABBCC是边长为3的正方形,反比例函数yy=kk xx(xx>0)的图象与BBCC,AABB 边分别交于EE,DD两点,△DDxxEE的面积为4,点PP为yy轴上一点,则PPDD+ PPEE的最小值为( )A. 3B. 2√ 5C. 3√ 2D. 58.如图,在平面直角坐标系xxxxyy中,矩形AABBCCDD的BBCC边在xx轴上,点AA、DD分别在反比例函数yy=cc xx(xx<0).、yy=nn xx(xx>0)的图象上,那么矩形AABBCCDD的面积可用cc、nn表示为( )A. cc+nnB. cc−nnC. nn−ccD. −ccnn9.如图,直线yy=xx+2与双曲线yy=cc−3xx在第二象限有两个交点,那么cc的取值范围在数轴上表示为( )A.B.C.D.10.如图,量角器外沿上有三点AA,PP,QQ,它们所表示的读数分别是0∘,110∘,150∘,则∠PPAAQQ的大小是( )A. 40∘B. 30∘C. 20∘D. 10∘11.如图,AA、BB、CC是⊙xx上的三点,若∠CC=40∘,则∠AAxxBB的度数是 ( )A. 40∘B. 50∘C. 55∘D. 80∘12.已知AABB是圆锥(如图1)底面的直径,PP是圆锥的顶点,此圆锥的侧面展开图如图2所示.一只蚂蚁从AA点出发,沿着圆锥侧面经过PPBB上一点,最后回到AA点.若此蚂蚁所走的路线最短,那么MM,NN,SS,TT(MM,NN,SS,TT均在PPBB上)四个点中,它最有可能经过的点是( )A. MMB. NNC. SSD. TT第II卷(非选择题)二、填空题:本题共6小题,每小题4分,共24分。
2023-2024学年陕西省渭南市大荔县九年级(上)第二次月考数学试卷+答案解析
一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列x 的各组取值是方程的根的是2023-2024学年陕西省渭南市大荔县九年级(上)第二次月考数学试卷( )A.或B.或C.或D.或2.下列图形中,是中心对称图形的是( )A. B.C.D. 3.用反证法证明命题“如果,,那么”时,应假设( )A.B. c 不平行bC. a 不平行bD. a 不平行c4.如图,AB 为的直径,CD 为的弦,,垂足为E ,,,( )A. B. 10C. D. 55.将抛物线平移后得到抛物线,对此平移叙述正确的是( )A. 向上平移2个单位B. 向下平移2个单位C. 向左平移2个单位D. 向右平移2个单位6.如图,在中,,,将绕点C 顺时针旋转n 度得到,若,则n 的值为( )A. 65B. 90C. 105D. 1257.如图,四边形ABCD是的内接四边形,BE是的直径,连接若,则的度数是( )A.B.C.D.8.已知抛物线,当时,y的最大值为2,则当时,y的最小值为( )A. 1B. 0C.D.二、填空题:本题共5小题,每小题3分,共15分。
9.用配方法将方程进行配方得______.10.若正方形ABCD的外接圆半径为R,则这个正方形ABCD的面积为______.11.如果点与点关于原点对称,那么______.12.已知二次函数的图象上有两点,,则______填“>”“<”或“=”13.如图,等边三角形ABC的边长为4,的半径为,P为AB边上一动点,过点P作的切线PQ,切点为Q,则PQ的最小值为______.三、解答题:本题共13小题,共81分。
解答应写出文字说明,证明过程或演算步骤。
14.本小题5分已知关于x的方程的一个根是,求m的值.15.本小题5分下面的两个网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形画出两种16.本小题5分当x为何值时,代数式的值与代数式的值相等?17.本小题5分如图,已知,EF垂直平分线段利用尺规求作的外接圆不写作法,保留作图痕迹18.本小题5分如图,点C在以AB为直径的半圆上,以B为圆心,以BC的长为半径画圆弧交AB于点求的度数;若,求阴影部分的面积.19.本小题5分如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,的三个顶点坐标分别为,,画出绕点O顺时针旋转后得到的;在的条件下,请分别写出点A、B的对应点、的坐标.20.本小题5分如图,将弧长为,圆心角为的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合接缝粘连部分忽略不计,求圆锥的底面圆半径及圆锥的侧面积.21.本小题6分若二次函数的图象与x轴有两个不同的交点,求m的取值范围.22.本小题7分如图,四边形ABCD是矩形,以点B为旋转中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C 的对应点分别为点G,F,E,点D恰好在FG的延长线上.求证:≌;若,求DF的长.23.本小题7分如图,用一块长为100cm,宽为60cm的矩形纸片制作一个无盖的盒子,若在纸片的四个角截去四个相同的小正方形,设小正方形的边长为底面的长______cm,宽______用含x的代数式表示;当做成盒子的底面积为时,求该盒子的底面长和宽.24.本小题8分某商店购进一批清洁剂,每瓶进价为30元,出于营销考虑,要求每瓶清洁剂的售价不高于50元.当售价为每瓶35元时,每天可销售90瓶,经调查发现:该清洁剂销售单价每增长2元,每天的销售量就减少4瓶.当销售单价为元时,销售该清洁剂每天获得的利润为元求w与x之间的函数关系式;将该清洁剂销售单价定为多少元时,才能使商店销售该清洁剂每天所获利润最大?最大利润是多少?25.本小题8分如图,AB是的直径,过BC的中点D,,垂足为求证:DE是的切线;若,的直径为5,求DE的长.26.本小题10分如图,在平面直角坐标系中,已知抛物线与x轴相交于A,B两点,点A在点B的左侧,与y轴相交于点C,,,点D是抛物线上一动点,且在y轴的左侧,连接AD,BC,AC,求抛物线的函数解析式;若的面积是的面积的时,求点D的横坐标.答案和解析1.【答案】A【解析】解:方程可化为:或,故选:用因式分解法直接解方程即可;本题考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.2.【答案】C【解析】解:图形不是中心对称图形,不符合题意;B.图形不是中心对称图形,不符合题意;C.图形是中心对称图形,符合题意;D.图形不是中心对称图形,不符合题意.故选:根据中心对称图形的定义进行逐一判断即可.本题主要考查了中心对称图形的定义,把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.3.【答案】D【解析】解:用反证法证明命题“如果,,那么”时,应假设a不平行于故选:反证法证明命题的第一步是假设结论不成立,即结论的反面成立.本题考查了反证法的知识,反证法的步骤是:假设结论不成立;从假设出发推出矛盾;假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4.【答案】B【解析】解:且AB为直径,,,连接CO,在中,,,,,故选:连接OC,根据垂径定理求出CE,根据勾股定理求出OC,即可得出答案.本题考查了垂径定理和勾股定理,能根据垂径定理求出CE是解此题的关键.5.【答案】B【解析】解:将抛物线向下平移2个单位移得到,故选:根据左加右减,上加下减,可得答案.本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减.6.【答案】C【解析】解:,,,,,,故选:由三角形内角和可得,再根据平行线的性质即可得出答案.本题主要考查了旋转的性质,平行线的性质,三角形内角和定理等知识,熟记平行线的性质是解题的关键.7.【答案】A【解析】解:四边形ABCD是的内接四边形,,,,,是的直径,,,故选:根据圆内接四边形的性质求出,根据圆周角定理得到,结合图形计算,得到答案.本题考查的是圆内接四边形的性质、圆周角定理的应用,掌握圆内接四边形的对角互补是解题的关键.8.【答案】D【解析】解:抛物线,该函数图象的开口向下,对称轴是直线,当时,取得最大值,当时,y的最大值为2,时,,得,,,时,取得最小值,此时,故选:根据题目中的函数解析式和二次函数的性质,可以求得a的值,然后即可得到当时,y的最小值.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,求出a的值,利用二次函数的性质解答.9.【答案】【解析】解:,方程两边加上1,,即,故答案为:在左右两边同时加上一次项系数2的一半的平方,即可求解.本题考查了配方法解一元二次方程,掌握配方法是解题的关键.10.【答案】【解析】解:如图,连接OA,OB,四边形ABCD是正方形,,,,正方形ABCD的面积,故答案为:连接OA,OB,根据正方形的性质得到,由正方形的面积公式即可得到结论.本题考查了正多边形与圆,正方形的性质,熟练掌握正方形的性质是解题的关键.11.【答案】3【解析】解:点与点关于原点对称,,,;故答案为:关于原点对称的两点,其横坐标、纵坐标分别互为相反数,根据这一特点可求得a与b的值,从而可求得的值.本题考查了关于原点对称的两点的坐标特征、求代数式的值,掌握两点关于原点对称的坐标特征是解题的关键.12.【答案】<【解析】解:把、分别代入中得:,,,,故答案为:分别求出两点函数值的大小即可判断出与的大小关系.本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键.13.【答案】3【解析】解:连接CP、CQ,作于H,如图,等边三角形ABC的边长为4,,,,,为的切线,,在中,,点P是AB边上一动点,当点P运动到H点时,CP最小,即CP的最小值为,的最小值为,故答案为:连接CP、CQ,作于H,如图,根据等边三角形的性质得到,,根据直角三角形的性质得到,,由切线的性质得到,根据勾股定理得到,推出当点P运动到H点时,CP最小,于是得到结论。
九年级第二次月考 (数学)(含答案)092318
九年级第二次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 若−(−2)表示一个数的相反数,则这个数是( )A.12B.−12C.2D.−22. 2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为( )A.3×105B.3×106C.3×107D.3×1083. 某几何体由一些大小相同的小正方体组成,如图是它的俯视图和主视图,那么组成该几何体的小正方体的个数最少为( )A.4个B.5个C.6个D.7个4. 下列运算正确的是( )A.(a +3)2=a 2+9B.a 8÷a 2=a 4C.a 2+a 2=2a 2D.a 2⋅a 3=a 65. 如图,AB//CD ,∠B =85∘,∠E =27∘,则∠D 的度数为( )−(−2)12−122−22021515718333×1053×1063×1073×1084567(a +3)2+9a 2÷a 8a 24+a 2a 22a 2⋅a 2a 3a 6∘∘A.45∘B.48∘C.50∘D.58∘6. 若某一样本的方差为s 2=15[(5−7)2+(7−7)2+(8−7)2+(x −7)2+(y −7)2],样本容量为5,则下列说法:①当x =9时,y =6;②该样本的平均数为7;③x ,y 的平均数是7;④该样本的方差与x ,y 的值无关.其中不正确的是( )A.①②B.②④C.①③D.③④7. 关于x 的一元二次方程x 2+4x +c =0没有实数根,则c 应满足的条件是( )A.c ≤4B.c ≥4C.c <4D.c >48. 某工程队承接了80万平方米的荒山绿化任务,为了迎接汛期的到来,实际工作时每天的工作效率比原计划提高了20%,结果提前25天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下列方程中正确的是()A.80x −80(1+20%)x =25B.80(1+20%)x −80x =25C.80×(1+20%)x −80x =25D.80x −80×(1+20%)x =25 9. 心理学家发现:课堂上,学生对概念的接受能力s 与提出概念的时间t (单位:min )之间近似满足函数关系s =at 2+bt +c(a ≠0),s 值越大,表示接受能力越强.如图记录了学生学习某概念时t 与s 的45∘48∘50∘58∘=[s 215(5−7)2+(7−7)2+(8−7)2+(x−7)2+](y−7)25x =9y =67x y 7x y x +4x+c =0x 2cc ≤4c ≥4c <4c >48020%25x −=2580x 80(1+20%)x −=2580(1+20%)x 80x −=2580×(1+20%)x 80x −=2580x 80×(1+20%)xs t minA.8minB.13minC.20minD.25min10. 在△ABC 中,AB =AC ,若∠A =60∘,则△ABC 为( )A.钝角三角形B.直角三角形C.等边三角形D.等腰不等边三角形二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 已知一次函数y =kx −b ,请你补充一个条件________,使y 随x 的增大而减小.12. 不等式组{2x <5,x −1<0的解集是________.13. 有不同的两把锁和三把钥匙,其中两把钥匙能分别打开这两把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是________.14. 如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分的面积为________.15. 如图,在直角坐标系中,直线y =−√3x +3分别与x 轴,y 轴交于M 、N ,点A 、B 分别在y 轴、x 轴上,且∠BAO =30∘, AO=2 .将△ABO 绕O 顺时针转动一周,当AB 与直线MN 垂直时,点A 坐标为________.8min13min20min25min △ABC AB =AC ∠A =60∘△ABC ()y =kx−b y x {2x <5,x−1<0B C △DEF AB =10,DO =46y =−x+33–√x y M N A B y x ∠BAO =30∘AO =2△ABO O AB MN A16. 计算:(1)(3√2)2−|−4|−(−13)−2+(−4−2)0;(2)(1−xx +3)÷x 2−9x 2+6x +9 . 17. 