秩转换的非参数检验
秩和检验
H1:肺癌病人的RD值高于矽肺0期工人的RD值
(总体分布位置靠右)
α=0.05
2。计算统计量T
① 把两样本数据混合小到大编秩,遇到数据相
同的取平均秩次 ② 分别求两样本秩次之和,用T1和T2表示(样本
含量小的为T1),选择T1作为统计量值T。若样本
含量相等,任取一个秩和作为T(T1或T2)。
非参数方法的特点:
������
������
适用范围广,几乎可用于任何情况。
当资料符合参数检验方法的适用条件时, 原因:无法借助总体分布得到许多推论,
使用非参数方法的检验效能较低。
������
本身在利用信息上就有丢失
Ⅰ型错误和Ⅱ型错误
由样本推断的结果 真实结果 拒绝H0 不拒绝H0 H0成立 Ⅰ型错误 α 推断正确(1-α)
例:住院时间
结果为有序分类变量时无法使用。 例:尿糖检测结果 样本数据两端有不确定值时无法使用。 例:仪器性能限制,超出可测量范围
以上情况下强行使用参数统计方法可能会得到错误结论
非参数检验一般不直接用样本观察值作分析,统
计量的计算基于原数据在整个样本中按大小所占位
次。由于丢弃了观察值的具体数值,而只保留其大
7.5 7.5
3 7.5
-7.5 3
1。 建立假设并确定检验水准
H0:差值的总体中位数为0,Md=0 H1:差值的总体中位数不为0,Md≠0 α=0.05
2。计算统计量T
T+=34.5
T-=10.5
T=10.5
3. 确定P值,作出统计推断
n=9,T=T-=10.5,查界值表:P>0.10
按α=0.05的水准,不拒绝H0,还不能认为两
秩转换的非参数检验
(2)正态近似法u 检验 如果n超出附表10范 围,则用以下公式计算u值,进行u检验:
u T n1 (n1 n2 1) / 2 t 3 t j) ( j n1n2 (n1 n2 1) 1- 3 12 N N
( t C 1-
3 3 j
二、两组频数表或等级资料比较
例8-4 39名吸烟工人和40名不吸烟工人的碳氧血红蛋 白HbCO(%)含量见表8-6。问吸烟工人的HbCO(%)含量 是否高于不吸烟工人的HbCO(%)含量?
表8-6 吸烟工人和不吸烟工人的HbCO(%)含量比较 含量 吸烟 不吸烟 合 秩次 平均 秩和 工人 工人 计 范围 秩次 吸烟 不吸烟
(3)计算正负秩和: T = 54.5, T = 11.5 (4)确定检验统计量T 任取T 和 T 为T ,本例取T =11.5。 3.确定P 值,作出推论: (1) n≤50,查表法。本例n=11,查附表9得 T0.05, 为 ~56, 11 10
本例11.5在此范围内,故P >0.05,按α =0.05 水准,不拒绝Ho 还不能认为两法测定结果有差别。 (2) n>50,u 检验。
第八章
秩转换的非参数检验
非参数检验的概念: 非参数检验是指对原始资料无特殊要求(如正 态分布、总体方差相等)的一类检验方法,它不 是比较参数,而是比较分布的位置。不符合t 检验 和F检验的数值变量资料可用秩和检验,此外,秩 和检验还可用于两组或多组等级资料以及“开口” 资料的比较。等级相关也属于非参数检验。
表8-9 三种药物杀灭钉螺的死亡率(%)比较 甲药 乙药 丙药 死亡率 秩次 死亡率 秩次 死亡率 秩次 32.5 10 16.0 4 6.5 1 35.5 11 20.5 6 9.0 2 40.5 13 22.5 7 12.5 3 46.0 14 29.0 9 18.0 5 49.0 15 36.0 12 24.0 8 63 ─ 38 ─ 19 Ri ni 5 ─ 5 ─ 5
非参数检验的基本原理
非参数检验的基本原理非参数检验是一种利用统计方法来检验假设的一种方法,与参数检验相比,非参数检验不需要对总体的分布做出假设,更为灵活。
本文将介绍非参数检验的基本原理。
一、概述非参数检验是一种统计方法,既不要求数据符合特定分布,也不对总体参数做出假设。
与之相反,参数检验通常假设数据服从特定的分布,例如正态分布。
非参数检验的主要优点是可以更全面地处理数据,更适用于复杂的情况。
然而,非参数检验的统计效率通常较低,需要更多的样本来达到相同的置信水平。
二、基本原理1. 秩次转换非参数检验通常使用秩次转换来处理数据。
所谓秩次转换是将原始的数值转换为它们在样本中的秩次,从而消除数值的大小差异。
对于同一组数据,秩次转换后,可以应用更广泛的统计方法。
2. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数检验方法,主要应用于配对样本或者两组独立样本之间的差异比较。
它的基本思想是对每个观测值计算它们的符号秩,然后通过比较两组样本的秩和来判断差异是否显著。
3. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于比较两组独立样本之间的差异。
它的基本原理是将两组样本中的所有观测值汇总,然后对这些观测值进行秩次转换,并计算两组样本排名和。
通过比较两组样本排名和的大小来判断差异是否显著。
4. Kruskal-Wallis H检验Kruskal-Wallis H检验是一种非参数的方差分析方法,用于比较三组或以上独立样本之间的差异。
它的基本原理是将所有样本的观测值汇总,然后进行秩次转换,并计算各组样本排名和的平均值。
通过比较平均排名和的大小来判断差异是否显著。
三、案例研究为了更好地理解非参数检验的原理,我们以某家公司销售部门的两个月销售额作为例子进行案例研究。
假设第一个月公司销售额为[100, 80, 120, 90, 110],第二个月公司销售额为[95, 85, 115, 100, 105]。
秩转换的非参数检验
秩转换的非参数检验基本概念1.参数检验方法(parametric test):总体分布类型已知的条件下对其参数进行估计或检验。
(如t-test, F- test)2.非参数检验方法(nonparametric test):一种不依赖总体分布的具体形式,也不对参数进行估计或检验的统计方法来分析此类资料这种方法不受总体参数的影响,检验的是分布或分布位置,而不是参数。
这样的检验方法称为非参数检验(如基于秩次的检验)3.秩次(rank)):秩统计量,是指全部观察值按某种顺序排列的位序。
在一定程度上反映了等级的高低。
4.秩和(rank sum):同组秩次之和。
在一定程度上反映了等级的分布位置非参数检验的优缺点:优点:无严格的条件限制,且多数非参数统计方法较为简单,易于理解和掌握,应用范围广缺点:对适宜参数统计的资料,若用非参数统计处理,常损失部分信息,降低检验效能。
总结:因此对适合参数统计条件的资料或经变量变换后适合参数统计的资料,应最好用参数统计。
但资料不具备用参数统计的条件时,非参数统计是很有效的分析方法适用范围:(1)总体分布为偏态或分布形式未知的计量资料(尤其在n<30的情况下)。
(2)等级资料。
(3)个别数据偏大或数据的某一端无确定的数值。
(4)各总体方差不齐。
检验步骤1、检验假设H0:差值的总体中位数Md=0 H1:差值的总体中位数Md≠0 α=0.052、求差值3、编秩:依差值的绝对值从小到大编秩遇差值为0的对子,舍去不计,同时样本量减一遇差值绝对值相等则取平均秩,称为相同秩(ties)然后按差值的正负对秩次冠以正负号4、求检验统计量:任取正秩和或负秩和为T5、确定P值并做出统计推断(查附表9,内大外小原则)正态近似法(n>50时)超出附表9范围,可用正态近似法作u检验。
两样本比较的秩和检验基本思想:如果H0 成立,即两组分布位置相同,则A组的实际秩和应接近理论秩和n1(N+1)/2; (B组的实际秩和应接近理论秩和n2(N+1)/2).或相差不大,差值很大的概率应很小。
第十一讲 秩和检验
适用范围
1、成组设计的两样本计量数据,不符合 t 检 验的条件(方差相等,且服从正态分布); 2、两组等级资料或两端无确切值的资料。
一、原始数据的两样本比较
基本思想: • 假定:两组样本的总体分布形式相同(即 H0成立),则两样本来自同一总体,且任 一组秩和不应太大或太小 。即T 与平均秩 和 n1(N+1)/2应相差不大。 N = n1+n2
• 前面介绍的检验方法首先假定分析变量 服从特定的已知分布(如正态分布), 然后对分布参数(如均数)作检验。这 类 检 验 方 法 称 参 数 检 验 ( parametric test)。 • 今天介绍的检验方法不对变量的分布作 严格假定,这类检验称非参数检验 (nonparametric test)。
非参数统计
(nonparametric statistics)
对总体的分布类型不 作特殊要求 ,统计 推断时不涉及参数 不受总体参数的影响,比 较的是分布或分布位置
依赖于特定分布类 型,比较的是参数
非参数统计的适用情况
• • • • • 等级资料 偏态分布资料 分布不明资料 个别数据偏离过大的资料 各组方差明显不