某年级共有300名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .A 课程成绩的频数分布直方图如下(数据分成6组:40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100)b .A 课程成绩在70≤x <80这一组的是:70 71 71 71 76 76 77 7878.5 78.5 79 79 79 79.5c .A ,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A 75.8m 84.5B 72.27083根据以上信息,回答下列问题:(1)直接写出表中m 的值________(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A“或“B“),理由是________;(3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 18. 某数学兴趣小组想测量商丘电视台电视塔的高度,如图,该小组在商丘电视塔BC 前一座楼房楼顶A 处所观测到电视塔最高点B 的仰角为65∘,电视塔最低点C 的仰角为30∘,楼顶A 与电视塔的水平距离AD 为90米,求商丘电视塔BC 的高度.(结果精确到1米,参考数据√2≈1.41,√3≈1.73,sin65∘≈0.91,cos65∘≈0.42,tan65∘≈2.14)19. 如图,在平面直角坐标系中,已知矩形ABCD ,AB//y 轴,反比例函数y =kx (x >0)的图象过矩形的两个顶点A ,C .(1)若AB =4,A(1,6),①求反比例函数的解析式及点C 的坐标;②求证:点D 在直线OB 上;(1)−|−4|−+(3)2–√2(−)13−2(−4−2)0(2)(1−)÷x x+3−9x 2+6x+9x 2300A B 60a A 640≤x <5050≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100b A 70≤x <80707171717676777878.578.579797979.5c A B A 75.8m 84.5B 72.27083(1)m(2)A 76B 71A B(3)A 75.8BC A B 65∘C 30∘A AD 90BC 1≈1.412–√≈1.733–√sin ≈0.9165∘cos ≈0.4265∘tan ≈2.1465∘ABCD AB//y y =(x >0)k x A C(1)AB =4A(1,6)C D OB甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,且超出5件的部分可按原价的六折进行优惠;设需要租用x 件服装,选择甲店则需要y 1元,选择乙店则需要y 2元,请分别求出y 1,y 关于x 的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同? 21. 已知二次函数y =2(x −1)(x −m−3)(m 为常数).(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点;(2)当m 取什么值时,该函数的图象与y 轴的交点在x 轴的上方? 22. 如图,在△ABC 中,AB =AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连接BD ,(1)求证:点E 是^BD 的中点;(2)当BC =12,且AD:CD =1:2时,求⊙O 的半径.23.【问题发现】(1)如图(1),在等腰直角三角形ABC 中,∠BAC =90∘,点M 为BC 边上异于B ,C 的一点,以AM 为边在其右侧作等腰直角三角形AMN ,∠MAN =90∘,连接CN.①CNBM =________;②CN 与BM 的位置关系是________.【深入探究】(2)如图(2),在△ABC 中,∠BAC =90∘,∠ABC =30∘,点M 为BC 边上异于B ,C 的一点,以AM 为边在其右侧作Rt △AMN ,使∠AMN =∠ABC ,∠MAN =∠BAC ,连接CN .(1)中的①②结论是否仍然成立?请说明理由.【拓展延伸】(3)如图(3),在正方形ADBC 中,点M 为BC 边上异于B ,C 的一点,以AM 为边在其右侧作正方形AMEF ,点N 为正方形AMEF 的中心,连接CN ,若BC =8,CN =2,请直接写出正方形AMEF 的面积.23280426055x y 1y 2y 1y x5y =2(x−1)(x−m−3)m (1)m x(2)m y x △ABC AB =AC AB AC BC D E BDE BDˆBC =12AD :CD =1:2⊙O(1)(1)ABC ∠BAC =90∘M BC B C AM AMN ∠MAN =90∘CN =CN BM CN BM(2)(2)△ABC ∠BAC =90∘∠ABC =30∘M BC B C AM Rt △AMN ∠AMN =∠ABC ∠MAN =∠BAC CN (1)(3)(3)ADBC M BC B C AM AMEFN AMEF CN BC =8,CN =2AMEF参考答案与试题解析九年级第二次月考 (数学)试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】D【考点】相反数【解析】此题暂无解析【解答】解:−(−2)=2,2为−2的相反数.故选D.2.【答案】D【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】此题暂无解答3.【答案】C【考点】由三视图判断几何体简单组合体的三视图【解析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.【解答】4.【答案】C【考点】同底数幂的乘法同底数幂的除法完全平方公式合并同类项【解析】此题暂无解析【解答】此题暂无解答5.【答案】D【考点】三角形的外角性质平行线的性质【解析】根据平行线的性质以及三角形的外角的性质解答即可.【解答】解:如图,因为AB//CD,所以∠1=∠B=85∘.因为∠E=27∘,所以∠D=85∘−27∘=55∘.故选D.6.【答案】D【考点】算术平均数【解析】先根据方差的定义及其计算公式得出:这组数据为5、7、8、α、y 且这组数据的平均数为7,继而知x +y =15,再逐一判断即可.【解答】解:s 2=15[(5−7)2+(7−7)2+(8−7)2+(x −7)2+(y −7)2]∴这组数据为5、7、8、x 、y ,且这组数据的平均数为7,∴5+7+8+x +y =35,∴x +y =15,①当x =9时,y =6,此说法正确;②这组数据的平均数为7,故此说法正确;③x 、y 的平均数为152=7.5,故此说法错误;④该样本的方差与x ,y 的值有关,故此说法错误;故选D .7.【答案】D【考点】根的判别式【解析】根据根的判别式即可求解.【解答】解:根据题意,可得:Δ=42−4c <0,解得:c >4.故选D.8.【答案】C【考点】由实际问题抽象为分式方程【解析】设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为x1+20%万平方米,根据工作时间=工作总量÷工作效率结合实际比原计划提前25天完成了这一任务,即可得出关于x 的分式方程,此题得解.【解答】解:设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为x1+20%万平方米,依题意,得:80x1+20%−80x =25,即80(1+20%)x −80x =25.故选C .9.B【考点】二次函数的应用二次函数的最值【解析】此题暂无解析【解答】解:由题意得:函数过点(0,43)、(20,55)、(30,31),把以上三点坐标代入s =at 2+bt +c(a ≠0)得:{43=c,55=202a +20b +c,31=302a +30b +c,,解得{a =−110,b =135,c =43;,则函数的表达式为:s =−110t 2+135t +43,∵a =−110<0,则函数有最大值,当t =−b2a =13时,s 有最大值,即学生接受能力最强.故选B .10.【答案】C 【考点】等边三角形的性质【解析】先根据△ABC 中,AB =AC 得出∠B =∠C ,再根据三角形内角和定理即可得出∠B 的度数,进而得出结论.【解答】解:在△ABC 中,AB =AC ,故△ABC 是等腰三角形,又∠A =60∘,所以△ABC 是等边三角形.故选C .二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】k <0【考点】一次函数的性质此题暂无解析【解答】解:根据一次函数的基本性质可知,在一次函数y=kx−b中,当k<0时,y随x的增大而减小.故答案为:k<0.12.【答案】x<1【考点】解一元一次不等式组【解析】分别解出两个不等式,再求不等式组的解集.【解答】解:由{2x<5①,x−1<0②,可得①x<52;②x<1.综合①②可得其解集为x<1.故答案为:x<1 .13.【答案】13【考点】概率公式列表法与树状图法【解析】画树状图(两把钥匙能分别打开这两把锁表示为A、a和B、b,第三把钥匙表示为c)展示所有6种等可能的结果数,找出任意取出一把钥匙去开任意的一把锁,一次打开锁的结果数,然后根据概率公式求解.【解答】解:画树状图为:(两把锁分别表示为A,B,对应的两把钥匙分别表示为a,b,第三把钥匙表示为c),共有6种等可能的结果数,其中任意取出一把钥匙去开任意的一把锁,∴任意取出一把钥匙去开任意的一把锁,一次打开锁的概率=26=13.故答案为:13.14.【答案】48求阴影部分的面积三角形的面积扇形面积的计算【解析】此题暂无解析【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE−DO=10−4=6,∴S四边形ODFC=S梯形ABEO=12(AB+OE)⋅BE=12(10+6)×6=48,故答案为:48.15.【答案】(1,√3)或(−1,−√3).【考点】一次函数图象上点的坐标特点坐标与图形变化-旋转勾股定理含30度角的直角三角形【解析】计算出OM=√3,ON=3,即可确定∠NMO=60∘,然后利用AB与直线MN垂直画出图形,直线AB交y轴交于点C,作AD⊥x轴于D,则∠OCB=60∘,再解直角三角形求AD、OD,从而确定A点坐标.【解答】解:当x=0时,y=−√3x+3=3,则N(0,3),(√3,0),当y=0时,−√3x+3=0,解得x=√3,则M在Rt△OMN中,√ON2+OM2=2√3,由勾股定理得MN=∴∠NMO=60∘,在Rt△ABO中,∵∠BAO=30∘,AO=2,∴∠OBA=60∘,∴OB=2√33,∵AB与直线MN垂直,∴直线AB与x轴的夹角为30∘,如图1,直线AB交y轴于点C,交MN于G,作AD⊥x轴于D,GH⊥x轴于H,∴∠MGH=30∘,∴∠BGH=60∘∴∠OCB=60∘,∵∠OBA=60∘,∴△OBC是等边三角形,∴∠BOC=60∘,∴∠AOC=30∘,∴∠AOD=60∘,在Rt△OAD中,OD=12OA=1,AD=√3,∴A点坐标为(1,√3);如图2,直线AB交y轴于点C,作AD⊥x轴于D,同理:∠OCB=60∘,∵∠ABO=60∘,∴∠COB=60∘,∴∠AOC=30∘,∴∠AOD=60∘,在Rt△OAD中,OD=12OA=1,AD=√3,∴A点坐标为(−1,−√3).综上所述,A点坐标为(1,√3)或(−1,−√3).故答案为:(1,√3)或(−1,−√3).三、解答题(本题共计 8 小题,每题 5 分,共计40分)16.【答案】解:(1)原式=18−4−9+1=6.2−9x2+6x+9(2)原式=3x+3÷x2+6x+9x2−9=3x+3⋅x【考点】实数的运算分式的化简求值【解析】【解答】解:(1)原式=18−4−9+1=6.2−9x2+6x+9(2)原式=3x+3÷x2+6x+9x2−9=3x+3⋅x2(x+3)(x−3)=3x+3⋅(x+3)=3x−3 .17.【答案】78.75B,该学生的成绩小于A课程的中位数,而大于B课程的中位数(3)300×10+18+860=180(人)答:A课程成绩超过75.8分的人数约为180人.【考点】中位数频数(率)分布直方图用样本估计总体【解析】此题暂无解析【解答】解:(1)共60个数,中位数为从小到大排序后第30个数与第31个数的平均数,第30和31个数分别为78.5和79,所以中位数为78.75,即m=78.75.故答案为:78.75.(2) 76<78.75,71>70 ,该学生的成绩小于A课程的中位数,而大于B课程的中位数,故B课程名次更靠前.故答案为:B;该学生的成绩小于A课程的中位数,而大于B课程的中位数.(3)300×10+18+860=180(人)答:A课程成绩超过75.8分的人数约为180人.18.【答案】在Rt△ADB中,∵∠BAD=65∘,AD=90m,∘∴CD=AD⋅tan30∘=90×√33≈51.96(m).∴BC=BD+CD=192.6+51.96=244.56米.【考点】解直角三角形的应用-仰角俯角问题【解析】在Rt△ADB中,由锐角三角函数的定义可求出BD的长,同理在Rt△ADC中由锐角三角函数的定义可求出CD的长,进而解答即可.【解答】在Rt△ADB中,∵∠BAD=65∘,AD=90m,∴DB=AD⋅tan65∘≈90×2.14=192.6,同理,在Rt△ADC中,∵∠DAC=30∘,AD=90m,∴CD=AD⋅tan30∘=90×√33≈51.96(m).∴BC=BD+CD=192.6+51.96=244.56米.19.【答案】(1)①解:把点A(1,6)代入y=kx,得6=k1,解得k=6,∴反比例函数的解析式为y=6x.②证明:∵AB=4,A(1,6),∴点B的坐标为B(1,2),∴点C的纵坐标为2,将点C的纵坐标代入y=6x,得2=6x,解得x=3,∴点C的坐标为C(3,2),∴点D的坐标为D(3,6),设直线OB 的解析式为y=kx,将点B(1,2)代入y=kx,得2=k×1,解得k=2,∴直线OB的解析式为y=2x,当x=3时,y=2×3=6,∴点D在直线OB上.(2)证明:设点B的坐标为B(a,b),则点A的坐标为A(a,ka),点C的坐标为C(kb,b),∴AC的中点M的坐标为M(ab+k2b,ab+k2a).设直线OB的解析式为y=kx,则b=ak,解得k=ba,∴直线OB的解析式为y=ba x,当x=ab+k2b时,y=ba⋅ab+k2b=ab+k2a,∴直线OB经过AC的中点M.【考点】待定系数法求反比例函数解析式反比例函数与一次函数的综合【解析】左侧图片未提供解析.【解答】(1)①解:把点A(1,6)代入y=kx,得6=k1,解得k=6,∴反比例函数的解析式为y=6x.②证明:∵AB=4,A(1,6),∴点B的坐标为B(1,2),∴点C的纵坐标为2,将点C的纵坐标代入y=6x,得2=6x,解得x=3,∴点C的坐标为C(3,2),∴点D的坐标为D(3,6),设直线OB 的解析式为y=kx,将点B(1,2)代入y=kx,得2=k×1,解得k=2,∴直线OB的解析式为y=2x,当x=3时,y=2×3=6,∴点D在直线OB上.(2)证明:设点B的坐标为B(a,b),则点A的坐标为A(a,ka),点C的坐标为C(kb,b),∴AC的中点M的坐标为M(ab+k2b,ab+k2a).设直线OB的解析式为y=kx,则b=ak,解得k=ba,∴直线OB的解析式为y=ba x,当x=ab+k2b时,y=ba⋅ab+k2b=ab+k2a,∴直线OB经过AC的中点M.20.【答案】设甲店每件租金x元,乙店每件租金y元,由题可得:{2x+3y=2804x+y=260 ,解得{x=50y=60 ,答:两个服装店提供的单价分别是50元.60元;根据题意可得:y1=40x,y2={60x(0≤x≤5)36x+120(x>5)由40x=36x+120得x=30答:当x=30时,两店相同.【考点】一次函数的应用二元一次方程组的应用——行程问题(1)设甲店每件租金x元,乙店每件租金y元,根据甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元,列出方程组解答即可;(2)根据题意列出函数解析式即可;(3)根据题意列出方程,进而解答即可.【解答】设甲店每件租金x元,乙店每件租金y元,由题可得:{2x+3y=2804x+y=260 ,解得{x=50y=60 ,答:两个服装店提供的单价分别是50元.60元;根据题意可得:y1=40x,y2={60x(0≤x≤5)36x+120(x>5)由40x=36x+120得x=30答:当x=30时,两店相同.21.【答案】(1)证明:当y=0时,2(x−1)(x−m−3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=−2时,方程有两个相等的实数根;当m+3≠1,即m≠−2时,方程有两个不相等的实数根,∴不论m为何值,该函数的图象与x轴总有公共点.(2)解:当x=0时,y=2m+6,∴该函数的图象与y轴交点的纵坐标是2m+6,∴当2m+6>0,即m>−3时,该函数的图象与y轴的交点在x轴的上方.【考点】抛物线与x轴的交点二次函数图象上点的坐标特征【解析】此题暂无解析【解答】(1)证明:当y=0时,2(x−1)(x−m−3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=−2时,方程有两个相等的实数根;当m+3≠1,即m≠−2时,方程有两个不相等的实数根,∴不论m为何值,该函数的图象与x轴总有公共点.(2)解:当x=0时,y=2m+6,∴该函数的图象与y轴交点的纵坐标是2m+6,∴当2m+6>0,即m>−3时,该函数的图象与y轴的交点在x轴的上方.22.【答案】(1)证明:连接AE ,DE∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC ,∵∠CDB =90∘,DE 是斜边BC 的中线,∴DE =EB ,∴^ED =^EB ,即点E 是^BD 的中点;(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∵AB 为直径,∴∠ADB =90∘,∴BD 2=(3x)2−x 2=8x 2,在Rt △CDB 中,(2x)2+8x 2=122,∴x =2√3,∴OA =32x =3√3,即⊙O 的半径是3√3.【考点】圆心角、弧、弦的关系等腰三角形的判定与性质【解析】(1)要证明点E 是^BD 的中点只要证明BE =DE 即可,根据题意可以求得BE =DE ;(2)根据题意可以求得AC 和AB 的长,从而可以求得⊙O 的半径.【解答】(1)证明:连接AE ,DE∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC ,∵∠CDB =90∘,DE 是斜边BC 的中线,∴DE =EB ,∴^ED =^EB ,即点E 是^BD 的中点;(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∵AB 为直径,∴∠ADB =90∘,∴BD 2=(3x)2−x 2=8x 2,在Rt △CDB 中,(2x)2+8x 2=122,∴x =2√3,∴OA =32x =3√3,即⊙O 的半径是3√3.23.【答案】1,CN ⊥BM (2)(3)如图,连接AB,AN.∵四边形ADBC,四边形AMEF均为正方形,点N为正方形AMEF的中心,∴∠ABC=∠BAC=45∘,∠MAN=45∘,∴∠BAC−∠MAC=∠MAN−∠MAC,即∠BAM=∠CAN.又∵ABAC=AMAN=√2,∴△ABM∼△ACN,∴CNBM=ACAB=cos45∘=√22,即2BM=√22,∴BM=2√2,∴CM=BC−BM=8−2√2,2=AC2+CM2=BC2+CM2∴S正方形AMEF=AM=82+(8−2√2)2=136−32√2.【考点】相似三角形的性质相似三角形的判定解直角三角形正方形的性质勾股定理等腰直角三角形全等三角形的判定全等三角形的性质【解析】此题暂无解析【解答】解:(1)△ABC,△AMN均为等腰直角三角形,∴AB=AC,AM=AN.又∵∠BAM=90∘−∠CAM,∠CAN=90∘−∠CAM,∴∠BAM=∠CAN,∴△ABM≅△ACN,∴CN=BM,∠ACN=∠ABM=45∘,∴CNBM=1,∠ACN+∠ACB=90∘,∴CN⊥BM.故答案为:1;CN⊥BM.(3)如图,连接AB,AN.∵四边形ADBC,四边形AMEF均为正方形,点N为正方形AMEF的中心,∴∠ABC=∠BAC=45∘,∠MAN=45∘,∴∠BAC−∠MAC=∠MAN−∠MAC,即∠BAM=∠CAN.又∵ABAC=AMAN=√2,∴△ABM∼△ACN,∴CNBM=ACAB=cos45∘=√22,即2BM=√22,∴BM=2√2,∴CM=BC−BM=8−2√2,2=AC2+CM2=BC2+CM2∴S正方形AMEF=AM=82+(8−2√2)2=136−32√2.。
九年级上册第二次月考数学试卷
20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。
1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。
语文九年级第二次月考试卷
考试时间:120分钟满分:100分一、基础知识(20分)1. 下列词语中,加点字的注音完全正确的一项是()A. 狂妄(kuáng wàng)殷切(yīn qiè)沉湎(chén miǎn)B. 峰回路转(fēng huí luò zhuǎn)气喘吁吁(qì chuǎn xū xū)颠簸(diān bǒ)C. 毛骨悚然(máo gǔ sǒng rán)欣喜若狂(xīn xǐ ruò kuáng)炽热(chì rè)D. 沉默寡言(chén mò guǎ yán)潜移默化(qián yí mò huà)欣欣向荣(xīn xīn xiàng róng)2. 下列句子中,没有语病的一项是()A. 为了保护视力,我国青少年近视率仍然居高不下。
B. 随着社会的发展,我国的科技创新能力不断提高,在一些领域已经走在世界前列。
C. 通过这次比赛,使我们的团队精神和协作能力得到了很大的提高。
D. 通过参观学习,我对我国的历史文化有了更深刻的认识。
3. 下列各句中,加点词语使用不正确的一项是()A. 她的歌声清脆悦耳,宛如天籁之音。
B. 他的解题方法独特,让人眼前一亮。
C. 他的言辞犀利,一针见血,让人无法反驳。
D. 他的性格内向,不善言辞,但在关键时刻总是能挺身而出。
4. 下列各句中,标点符号使用不正确的一项是()A. “这个问题很复杂,需要我们认真思考。
”B. 我喜欢音乐,尤其是古典音乐。
C. 小明在课堂上认真听讲,积极发言。
D. “你喜欢吃什么?”“我喜欢吃水果。
”5. 下列各句中,书写规范、正确、美观的一项是()A. 人类在宇宙中是渺小的,但是人类的力量是伟大的。
B. 我喜欢读书,因为它能让我开阔眼界,增长知识。
九级第二次月考数学试卷
九年级第二次月考数学试卷姓名 班级 考号亲爱的同学:欢迎参加生动活泼,意味无穷的数学“旅行”.相信聪明的你一定会认真细致地克服“旅行”中的一些小小困难,顺利到达目的地.“旅行”中请注意:全卷共四大题,满分150分,请直接在试卷上书写答案.温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一.选择题(每题4分,12题,共48分) 1.你所见到的车轮形状都是( )(A).正方形 (B).三角形 (C)长方形 (D).圆 2.如图,点C 在以AB 为直径的半圆O ,∠BAC =20°, 则∠BOC 等于( ).(A ) 20°(B ) 30° (C )40° (D )50° 3.设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 有一个公共点,则d 的大小( )(A )3=d (B ) 3≤d (C )3<d ( D ) 3>d 4.已知:在直角三角形ABC 中,090=∠A ,AC=3cm,BC=4cm,CD 是AB 边上的高,则A 在以C 为圆心,CD 为半径的( ) (A) 圆内 (B) 圆上 (C) 圆外 (D) 无法确定5.若在同圆中弧AB 是CD 的一半,那么弦AB 与弦CD 的一半的大小关系是( )(A) AB>21CD (B )AB=21CD (C)AB<21CD (D)无法确定6.圆O 的半径为6cm ,P 是圆O 内一点,OP=2cm,那么过点P 的最短弦A BCO的长等于( )(A) 24cm (B) 28cm (C) 26cm (D) 12cm7..⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( )(A ) 1 cm (B ) 7cm (C ) 3 cm 或4 cm (D ) 1cm 或8..如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C和D 两点,AB=10cm,CD=6cm,则AC 长为 ( ) (A ) 0.5cm ( B ) 1cm (C ) 1.5cm (D ) 2cm9.两圆半径分别为R 和r ,两圆的圆心距为d ,以R 、r 、d 三条线段首尾相接可以围成一个三角形,则两圆的位置关系是( ) A. 相离 B. 相切 C. 相交 D. 内含10.在半径为6cm 的圆中,长为π2㎝的弧所对的圆周角的度数是( )(A )︒30 (B )︒45 (C )︒60(D )︒9011.如图,一正方形同时外切和内接于两个同心圆,当小 圆的半径为r 时,大圆的半径应为( ). (A )r 2 (B )r 5.1 (C )r 3 (D )r 2 12.如图,AB 、CD 是⊙O 的直径,⊙O 的半径为R ,AB ⊥CD ,以B 为圆心,以BC ACED 的面积为( )平方单位.(A )()21R -π (B )2R (C )()21R +π (D )2R π二、填空题(每空5分,6题,共30分)13.已知圆O 的半径为6㎝,弦AB=6㎝,则弦AB 所对的圆心角是 14.如图,已知AB 是半圆O 的直径,∠BAC =40°,D 是AC 上任意一点,那么∠D 的度数是 .15.如果正多边形的一个内角是144°,则这个多边形是_________ 16.如图为直径是52cm 圆柱形油槽,装入油后,油深CD 为16cm,那么油面宽·A BCDEOB度AB= cm.17..Rt△ABC中,∠C=90°,AC=6,BC=8,则Rt△ABC的外接圆半径为_________18.如图,同心圆中,两圆半径分别为2、l,∠AOB=120°,则阴影部分的面积为___________(第14题)(第16题)(第18题)三. 画图(保留画图痕迹,不写画法,每题4分,共8分)19.已知,如图12,是破铁轮的轮廓,求作它的圆心20. 如图,作出△ABC的内切圆。
九年级上册语文第二次月考试卷及答案
九年级上册语文第二次月考试卷及答案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!九年级上册语文第二次月考试卷及答案九年级上册语文第二次月考试卷及答案人教版九年级语文的学习是一个漫长的积累过程,语文学习的过程中通过做语文月考试题的练习能让同学们更好的学习语文。
福建省龙岩市永定区侨育中学2024-2025学年九年级上学期第二次月考化学试题(无答案)
2024-2025学年第一学期九年级第二次质量检测化学试题(考试时间:100分钟 试卷满分:100分)可能用到的相对原子质量:H-1 C-12 O-16 Si-28 Mg-24 K-39 Cl-35.5一、单项选择题:共16题,每题3分,共48分。
每题只有一个选项最符合题意。
1.《天工开物》中记载了古法造纸工艺。
下列步骤中一定发生了化学变化的是A .煮楻足火B .斩竹槌洗C .日晒成干D .覆帘压纸2.科学家与其研究成果对应关系正确的是A .门捷列夫——提出原子学说B .道尔顿——发现元素周期表C .屠呦呦——提取青蒿素D .卢瑟福——发现电子3.下列标志表示“禁止烟火”的是A . B . C . D .4.下列物质中,由分子构成的是A .干冰B .金刚石C .铜块D .氯化钠5.分类是一种行之有效,简单易行的科学方法。
从组成角度,KClO 3不属于A .纯净物B .化合物C .含氧化合物D .氧化物6.天津大学研制出稳定性更好的二氧化碳加氢催化剂一Ag/In 2O 3。
In 2O 3中In 的化合价为A .+2B .0C .+6D .+37.在“氧气的实验室制取与性质”实验中,下列装置或操作正确的是A .加装药品B .产生氧气C .收集氧气D .铁丝燃烧8.已知化学方程式:,根据质量守恒定律,推断X 的化学式为A .B .C .D .阅读下列材料,完成第9-11题:我国饮茶文化源远流长。
唐代陆羽所著的《茶经》记载“其水,用山水上,江水中,井水下”,主要是由于山泉水中的硅酸(H 2SiO 3)有益人体健康,可促进钙的吸收。
《茶经》中用“细、馨、苦”形容茶汤的色、香、味,其主要是由茶黄素(C 29H 24O 12)、香叶醇(C l0H 18O )、儿茶素(C 15H 14O 6)等物质所致。
茶叶中富含的硒有防癌作用。
9.下列说法不正确的是A .可用肥皂水检验山泉水是否为软水B .山泉水有助于预防骨质疏松C .硅元素是地壳中含量最多的元素D .硅酸的相对分子质量为7810.有关茶黄素、香叶醇、儿茶素三种物质的说法不正确的是24222N H +X=3N +4H O 24N O 2N O 2NO NOB.硒原子核内有78.96 g D.硒原子在化学反应中易得到.活性炭的主要作用是吸附B.滤膜的主要作用是过滤.紫外灯照射的作用是杀菌D.流出的直饮水是纯净物.下列物质的性质与用途具有对应关系的是18(6分).在4Al+3O22Al2O3的化学反应中, 份质量的铝与 份质量的氧气恰好完全反应生成 份质量的氧化铝.)氟元素的核电荷数为,钙元素的相对原子质量为。
江西抚州市临川区2025年初三年级下学期第二次月考试题含答案
江西抚州市临川区2025年初三年级下学期第二次月考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
Ⅰ. 单项选择1、Sunday is the ________ day of the week.A.sevenB.seventh C.first D.one2、—Who is __________ young man with long hair? —He’s a friend of mine.A.a B.an C.the D.\3、Music is the only thing ______ can help me to relax after a long day of hard work.A.which B.that C.who4、Whenever you ____ problems, you should try to get them over by yourself.A.hear of B.show off C.call at D.come across5、---_______do you brush your teeth?---Twice or more a day.A.How soon B.How far C.How long D.How often6、None of them talked. They finished their meal in_________.A.silence B.order C.place D.public7、My sister has a good habit. She likes to ________ all things in right places.A.put down B.put away C.put on D.put out8、Please ____ the TV. The baby is asleep.A.turn up B.turn off C.turn on9、It is reported that the 1st Light Rail Transit(轻轨) ________in our city in 2020.A.will build B.has built C.will be built D.has been built10、One of the wonders of the _____ world is the pyramids in Egypt.A.crowded B.natural C.ancient D.modernⅡ. 完形填空11、语法选择In China, almost everyone knows Ma Yun. Ma Yun became one of 1 men in China when his company Alibaba went on the stock(股票)market with a value of 140 billion. It 2 so amazing, doesn't it? Here are some stories about him on the way 3 .Ma made his 4 trip to the US in 1995 and used the Internet for the first time. After searching 5 "beer", hewebsite-the seed for Alibaba was sown(播种).Ma said he 8 many times in his life. He failed the College Entrance Examination in China three times and 9 companies offered him jobs, including one at KFC.And the famous Harvard University refused him 10 times.10 English well was difficult when Ma was a teenager because of limited(有限的)resources. However, he found11 English well by giving tourists free guides around his hometown Hangzhou. And he kept it for nine years. Ma said tourists opened up a new world for him 12 it is hard for him sometimes.Ma's hero is Forest Gump 13 never gives up. When he made a speech on his success 14 his career Davos at(达沃斯论坛)in 2015. Ma said, "Life is like a box of chocolates because you never know what you are going to get." Do as Ma does, never give 15 and you will be successful one day.1.A.rich B.the richest C.richest D.richer2.A.tasted B.sounded C.tastes D.sounds3.A.succeeding B.succeeded C.to success D.successful4.A.the first B.first C.one D.the one5.A.for B.to C.of D.at6.A.to come B.comes C.come D.came7.A.to setting up B.set up C.to set up D.setting up8.A.refuse B.refused C.was refused D.refusing9.A.few B.a few C.a little D.little10.A.Learn B.To learn C.Learned D.to learning11.A.if he could learn B.could he learn C.that could he learn D.that he could learn 12.A.why B.how C.although D.when13.A.who B.whom C.when D.which14.A.at B.in C.on D.with15.A.for B.to C.back D.upⅢ. 语法填空12、阅读下面短文,在空白处填入一个适当的词,或填入括号中所给单词的正确形式。
【9历第二次月考】亳州市高炉镇大呼中学2023-2024学年九年级上学期第二次月考历史试题(含详解)
九年级上册月考二历史测试卷(1—4单元)一、单项选择题(本大题共15小题,每小题2分,共30分)1.金字塔是古埃及文明的象征,反映了古埃及社会经济发展的较高水平。
它的功用是()A.法老的宫殿B.法老祭祀的神庙C.法老的陵墓D.法老的游乐场所2.“许多反映两河流域文明的珍贵文物曾在战争中遭到破坏”。
其中的“两河”指的是A.印度河、恒河B.尼罗河、幼发拉底河C.底格里斯河、幼发拉底河D.底格里斯河、密西西比河3.在古代印度有这样一户家庭:有着自己的住房,在城市里开着一家棉布店,同时销售自己手工制作的衣服。
你认为这户人家属于等级()A.婆罗门B.刹帝利C.吠舍D.首陀罗4.18世纪英国诗人雪莱曾写道:“我们的法律、文学、宗教和艺术都起源于希腊。
如果没有希腊,我们现在还可能蒙昧无知,与野人无异。
”据此,雪莱认为()A.希腊人创造的各项文明世界领先B.希腊文明完全涵盖近代西方文明C.近代西方传承创新了古希腊文明D.希腊文明是近代西方文明的源头5.下面是古代罗马发展演变的线索示意图,下列说法正确的是()A.①阶段颁布了“儒略历”B.①阶段爆发“布匿战争”C.①阶段爆发斯巴达克起义D.①阶段地中海成为其内湖6.辉煌的古希腊和古罗马文明,造就了西方文化之根。
下列史实属于古代希腊、罗马文化成就的有()①孕育了德谟克里特、苏格拉底等大哲学家①发明了包括零在内的10个数字符号①改进了前人的历法,编制出“儒略历”①制定并颁布了《十二铜表法》,成为欧洲法学的渊源A.①①①B.①①①C.①①①D.①①①7.古代东西方文明各放异彩,主要源自于A.山川河海阻碍了文明之间的交流B.农耕和畜牧经济发展的局限C.各文明都受制于小国寡民状态D.自然环境与历史条件的不同8.德国的—位法学家说:“罗马曾经三次征服世界:第一次以武力,第二次以宗教,第三次则以法律。
而这第三次征服也许是其中最为平和、最为持久的一次。
”“最为平和、最为持久”说明罗马法A.维持了罗马帝国统一B.巩固了皇帝的独尊地位C.成为欧洲法学的渊源D.维护了庄园的公共秩序9.在西欧封建社会时期的某些国家和地区,流行着一条常规“我的附庸的附庸,不是我的附庸。
九年级第一学期语文第二次月考试卷(含答案)
九年级第一学期语文第二次月考试卷(含答案)考生注意:1.本试卷满分120 分,考试时间120 分钟。
2.所有答案必须写在答题纸上,写在试卷上无效。
一、积累与运用(25 分)1.下列词语中加点字的读音完全正确的一项是()A. 妖娆.(ráo)拮.据(jū)诓.骗(kuāng)成吉思汗.(hàn)B. 亵.渎(xiè)骈.进(pián)嗔.怒(chēn)强聒.不舍(guō)C. 襁.褓(qiáng)枘.凿(ruì)恣.睢(suī)廓然无累.(lěi)D. 佝.偻(gōu)阴晦.(huì)抽噎.(yē)恪.尽职守(gè)2.下列词语中没有错别字的一项是()A. 愕然滞碍根深蒂固重蹈复辙B. 旁骛陨落红装素裹一代天娇C. 嬉闹玄虚断章取义无与伦比D. 鄙夷凌驾原弛蜡象怒不可遏3.下列句子中加点成语使用恰当的一项是()A. 他在大会上的即兴讲话逻辑严密、语无伦次....,博得了与会专家的一致好评。
B. 正因为他具有海誓山盟....的崇高理想,才在工作中取得了出色的成就。
C. 他们两人的关系一直亲如兄弟,难怪人们说他们两人间不容发....。
D. 这些伪劣药品造成的危害骇人听闻....,药品市场非整顿不可。
4.下列句子没有语病的一项是()A. 通过这次活动,使我们开阔了眼界,增长了知识。
B. 为了避免今后不再发生类似的错误,我们必须严格遵守纪律。
C. 一个人是否拥有健康的体魄,关键在于持之以恒地参加体育锻炼。
D. 由于他良好的心理素质和优异的表现,赢得了评委的一致好评。
5.默写填空。
(8 分)(1)____________________,人迹板桥霜。
(温庭筠《商山早行》)(2)____________________,山雨欲来风满楼。
(许浑《咸阳城东楼》)(3)春蚕到死丝方尽,____________________。
(李商隐《无题》)(4)____________________,爱上层楼。
九年级第二次月考 (数学)(含答案)082250
九年级第二次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 的相反数是( )A.B.C.D.2. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量约为亿立方米,人均占有淡水量居全世界第位,因此我们要节约用水,亿用科学记数法表示为(精确到十亿位)( )A.B.C.D.3. 如图,是一个由多个相同小正方体搭成的几何体的俯视图,图中所标的数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.−120192019−12019−2019120192750011027500275×1042.750×1042.750×101227.5×10114. 下列运算正确的是( )A.B.C.D.5. 如图,,,则的度数为 ( )A.B.C.D.6. 若数据,,,,的平均数为,方差为,则数据,(其中的平均数,方差′.下列式子正确的是( )A.B.C.D.7. 下列一元二次方程中,有两个相等的实数根的是( )A.B.C.D.8. 某公益组织在国外采购某医疗物资,每名志愿者平均每天只能采购到该物资万个,原计划采购该物资万个.实际采购中,在当地又招募到名志愿者,结果比原计划推迟一天结束采购任务并实际购得万个.设原有采购志愿者名.则据题意可列方程为( )A.B.C.D.9. 心理学家发现:课堂上,学生对概念的接受能力与提出概念的时间(单位:)之间近似满足=−(a −b)2a 2b 2⋅=a 3a 2a 6+a =a 2a 3÷a =a 3a 2AB//CD ∠A+∠E =75∘∠C 60∘65∘75∘80∘12345a b 1+2m ,2+m ,34−m ,5−2m 0<m<1)a ′b <a,=b a ′b ′=a,<b a ′b ′=a,>b a ′b ′>a,=b a ′b ′−8x+16=0x 2−8=0x 2=4(x−2)2−13x−48=0x 2120010300x −=1300x 200x+10−=1300x+10200x −=1200x 300x+10−=1200x+10300xs t min s =a +bt+c(a ≠0)2函数关系,值越大,表示接受能力越强.如图记录了学生学习某概念时与的三组数据,根据上述函数模型和数据,可推断出当学生接受能力最强时,提出概念的时间为A.B.C.D.10. 如图,点是等边的边上一点,以为边作等边,点,在同侧,下列结论:①=;②;③平分;④=,其中错误的有( )A.个B.个C.个D.个二、填空题(本题共计 5 小题,每题 5 分,共计25分)11. 已知一次函数,请你补充一个条件________,使随的增大而减小.12. 若不等式组无解,则实数的取值范围为________.13. 某学校举行“少年心向党”庆祝建党周年主题教育活动,准备从小明、小庆两名男生和小岩、小红、小慧三名女生中各随机选取一名男生和一名女生担当主持人,则小庆和小红被同时选中的概率是________.14. 如图,四边形和都是正方形,点,分别在,上,点在扇形的上,已知正方形的边长为,则图中阴影部分的面积为________.15. 如图,在正方形中,,与直线的夹角为,延长交直线于点,作正方形,延长交直线于点,作正方形;延长交直线于点,,依此规律,则 _________.s=a+bt+c(a≠0)t2s ts()8min13min20min25minD△ABC AC BD△BDE C E BD ∠ABD30∘CE//AB CB∠ACE CE AD123y=kx−b y x{x−a≥0,1−2x>x−2a100ABCD AEFG E G AB AD F ADBABCD1ABCB1AB=1AB l30∘CB1l A1A1B1C1B2C1B2l A2A2B2C2B3C2B3l A3⋯=A2021B2021三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 计算:;. 17. 为庆祝中国共产党建党周年,讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党周年知识测试,该校七、八年级各有名学生参加,从中各随机抽取了名学生的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息:.八年级的频数分布直方图如下(数据分为组: ,,,,;.八年级学生成绩在的这一组是:.七、八年级学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七年级八年级根据以上信息,回答下列问题:表中的值为________;在随机抽样的学生中,建党知识成绩为分的学生,在________年级排名更靠前,理由是________.若各年级建党知识测试成绩前名将参加线上建党知识竞赛,预估八年级分数至少达到________分的学生才能入选;若成绩分及以上为“优秀”,请估计八年级达到“优秀”的人数.18. 疫情期间,为了保障大家的健康,各地采取了多种方式进行预防,某地利用无人机规劝居民回家.如图,一条笔直的街道,在街道处的正上方处有一架无人机,该无人机在处测得俯角为的街道处有人聚集,然后沿平行于街道的方向再向前飞行米到达处,在处测得俯角为 的街道处也有人聚集,已知两处聚集点,之间的距离为米,求无人机飞行的高度.(参考数据: . ) 19. 如图,在直角坐标系中,直线与反比例函数的图象交于关于原点对称的,两(1)−|−4|−+(3)2–√2(−)13−2(−4−2)0(2)(1−)÷x x+3−9x 2+6x+9x 210010030050a 550≤x <6060≤x <7070≤x <8080≤x <9090≤x ≤100)b 80≤x <90808182838383.583.58484858686.587888989c 87.2859185.3m 90(1)m (2)84(3)90(4)85DC C A A 45∘B DC 60E E 37∘D B D 120AC sin ≈0.60,cos ≈0.80,tan ≈0.75,≈1.4137∘37∘37∘2–√y =−x 12y =k xA B点,已知点的纵坐标是.求反比例函数的表达式;将直线向上平移后与反比例函数在第二象限内交于点,如果的面积为,求平移后的直线的函数表达式. 20. 【阅读理解】在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组(2)已知,求的值解:(1)把②代入①得:=.解得:=.把=代入②得:=.所以方程组的解为(2)①得:=.③②-③得:=.【类比迁移】(3)若,则=________.(4)解方程组【实际应用】打折前,买件商品,件商品用了元.打折后,买件商品,件商品用了元,比不打折少花了多少钱? 21. 已知二次函数(为常数).求证:不论为何值,该函数的图象与轴总有公共点;当取什么值时,该函数的图象与轴的交点在轴的上方?22. 如图,在圆中,弦于,弦于,与相交于点.(1)求证:.(2)如果=,=,求圆的半径.23. 边长为的正方形中,点是上一点,过点作交射线于点,连接.A 3(1)(2)y =−x 12C △ABC 36{x+2(x+y)=3x+y =1{ 4x+3y+2z =10,9x+7y+5z =25x+y+z x+2×13x 1x 1y 0{ x =1y =0×28x+6y+4z 20x+y+z 5{ x+y+z =13x+3y+5z =23x+2y+3z 2x−y−2=0,+2y =9.2x−y+5739A 21B 108052A 28B 1152y =2(x−1)(x−m−3)m (1)m x (2)m y x O AB ⊥CD E AG ⊥BC F CD AG M =BD^BG ^AB 12CM 4O 4ABCD E BD E EF ⊥AE CB F CE若点在边上(如图).①求证:;②若,求的长.若点在延长线上,,请直接写出的长为________.(1)F BC CE =EF BC =2BF DE (2)F CB BC =2BF DE参考答案与试题解析九年级第二次月考 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】D【考点】相反数【解析】直接利用相反数的定义分析得出答案.【解答】解:的相反数是:.故选.2.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】解:将亿用科学记数法表示为:.故选.3.【答案】D【考点】由三视图判断几何体简单组合体的三视图【解析】根据几何体的三视图来解答即可.【解答】解:由俯视图的数字可知,该几何体的左视图有三列,−1201912019D a ×10n 1≤|a |<10n n a n ≥1n <1n 27500 2.750×1012C从左到右分别是,,个正方形,∴这个几何体的左视图为:故选.4.【答案】D【考点】同底数幂的乘法完全平方公式合并同类项同底数幂的除法【解析】根据完全平方公式、同底数幂的乘法、同底数幂的除法,合并同类项逐项分析即可.【解答】解:,,故该选项错误;,,故该选项错误;,与不是同类项,不能合并,故该选项错误;,,故该选项正确.故选.5.【答案】C【考点】平行线的性质三角形的外角性质【解析】【解答】解:设与相交于点,如图所示:232D A (a −b =−2ab +)2a 2b 2B ⋅==a 3a 2a 3+2a 5C a 2a D ÷a ==a 3a 3−1a 2D CE AB O∵,∴.∵,∴.故选.6.【答案】B【考点】方差算术平均数【解析】先后利用方差和算术平方根的计算公式分别计算出变化前后的方差和算术平方根,再进行比较,即可解答.【解答】解:,,.,,,,,, 又,,.故选.7.【答案】A【考点】根的判别式【解析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.【解答】∠A+∠E =75∘∠BOE =∠A+∠E =75∘AB//CD ∠C =∠BOE =75∘C ∵a =(1+2+3+4+5)=315=(1+2m+2+m+3+4−m+5−2m)=3a ′15∴a =a ′∵b =×[++++]15(1−3)2(2−3)2(3−3)2(4−3)2(5−3)2=×[++++]15(−2)2(−1)2021222=2=×[++++]b ′15(1+2m−3)2(2+m−3)2(3−3)2(4−m−3)2(5−2m−3)2=×(10−20m+10)15m 2=2−4m+2m 2=2(m−1)2∵0<m<1∴0<=2(m−1)<2b ′∴<b b ′B Δ=−4×1×16=02解:.∵∴方程有两个相等的实数根,符合题意;.∵∴有两个不相等的实数根,不符合题意;.方程化为∵∴方程有两个不相等的实数根,不符合题意;.∵∴方程有两个不相等的实数根,不符合题意;故选.8.【答案】B【考点】由实际问题抽象为分式方程【解析】设原有采购志愿者名.根据“结果比原计划推迟一天”列出方程.【解答】解:设原有采购志愿者名,根据题意,得.故选.9.【答案】B【考点】二次函数的应用二次函数的最值【解析】此题暂无解析【解答】解:由题意得:函数过点、、,把以上三点坐标代入得:,解得,则函数的表达式为:,,则函数有最大值,当时,有最大值,即学生接受能力最强.故选.10.【答案】B A Δ=−4×1×16=0(−8)2B Δ=−4×1×(−8)=32>002C −4x =0x 2Δ=−4×1×0=16>0(−4)2D Δ=−4×1×(−48)=361>0(−13)2A x x −=1300x+10200xB (0,43)(20,55)(30,31)s =a +bt+c(a ≠0)t 2 43=c,55=a +20b +c,20231=a +30b +c,302 a =−,110b =,135c =43;s =−+t+43110t 2135∵a =−<0110t =−=13b 2a s B【考点】全等三角形的性质与判定等边三角形的性质等腰三角形的性质与判定【解析】由等边三角形的性质和全等三角形的判定与性质,分别对各个结论进行推理判断即可.【解答】∵和是等边三角形,∴====,=,=,∴=,①不正确;在和中,,∴,∴==,=,④正确;∴=,∴,②正确;∵==,∴平分,③正确;∴错误的有个,二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】一次函数的性质【解析】此题暂无解析【解答】解:根据一次函数的基本性质可知,在一次函数中,当时,随的增大而减小.故答案为:.12.【答案】【考点】解一元一次不等式组【解析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出的取值范围.△ABC △BDE ∠A ∠ACB ∠ABC ∠DBE 60∘AB BC BD BE ∠ABD ∠CBE △ABD △CBE AB =CB∠ABD =∠CBE BD =BE△ABD ≅△CBE(SAS)∠A ∠BCE 60∘AD CE ∠BCE ∠ABC CE//AB ∠CBE ∠ACB 60∘CB ∠ACE 1k <0y =kx−b k <0y x k <0a ≤−1a【解答】解:,由①得,,由②得,.∵不等式组无解,∴,解得:.故答案为:.13.【答案】【考点】列表法与树状图法概率公式【解析】用列表法表示所有可能出现的结果,进而求出相应的概率.【解答】解:利用列表法表示所有可能出现的结果如下:男生 女生小岩小红小惠小明小明,小岩小明,小红小明,小惠小庆小庆,小岩小庆,小红小庆,小惠共有种可能出现的结果,其中小庆和小红同时被选中的有种,∴(小庆和小红被同时选中).故答案为:.14.【答案】【考点】正方形的性质扇形面积的计算【解析】此题暂无解析【解答】此题暂无解答15.【答案】【考点】{x+a ≥0①1−2x >x−2②x ≥−a x <1−a ≥1a ≤−1a ≤−11661P =1616()3–√2021正方形的性质含30度角的直角三角形规律型:图形的变化类【解析】根据含度的直角三角形三边的关系得到,,再利用四边形为正方形得到,接着计算出,然后根据的指数变化规律得到的长度.【解答】解:四边形为正方形,.,,,.四边形为正方形,.,,,,.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:原式.原式 . 【考点】实数的运算分式的化简求值【解析】【解答】解:原式.原式 . 30=A =A 1B 13–√B 13–√A =2A =2A 1B 1A 1B 1C 1B 2==A 1B 2A 1B 13–√=A 2B 2()3–√23–√A 2018B 2019∵ABCB 1∴A =AB =1B 1∵C//AB A 1∴∠A =B 1A 130∘∴=A =A 1B 13–√B 13–√A =2A =2A 1B 1∵A 1B 1C 1B 2∴==A 1B 2A 1B 13–√∵//A 2C 1A 1B 1∴∠=B 2A 2A 130∘∴==×=A 2B 23–√A 1B 23–√3–√()3–√2⋯∴=A 2021B 2021()3–√2021()3–√2021(1)=18−4−9+1=6(2)=÷3x+3−9x 2+6x+9x 2=⋅3x+3+6x+9x 2−9x 2=⋅3x+3(x+3)2(x+3)(x−3)=3x−3(1)=18−4−9+1=6(2)=÷3x+3−9x 2+6x+9x 2=⋅3x+3+6x+9x 2−9x 2=⋅3x+3(x+3)2(x+3)(x−3)=3x−317.【答案】八,该学生的成绩大于八年级的中位数,但小于七年级的中位数根据题意得:(人),答:八年级达到“优秀”的人数约为人.【考点】频数(率)分布直方图中位数用样本估计总体【解析】(1)根据中位数的定义直接求解即可;(2)从七、八年级的中位数进行分析,即可得出在八年级排名更靠前;(3)先求出从抽取的名学生中参加线上建党知识竞赛得人数,再结合统计图给出的数据,即可得出答案;(4)用总人数乘以达到“优秀”的人数所占的百分比即可.【解答】解:八年级共抽取名学生,第,名学生的成绩为分,分,所以(分).故答案为:.在八年级排名更靠前,理由如下:七年级的中位数是分,八年级的中位数是分,该学生的成绩大于八年级成绩的中位数,小于七年级成绩的中位数,在八年级排名更靠前.故答案为:八,该学生的成绩大于八年级成绩的中位数,小于七年级成绩的中位数;根据题意得:(人),则在抽取的名学生中,必须有人参加线上建党知识竞赛,所以至少达到分才能入选.故答案为:.根据题意得:(人),答:八年级达到“优秀”的人数约为人.18.【答案】解:如图,过点作于.∵,∴,∵,,∴,∴四边形为矩形.∴米.设米.则米,米.在中,∵,8389(4)300×=1207+135012050(1)5025268383m==8383+83283(2)∵8583∴∴(3)×50=159030050158989(4)300×=1207+1350120E EM ⊥DC M AE//CD ∠ABC =∠BAE =45∘BC ⊥AC EM ⊥DC AC//EM AEMC CM =AE =60BM =x AC =BC =EM =(60+x)DM =(120+x)Rt △EDM ∠D =37∘∠D ===0.75EM 60+x∴,解得:,∴(米).∴飞机高度为米.答:无人机飞行的高度为米.【考点】解直角三角形的应用-仰角俯角问题【解析】【解答】解:如图,过点作于.∵,∴,∵,,∴,∴四边形为矩形.∴米.设米.则米,米.在中,∵,∴,解得:,∴(米).∴飞机高度为米.答:无人机飞行的高度为米.19.【答案】解:令一次函数中,,则,解得,即点的坐标为.∵点在反比例函数的图象上,∴,∴反比例函数的表达式为.设平移后直线于轴交于点,连接,如图所示,设平移后的解析式为,∵该直线平行直线,∴,tan ∠D ===0.75EM DM 60+x 120+x x =120AC =60+x =60+120=180180AC 180E EM ⊥DC M AE//CD ∠ABC =∠BAE =45∘BC ⊥AC EM ⊥DC AC//EM AEMC CM =AE =60BM =x AC =BC =EM =(60+x)DM =(120+x)Rt △EDM ∠D =37∘tan ∠D ===0.75EM DM 60+x 120+x x =120AC =60+x =60+120=180180AC 180(1)y =−x 12y =33=−x 12x =−6A (−6,3)A(−6,3)y =k x k =−6×3=−18y =−18x (2)y F AF BF y =−x+b12AB =S △ABC S △ABF∵的面积为,∴,由对称性可知,,∵,∴,∴,∴,∴平移后的直线的函数表达式为.【考点】待定系数法求反比例函数解析式反比例函数与一次函数的综合一次函数图象与几何变换三角形的面积【解析】将代入一次函数解析式中,求出的值,即可得出点的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;平移后直线于轴交于点,连接,,设平移后的解析式为,由平行线的性质可得出,结合正、反比例函数的对称性以及点的坐标,即可得出关于的一元一次方程,解方程即可得出结论.【解答】解:令一次函数中,,则,解得,即点的坐标为.∵点在反比例函数的图象上,∴,∴反比例函数的表达式为.设平移后直线于轴交于点,连接,如图所示,设平移后的解析式为,∵该直线平行直线,∴,∵的面积为,∴,由对称性可知,,∵,∴,∴,∴,∴平移后的直线的函数表达式为.20.【答案】△ABC 48=OF ⋅(−)=36S △ABF 12x B x A =−x B x A =−6x A =6x B =b ×12=36S △ABF 12b =6y =−x+612(1)y =3x A (2)y F AF BF y =−x+b 12=S △ABC S △ABF A b (1)y =−x 12y =33=−x 12x =−6A (−6,3)A(−6,3)y =k x k =−6×3=−18y =−18x (2)y F AF BF y =−x+b12AB =S △ABC S △ABF △ABC 48=OF ⋅(−)=36S △ABF 12x B x A =−x B x A =−6x A =6x B =b ×12=36S △ABF 12b =6y =−x+612+),得:=.故答案为:.,由,将(1)代入(2)中得:=,解得:=,将=代入(3)中得:=.∴方程组的解为.【实际应用】设打折前商品每件元,商品每件元,根据题意得:=,即=,将两边都乘得:=,=(元).答:比不打折少花了元.【考点】二元一次方程组的应用——行程问题二元一次方程的应用解三元一次方程组【解析】【类比迁移】(1)利用①+②可得出=,此问得解;(2)利用代入法解方程组,即可求出结论;【实际应用】设打折前商品每件元,商品每件元,由买件商品件商品用了元,可得出关于、的二元一次方程,变形后可得出=,用原价-现价即可求出少花钱数.【解答】+),得:=.故答案为:.,由得:=,将(1)代入(2)中得:=,解得:=,将=代入(3)中得:=.∴方程组的解为.【实际应用】设打折前商品每件元,商品每件元,根据题意得:=,即=,将两边都乘得:=,=(元).答:比不打折少花了元.21.【答案】证明:当时,,解得:,.当,即时,方程有两个相等的实数根;当,即时,方程有两个不相等的实数根,∴不论为何值,该函数的图象与轴总有公共点.解:当时,,÷2x+2y+3z 1818(2) 2x−y−2=0+2y =92x−y+57181+2y 9y 4y 4x 3{ x =3y =4A xB y 39x+21y 108013x+7y 360452x+28y 14401440−1152288288()÷2x+2y+3z 18A x B y 39A 21B 1080x y 52x+28y 1440÷2x+2y+3z 1818(2) 2x−y−2=0+2y =92x−y+572x−y 21+2y 9y 4y 4x 3{ x =3y =4A xB y 39x+21y 108013x+7y 360452x+28y 14401440−1152288288(1)y =02(x−1)(x−m−3)=0=1x 1=m+3x 2m+3=1m=−2m+3≠1m≠−2m x (2)x =0y =2m+6∴该函数的图象与轴交点的纵坐标是,∴当,即时,该函数的图象与轴的交点在轴的上方.【考点】抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】此题暂无解析【解答】证明:当时,,解得:,.当,即时,方程有两个相等的实数根;当,即时,方程有两个不相等的实数根,∴不论为何值,该函数的图象与轴总有公共点.解:当时,,∴该函数的图象与轴交点的纵坐标是,∴当,即时,该函数的图象与轴的交点在轴的上方.22.【答案】证明:连结、、,如图所示,∵,,∴==,∴=,=,∴=,即=,∴;连接、、、、,作于,于,如图所示:则=,==,∵=,=,=,∴=,∵=,∴=,∴==,∴=,∵,∴=,∴=,∴的度数的度数=,∴=,∴=,∵=,∴=,在和中,,∴,∴==,∴;即的半径为.y 2m+62m+6>0m>−3y x (1)y =02(x−1)(x−m−3)=0=1x 1=m+3x 2m+3=1m=−2m+3≠1m≠−2m x (2)x =0y =2m+6y 2m+62m+6>0m>−3y x AD BD BG 1AB ⊥CD AG ⊥BC ∠CEB ∠AFB 90∘∠ECB+∠B 90∘∠BAF +∠B 90∘∠ECB ∠BAF ∠DCB ∠BAG =BD^BG ^OA OB OC OG CG OH ⊥CG H OK ⊥AB K 2CH GH =CG 12AK BK =AB 126∠DCB ∠BAG ∠DCB+∠CMF 90∘∠BAG+∠ABF 90∘∠CMF ∠ABF ∠ABF ∠AGC ∠CMF ∠AGC CG CM 4GH 2AG ⊥BC ∠AFB 90∘∠FAB+∠FBA 90∘BG^+AC ^180∘∠COG+∠AOB 180∘∠HOG+∠BOK 90∘∠HGO +∠HOG 90∘∠HGO ∠BOK △HOG △KBO ∠OHG =∠BKO =90∠HGO =∠BOK OG =OB△HOG ≅△KBO(AAS)OK HG 2OB ===2O +B K 2K 2−−−−−−−−−−√+2262−−−−−−√10−−√⊙O 210−−√【考点】勾股定理垂径定理圆心角、弧、弦的关系【解析】(1)连结、、,由,得到==,根据等角的余角相等得到=,即可得出结论;(2)连接、、、、,作于,于,由垂径定理得出=,==,由圆周角定理和角的互余关系证出=,得出==,因此=,由证出的度数的度数=,得出=,因此=,证出=,由证明,得出对应边相等==,再由勾股定理求出即可.【解答】证明:连结、、,如图所示,∵,,∴==,∴=,=,∴=,即=,∴;连接、、、、,作于,于,如图所示:则=,==,∵=,=,=,∴=,∵=,∴=,∴==,∴=,∵,∴=,∴=,∴的度数的度数=,∴=,∴=,∵=,∴=,在和中,,∴,∴==,∴;即的半径为.AD BD BG AB ⊥CD AG ⊥BC ∠CEB ∠AFB 90∘∠ECB ∠BAF OA OB OC OG CG OH ⊥CG H OK ⊥AB K CH GH =CG 12AK BK =AB 126∠CMF ∠AGC CG CM 4GH 2AG ⊥BC BG ^+AC^180∘∠COG+∠AOB 180∘∠HOG+∠BOK 90∘∠HGO ∠BOK AAS △HOG ≅△KBO OK HG 2OB AD BD BG 1AB ⊥CD AG ⊥BC ∠CEB ∠AFB 90∘∠ECB+∠B 90∘∠BAF +∠B 90∘∠ECB ∠BAF ∠DCB ∠BAG =BD^BG ^OA OB OC OG CG OH ⊥CG H OK ⊥AB K 2CH GH =CG 12AK BK =AB 126∠DCB ∠BAG ∠DCB+∠CMF 90∘∠BAG+∠ABF 90∘∠CMF ∠ABF ∠ABF ∠AGC ∠CMF ∠AGC CG CM 4GH 2AG ⊥BC ∠AFB 90∘∠FAB+∠FBA 90∘BG^+AC ^180∘∠COG+∠AOB 180∘∠HOG+∠BOK 90∘∠HGO +∠HOG 90∘∠HGO ∠BOK △HOG △KBO ∠OHG =∠BKO =90∠HGO =∠BOK OG =OB△HOG ≅△KBO(AAS)OK HG 2OB ===2O +B K 2K 2−−−−−−−−−−√+2262−−−−−−√10−−√⊙O 210−−√23.【答案】①证明:∵正方形关于对称,∴,∴.又∵,∴,∴,∴.②解:如图,过作平行于.∵,, ,∴四边形为矩形,∴,,∵∴.∵,,∴,∴.∵,∴,∴.【考点】正方形的性质矩形的判定与性质勾股定理等腰直角三角形全等三角形的性质【解析】(1)ABCD BD △ABE ≅△CBE ∠BAE =∠BCE ∠ABC =∠AEF =90∘∠BAE+∠BFE =∠CFE+∠BFE =180∘∠BAE =∠CFE =∠BCE CE =EF 1E MN CD MN//CD MD//CN ∠ADC =90∘CDMN EN ⊥FC MD =NC CE =EF,NC =FC 12BC =2BF BC =4FC =BC 12MD =NC =BC =114∠ADB =45∘MD =MEDE ==M +M D 2E 2−−−−−−−−−−−√2–√32–√此题暂无解析【解答】①证明:∵正方形关于对称,∴,∴.又∵,∴,∴,∴.②解:如图,过作平行于.∵,, ,∴四边形为矩形,∴,,∵∴.∵, ,∴,∴.∵,∴,∴.如图,过点作,垂直为,交于.∵,∴是的中点.∵,正方形边长为,∴,,∴.又∵四边形是矩形,为等腰直角三角形,∴,∴.故答案为:.(1)ABCD BD △ABE ≅△CBE ∠BAE =∠BCE ∠ABC =∠AEF =90∘∠BAE+∠BFE =∠CFE+∠BFE =180∘∠BAE =∠CFE =∠BCE CE =EF 1E MN CD MN//CD MD//CN ∠ADC =90∘CDMN EN ⊥FC MD =NC CE =EF ,NC =FC 12BC =2BF BC =4FC =BC 12MD =NC =BC =114∠ADB =45∘MD =ME DE ==M +M D 2E 2−−−−−−−−−−−√2–√(2)E MN ⊥BC N AD M CE =EF N CF BC =2BF ABCD 4BF =2FC =2+4=6CN =FN =FC =312CDMN △DME DM =CN =ME =3ED ==3+3232−−−−−−√2–√32–√。
人教版数学九年级上册第二次月考期中考试卷含答案解析
人教版数学九年级上册第二次月考期中考试题一、选择题:(本大题共10小题,每小题4分,共40分)1.下列根式中属最简二次根式的是()A.B.C.D.2.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.63.下列计算正确的是()A.B.C.D.4.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>15.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=66.若关于x的方程有实数根,则k的取值范围为()A.k≥0B.k>0C.k≥D.k>7.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%8.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.9.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)10.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张二、填空题:(本大题共5小题,每小题4分,共20分)11.当x时,二次根式在实数范围内有意义.12.若(x2+y2)2﹣3(x2+y2)﹣70=0,则x2+y2=.13.方程x2=x的解是.14.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“”交通标志(不画图案,只填含义)15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF 交AD于点H,那么DH的长是.三、解答题:(本大题共8小题,共90分)16.计算下列各题(1)2﹣6+3(2)(+1)2(2﹣3).17.解下列方程:(1)2x2+3x﹣1=0(2)3(x﹣1)2=x(x﹣1)18.先化简,再求值:,其中a=.19.先阅读,后解答:=像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是.(2)将下列式子进行分母有理化:①=;②=.③已知,,比较a与b的大小关系.20.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,问出发多少秒钟时△DPQ的面积等于31cm221.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣3,0),B(0,0),C(﹣3,4),将△ABC绕B点逆时针旋转90°,得到△A′B′C′.请画出△A′B′C′并写出△A′B′C′的三个顶点的坐标.22.已知关于x的一元二次方程(a+c)x2+bx+=0有两个相等的实数根,试判断以a、b、c为三边长的三角形的形状,并说明理由.23.如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE.(1)观察猜想BG与DE之间的关系,并证明你的猜想;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分)1.下列根式中属最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、是最简二次根式,故此选项正确;B、=,故不是最简二次根式,故此选项错误;C、=2,故不是最简二次根式,故此选项错误;D、=a(a>0),故不是最简二次根式,故此选项错误.故选:A.2.若|x+2|+,则xy的值为()A.﹣8B.﹣6C.5D.6【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】已知任何数的绝对值一定是非负数,二次根式的值一定是一个非负数,由于已知的两个非负数的和是0,根据非负数的性质得到这两个非负数一定都是0,从而得到一个关于x、y的方程组,解方程组就可以得到x、y的值,进而求出xy的值.【解答】解:∵|x+2|≥0,≥0,而|x+2|+=0,∴x+2=0且y﹣3=0,∴x=﹣2,y=3,∴xy=(﹣2)×3=﹣6.故选:B.3.下列计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的加法、乘法、除法法则即可判断.【解答】解:A、2和4不是同类二次根式,不能合并,选项错误;B、和不是同类二次根式,不能合并,选项错误;C、÷==3,选项正确;D、==3,选项错误.故选C.4.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>1【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m+1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m+1≠0,即m≠﹣1,故选C.5.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【考点】解一元二次方程-配方法.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.6.若关于x的方程有实数根,则k的取值范围为()A.k≥0B.k>0C.k≥D.k>【考点】根的判别式;二次根式有意义的条件.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.还要根据二次根式的意义可知k≥0,然后确定最后k的取值范围.【解答】解:∵关于x的方程有实数根,∴△=b2﹣4ac=(﹣3)2+4=9k+4≥0,解得:k≥,又∵方程中含有∴k≥0,故本题选A.7.某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%【考点】一元二次方程的应用.【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是(1﹣x),那么第二次后的价格是(1﹣x)2,即可列出方程求解.【解答】解:设平均每次降价的百分率是x,则100×(1﹣x)2=81,解之得x=0.1或1.9(不合题意,舍去).则x=0.1=10%答:平均每次降价的百分率是10%.故选:D.8.如图,将正方形图案绕中心O旋转180°后,得到的图案是()A.B.C.D.【考点】利用旋转设计图案.【分析】根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,找到关键点,分析选项可得答案.【解答】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,分析选项,可得正方形图案绕中心O旋转180°后,得到的图案是D.故选D.9.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)【考点】坐标与图形变化-旋转.【分析】利用网格结构找出点B绕点D顺时针旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【解答】解:如图,点B绕点D顺时针旋转90°到达点B′,点B′的坐标为(4,0).故选:D.10.4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张B.第二张、第三张C.第三张、第四张D.第四张、第一张【考点】中心对称图形.【分析】本题主要考查了中心对称图形的定义,根据定义即可求解.【解答】解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选A.二、填空题:(本大题共5小题,每小题4分,共20分)11.当x≥3时,二次根式在实数范围内有意义.【考点】二次根式有意义的条件.【分析】因为式为二次根式,所以被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式的性质,被开方数大于或等于0,可知:x﹣3≥0,解得:x≥3.12.若(x2+y2)2﹣3(x2+y2)﹣70=0,则x2+y2=10.【考点】换元法解一元二次方程.【分析】设x2+y2=t,原方程可化为t2﹣3t﹣70=0,求得t的值,再得出答案即可.【解答】解:设x2+y2=t,原方程可化为t2﹣3t﹣70=0,解得t1=10,t2=﹣7,∵x2+y2≥0,∴x2+y2=10,故答案为10.13.方程x2=x的解是x1=0,x2=1.【考点】解一元二次方程-因式分解法.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=114.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“靠左侧通道行驶”交通标志(不画图案,只填含义)【考点】生活中的旋转现象.【分析】根据旋转的定义,可得旋转后的图形,根据题意中所给的含义,易得答案.【解答】解:根据旋转的意义,可得旋转后的图形是,结合题意中所给图形的含义,可得答案为靠左侧通道行驶.15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是.【考点】正方形的性质;旋转的性质;解直角三角形.【分析】连接CH,可知△CFH≌△CDH(HL),故可求∠DCH的度数;根据三角函数定义求解.【解答】解:连接CH.∵四边形ABCD,四边形EFCG都是正方形,且正方形ABCD绕点C旋转后得到正方形EFCG,∴∠F=∠D=90°,∴△CFH与△CDH都是直角三角形,在Rt△CFH与Rt△CDH中,∵,∴△CFH≌△CDH(HL).∴∠DCH=∠DCF=(90°﹣30°)=30°.在Rt△CDH中,CD=3,∴DH=tan∠DCH×CD=.故答案为:.三、解答题:(本大题共8小题,共90分)16.计算下列各题(1)2﹣6+3(2)(+1)2(2﹣3).【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,然后合并同类二次根式即可;(2)首先利用完全平方公式计算第一个式子,然后利用平方差公式即可求解.【解答】解:(1)原式=4﹣2+12=14;(2)原式=(3+2)(2﹣3)=(2)2﹣9=8﹣9=﹣1.17.解下列方程:(1)2x2+3x﹣1=0(2)3(x﹣1)2=x(x﹣1)【考点】解一元二次方程-因式分解法.【分析】(1)利用公式法求出x的值即可;(2)把方程左边化为两个因式积的形式,再求出x的值即可.【解答】解:(1)∵△=9+8=17,∴x=,∴x1=,x2=;(2)方程左边可化为3(x﹣1)2﹣x(x﹣1)=0,因式分解得,(x﹣1)(2x﹣3)=0,故x﹣1=0或2x﹣3=0,解得x1=1,x2=.18.先化简,再求值:,其中a=.【考点】分式的化简求值.【分析】本题需先根据分式的运算顺序和法则分别进行计算,再把a=的值代入即可求出答案.【解答】解:,=×,=,把a=代入上式得:=,=4﹣7.19.先阅读,后解答:=像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是;的有理化因式是﹣2.(2)将下列式子进行分母有理化:①=;②=3﹣.③已知,,比较a与b的大小关系.【考点】分母有理化.【分析】(1)的有理化因式是它本身,+2的有理化因式符合平方差公式的特点的式子.据此作答;(2)①分子、分母同乘以最简公分母即可;②分子、分母同乘以最简公分母3﹣,再化简即可;③把a的值通过分母有理化化简,再比较.【解答】解:(1)根据与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,的有理化因式是:,的有理化因式是:﹣2,故答案为:,﹣2;(2)①==,②==3﹣;③∵a===2﹣,b=2﹣,∴a=b.20.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,问出发多少秒钟时△DPQ的面积等于31cm2【考点】矩形的性质;一元二次方程的应用;三角形的面积.【分析】设出发秒x时△DPQ的面积等于31平方厘米,根据三角形的面积公式列出方程可求出解.【解答】解:设出发秒x时△DPQ的面积等于31cm2.∵S矩形ABCD ﹣S△APD﹣S△BPQ﹣S△CDQ=S△DPQ…∴…化简整理得x2﹣6x+5=0…解这得x1=1,x2=5…均符合题意.答:出发1秒或5秒钟时△DPQ的面积等于31cm2.…21.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣3,0),B(0,0),C(﹣3,4),将△ABC绕B点逆时针旋转90°,得到△A′B′C′.请画出△A′B′C′并写出△A′B′C′的三个顶点的坐标.【考点】作图-旋转变换.【分析】将△ABC的A,C点绕B点逆时针旋转90°,找到对应点,顺次连接得到△A′B′C′.【解答】解:A′(0,﹣3)、B′(0,0)、C′(﹣4,﹣3).22.已知关于x的一元二次方程(a+c)x2+bx+=0有两个相等的实数根,试判断以a、b、c为三边长的三角形的形状,并说明理由.【考点】根的判别式.【分析】根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可.【解答】解:△ABC是直角三角形,理由是:∵关于x的方程(a+c)x2+bx+=0有两个相等的实数根,∴△=0,即b2﹣4(a+c)()=0,∴a2=b2+c2,∴△ABC是直角三角形.23.如图,B,C,E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接BG,DE.(1)观察猜想BG与DE之间的关系,并证明你的猜想;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;旋转的性质.【分析】(1)猜想BG⊥BD,且BG=DE,证明:延长BG与DE交于H点,则根据∠DGH+∠GDH=90°可以证明∠DHG=90°,即BG⊥DE;(2)存在,△BCG和△DCE可以通过旋转重合.求证△BCG≌△DCE即可.【解答】证明:(1)猜想:BG⊥BD,且BG=DE.延长BG与DE交于H点,在直角△BCG中,BG=,在直角△DCE中,DE=,∵BC=DC,CG=CE,∴BG=DE.在△BCG和△DCE中,,∴△BCG≌△DCE,∴∠BGC=∠DEC,BG=DE,又∵∠BGC=∠DGH,∠DEC+∠CDE=90°,∴∠DGH+∠GDH=90°,∴∠DHG=90°,故BG⊥DE,且BG=DE.(2)存在,△BCG≌△DCE,(1)中已证明,且△BCG和△DCE有共同顶点C,则△DCE沿C点旋转向左90°与△BCG重合.。
2024年11月九年级上册第二次月考物理试题+答案
2024年11月九年级物理检测试题(卷)(时间80分钟满分80分)一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列对数据的估测中最接近实际的是()A.家用空调的电功率约为100W B.一节新干电池的电压约为1.5VC.家用节能灯的额定电流约为2.2A D.为保护人体安全,家用电冰箱的电压不超过36V 2.英国知名摄影师凯莱布·查兰最擅长的就是将看不见的科学原理变成艺术,他的作品《回归灯光》系列,使用水果和蔬菜为LED灯供电,下列说法不正确的是()A.水果和蔬菜扮演了“电源”的角色B.发光二极管由半导体材料制成C.把水果和蔬菜串联起来可以提高电压D.LED灯在发光时,导线中的自由电子在做无规则运动3.如图所示,某同学将一条粗细不均的铝箔纸的两端分别压在两节电池的两极,发现铝箔纸发热并燃烧。
关于该实验的分析正确的是()A.实验时两节干电池的正极与正极相连B.用普通纸代替铝箔纸也能燃烧C.实验中发现铝箔纸较细的部位先燃烧,是因为该处的电流大D.该实验能说明短路带来的危害4.小明家半年前新装了一只电能表,现在表盘的示数如图,下列说法正确的是()A.该电能表的标定电流为20A B.该电能表应接在50Hz的直流电路中使用C.小明家每消耗1度电,铝盘转动3000转D.小明家半年内的用电量是6335kW·h5.如图所示的电路中,当开关闭合时,电压表1V 的示数为9V ,电压表2V 的示数为3V 。
那么1R 与2R 的阻值之比为()A .1:3B .3:1C .1:2D .2:16.科学家用石墨烯制成的湿敏电阻x R 附着在叶片上,检测植物含水量的变化。
电源电压恒定,0R 为定值电阻,当植物含水量变低,x R 变小,电表示数也变小。
下列电路图中符合要求的是()A .B .C .D .7.如图所示,电源电压不变,闭合开关S ,灯泡12L L 、都发光,一段时间后,其中一个灯泡突然熄灭,而电流表和电压表的示数都不变,则产生这一现象的原因可能是()A .灯泡1L 断路B .灯泡1L 短路C .灯泡2L 断路D .灯泡2L 短路8.如图所示是小明设计的体重计电路原理图,体重显示计由电路中某一电表改装,则下列说法正确的是()A .体重显示计应该由电流表改装B .定值电阻1R 可以用导线代替C .在使用过程中电压表示数与电流表示数的比值不变D .一定范围内,被测量的体重越大,电压表示数越大9.在“探究电流与电阻的关系”的实验中,电路如图甲所示,电源电压保持3V 不变,分别将5Ω、10Ω、15Ω、20Ω、25Ω、30Ω的定值电阻连入电路,按实验要求测得通过各定值电阻的电流描绘出如图乙所示的图像,则下列说法不正确的是()A .闭合开关前,滑动变阻器应调到最大值B .在具体实验操作中,手和眼的分工是手移动变阻器的滑片,眼观电压表C .本实验的结论:电压一定时,电阻与电流成反比D .为了得到更普遍的规律,可以改变R 两端的电压,再一次进行实验10.图甲是检验飞船舱体气密性的模拟检测电路,电源电压恒定,0R 为40Ω的定值电阻,R 为压力传感器,其阻值随环境气压的变化规律如图乙所示,将R 置于舱体中,舱体置于真空室中,舱体不漏气时,电压表示数为200V ,舱体内气压51.010Pa 。
福建省莆田第九中学2024届九年级上学期第二次月考数学试卷(含答案)
2023−2024学年九中九年级数学第二次月考卷一.选择题(每小题4分,共40分)1.的值等于 A.1B.C.D.22.如图,在中,,则等于 A.B.C.tan A D.3.如图,在中,,点在上,则的度数为 A.B.C.D.4.如图,与相切于点,连接、.若,,则的长为 (第4题图)(第6题图)(第7题图)A.B.C.2D.5.在中,若角,满足,则的大小是 A.B.C.D.6.如图,是的直径,,是上的两点,连接,,,若,则的度数是 A.B.C.D.7.如图,切于点,与相交于点,,点为上任意一点(不与点、重合),则等于 A.B.C.D.8.如图,正六边形的边长为6,以顶点为圆心,的长为半径画圆,则图中阴影部分的面积为 A.B.C.D.9.命题:直角三角形的一条直角边与以另一条直角边为直径的圆相切.符合该命题的图形是 A.B.C.D.10.已知二次函数,当时,,则的取值范围为 A.B.C.D.二.填空题(每小题4分,共24分)11.已知的半径为5,点在上,则的长为 .12.已知二次函数y=x2+6最小值为 .13.如图,的顶点都是正方形网格中的格点,则 .14.如图,是的直径,弦于点.如果,弦,那么的长是 .15.沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的母线长为8cm,扇形的圆心角,则该圆锥的底面圆的半径r长为 cm.16.已知在平面直角坐标系中,点的坐标为,点的坐标为,点为第一象限上一点,,且,则点的坐标为 .三.解答题(共88分)17.计算:6sin60°-|-4|-(3―1)0.18.如图,在中,∠C=90°,,,求的长和的值.19.如图,是的弦,、为直线上两点,,求证:.20.如图,是的直径,弦与相交于点,.若,求直径的长.21.如图,在中,.(1)若以点为圆心的圆与边相切于点,请在图中作出点;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若该圆与边相交于点,连接,当时,求的度数.22.如图,是的直径,、为上两点,于点,交的延长线于点,且.(1)求证:点是的中点;(2)若,,求图中阴影部分的面积.23.越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点处安置测倾器,测得点的仰角,在与点相距3.5米的测点处安置测倾器,测得点的仰角(点,与在一条直线上),求电池板离地面的高度的长.(结果精确到1米;参考数据,,24.如图,在中,,为的平分线,交于点,的外接圆与边相交于点,过点作的垂线交于点,交于点,交于点,连接.(1)求证:是的切线;(2)若,,求的半径长.25.已知抛物线与轴交于点和点,对称轴是直线,与轴交于点,点在抛物线上(不与,重合).(1)当时.①求抛物线的解析式;②点在直线的下方,且的面积最大,求此时点的坐标;(2)若直线,分别与轴交于点,,判断是否为定值?若是,求出定值;若不是,说明理由.2023−2024学年九中九年级数学第二次月考卷参考答案与试题解析1-5:BABBD 6-10:ADDCC11.5 12.613.14. 2 15. 8316.,解:根据题意画出图形如下:过点作延长线于点,交轴于点,作轴于点,点的坐标为,点的坐标为,,,,,,,是等腰直角三角形,,,,,,,设,,,,,,,,,,设,,,,,,,点的坐标为,.故答案为:,.三.解答题(共9小题)17.解:原式=6×3―4―12=33―518.解:中,,,,,,19.证明:作于,如图,则,,,,,即.20.解:是的直径,,,.21.解:(1)如图,点即为所求.(2)如图,是的切线,,,,,.22.(1)证明:,,,,,点是的中点;(2)解:连接,,,是等边三角形,,扇形的面积,的面积,阴影部分的面积扇形的面积的面积.23.解:延长交于点,,设米,,米,在中,,解得,则(米,电池板离地面的高度的长约为8米.24.(1)证明:连接,,,为的平分线,,,,,,是的切线;(2),,,,在中,,,即,设的半径为,则,解得:,的半径长为6.25.解:(1)①抛物线与轴交于点和点,对称轴是直线,,当时,,抛物线的解析式为;②,令,则,,设直线的解析式为,,代入得:,解得,直线的解析式为,过作轴,交于,设,则,,,当时,最大,此时点的坐标为,;(2)为定值,抛物线与轴交于点和点,对称轴是直线,,,,设,直线的解析式为,直线的解析式为,,,.。
辽宁省本溪市第十二中学2023-2024学年九年级下学期第二次月考数学试题
辽宁省本溪市第十二中学2023-2024学年九年级下学期第二次月考数学试题一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走100米可记作( )A .40-米B .40米C .100-米D .100米 2.如图所示的几何体是由5个完全相同的小正方体搭成的,它的主视图是( )A .B .C .D . 3.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -= 5.一元二次方程2560x x +-=根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能判定6.关于一次函数24y x =+,下列说法正确的是( )A .图象经过第一、三、四象限B .图象与y 轴交于点()0,2-C .函数值y 随自变量x 的增大而增大D .当1x >-时,2y <7.如图为商场某品牌椅子的侧面图,120DEF ∠=︒,DE 与地面平行,50ABD ∠=︒,则E C B ∠的度数为( )A .120︒B .110︒C .100︒D .90︒8.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为35,今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,那么可列方程为( )A .()31075x x +-= B .()31075x x +-= C .()51073x x +-= D .()51073x x +-= 9.某款“不倒翁”(图1)的主视图是图2,PA ,PB 分别与优弧AMB 所在圆相切于点A ,B .若该圆半径是9cm ,45P ∠=︒,则优弧AMB 的长是( )A .11cm πB .45cm 4πC .27cm 8πD .27cm 4π 10.如图1,ABC V 中,9043B AB BC ∠=︒==,,.点D 从点A 出发沿折线A B C --运动到点C 停止,过点D 作DE AC ⊥,垂足为E .设点D 运动的路径长为x ,CDE V 的面积为y ,若y 与x 的对应关系如图2所示,则b a -的值为( ).A .436B .163C .103D .196二、填空题11.已知点A 的坐标为()21,,将点A 向上平移4个单位长度,得到的点A '的坐标为. 12.某学校从“立定跳远,抛掷实心球,100米短跑,跳绳”四个项目中抽取两项进行测试,恰好抽到“立定跳远”和“100米短跑”的概率为.13.验光师通过检测发现近视眼镜的度数y (度)与镜片焦距x (米)成反比例,y 关于x 的函数图象如图所示.经过一段时间的矫正治疗后,小雪的镜片焦距由0.125米调整到0.4米,则近视眼镜的度数减少了度.14.如图,在ABC V 中,分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN ,交AC 于点D ,连接BD ,若BD 平分ABC ∠,35AD BD ==,,则AB 的长为.15.如图,在Rt ABC △中,90BAC ∠=︒,D 是BC 上一点,AB AD =,将ACD V 沿AC 折叠得到ACE △,连接BE ,BE 与AD 相交于点F ,若5BD =,2CD =,则BF 的长为.三、解答题16.计算: (1)()32024125162-+--÷-; (2)213124x x x +⎛⎫+÷ ⎪+-⎝⎭. 17.今年,某市举办了一届主题为“强国复兴有我”的中小学课本剧比赛.某队伍为参赛需租用一批服装,经了解,在甲商店租用服装比在乙商店租用服装每套多10元,用500元在甲商店租用服装的数量与用400元在乙商店租用服装的数量相等.(1)求在甲,乙两个商店租用的服装每套各多少元?(2)若租用10套以上服装,甲商店给以每套九折优惠.该参赛队伍准备租用20套服装,请问在哪家商店租用服装的费用较少,并说明理由.18.为落实“双减”要求,丰富学生校园生活,提升学生综合素养,某学校开展了学科月活动.学校随机抽取了部分学生对学科月最喜欢的活动进行调查:A .法律知识讲座;B .国际象棋讲座;C .花样剪纸讲座;D .创意书签设计讲座.并将调查结果绘制成了两幅统计图,请根据图中提供的信息回答以下问题:(1)求共调查了多少名学生?并直接补全条形统计图;(2)求扇形统计图中“花样剪纸讲座”部分所对应的圆心角度数是多少度?(3)学校有500名学生参加本次活动,地点安排在两个多功能厅,每场讲座时间为60分钟.由下面的活动日程表可知,B和D两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排A,C二场报告,补全此次活动日程表,并说明理由.19.小亮和妈妈去超市买凳子,善于观察的小亮发现售货员把凳子整齐叠放在一起,如图所示,每增加一个凳子,叠在一起的凳子增加的高度是一样的.凳子的数量n(单位:个)与叠放在一起的凳子的总高度h(单位:cm)的关系如表:根据以上信息,回答下列问题:(1)判断叠放的凳子总高度h 与凳子的数量n 之间符合什么函数关系?请用待定系数法求h 与n 的函数关系式;(2)若将该种凳子竖直叠放在层高不超过96cm 超市货架上,最多能叠放多少个?20.如图1是某公交车的站台,主要由顶棚,站牌,底座构成.图2是其截面示意图,站牌截面是矩形ABCD ,边AD 平行于地面MN ,边CD 竖直于地面MN ,顶棚AE 与站牌上端AD 的夹角22DAE ∠=︒,底座CF 与地面的夹角60CFM ∠=︒.经测量195cm AE =,49cm,166.7cm,76cm AD CD CF ===.(1)求站牌边缘点D 与棚顶边缘点E 的水平距离;(2)求棚顶边缘点E 到地面的距离.(结果精确到1cm )(参考数据:sin 220.374,cos220.926,tan 220.404︒≈︒≈︒≈ 1.73≈)21.如图,AB 为O e 的直径,D 为O e 上一点,连接AD ,BD ,过D 点作DC AB ⊥交O e 于点C ,过点A 作AE BD P 交BC 延长线于点E .(1)求证:AE BE =;(2)若tan 2ADC ∠=,6CE =,求AB 长.22.【发现问题】如图1,是沈阳“伯官桥”,它是中国首座“六跨中承式飘带形提篮拱桥”,也是全国施工难度最大的一座桥梁工程,造型别致,每段都是抛物线形状,宛如河上的一条飘带.【提出问题】如果将该拱桥的一段抽象成二次函数的图形,该图象对应的函数关系式是什么?【分析问题】如图2,是拱桥其中一段的横截面,虚线部分表示水面,桥墩跨度AB 为40米,在距离A 点水平距离为d 米的地方,拱桥距离水面的高度为h 米.小亮对d 与h 之间的关系进行了探究,经过多次测量,取平均值得到了d 和h 的几组对应值,如下表【解决问题】(1)请在下面的平面直角坐标系中画出表格中数据对应的函数图象,并直接写出h 与d 之间的函数关系式.(2)当拱桥距离水面的高度为18.6米时,此时据距离A 点水平距离是多少?(3)今年是伯官桥建成十周年整,为了庆祝,决定在伯官桥上挂设彩灯,如图3,共挂三串彩灯,第一串彩灯EF 平行于水面挂设,彩灯两端E ,F 皆在抛物线上;另外两串彩灯CE DF,都垂直于水面挂设,且距离水面2.0米,求挂设的三串彩灯CE EF DF ,,长度和的最大值.23.【问题初探】(1)在数学活动课上,姜老师给出如下问题:如图1,AD 平分BAC ∠,M 为AB 上一点,N 为AC 上一点,连接线段DM DN ,,若180BAC NDM ∠+∠=︒.求证:DM DN =.①如图2,小文同学从已知一边一角构造全等进行转化的视角给出如下思路:在AC 上截取AE AM =,连接DE ,易证ADM ADE ≌V V ,将线段DM 与DN 的数量关系转化为DE 与DN 的数量关系.②如图3,小雅同学也是从已知一边一角构造全等的视角进行解题给出了另一种思路,过D点向BAC ∠的两边分别作垂线,垂足分别为点E ,F ,易证ADE ADF ≌△△,得到DE DF =,接下来只需证FDM EDN ≌V V ,可得DM DN =.请你选择一名同学的解题思路,写出证明过程【类比分析】(2)姜老师发现之前两名同学都采用了一边一角构造全等的视角,为了更好的感悟这种视角,姜老师将共顶点的两个相等的角,变成了不共顶点的两个相等的角提出了如下问题,请你解答.如图4,在ABC V 中,AB AC =,BD 平分ABC ∠交AC 与点D ,在线段BC 上有一点E ,连接AE 交BD 与点F ,若CAE ABD ∠=∠.求证:AD CE =.【学以致用】(3)如图5,在ABC V 中,AB AC AD BC =⊥,,垂足为点D ,在CB 的延长线上取一点E ,使E A B B A C ∠=∠,在线段EB 上截取EF AB =,点G 在线段AE 上,连接FG ,使EFG EAB ∠=∠,若95AD =,65EG =,BF GFBA 的面积.。
第二次月考--九年级上册英语 模拟测试卷(人教版)(含答案)
第二次月考--2024-2025学年九年级英语模拟测试卷(人教版)一、单项选择(共10小题;每小题1分,满分10分)1.No hurry! Please __________ your time.A.take B.save C.set D.value2.—How many eggs has that hen __________?—Nearly one hundred.A.lay B.laid C.lied D.lain3.—Jack won first prize in the competition.—Yes. The news ________ really quickly. Now everybody in our school has known it.A.spread B.left C.connected D.jumped4.The boats take different lines, but they all _______ in the same place.A.give up B.clear up C.end up D.make up5.__________ comes here, you should say hello to him.A.Whatever B.Whoever C.Wherever D.Whomever6.I admire you for ________ such a difficult job on time.A.finish B.to finish C.finishing D.finished7.— Why did he look so sad?— Because he ______ to pass the final exam.A.succeeded B.failed C.required D.advised8.The old man couldn’t afford to buy that bike although it was ________.A.unimportant B.inexpensive C.impolite D.unnecessary9.You needn’t take your wallet while shopping. It’s ______ to pay on WeChat or Alipay (支付宝).A.convenient B.helpful C.comfortable D.polite10.If you have no idea about how to use the machine, you can read the ______ first.A.interviews B.inventions C.instructions D.corrections二、完形填空(共两节,满分20分)第一节阅读下面短文,从短文前的选项中选出能填入空白处的最佳选项。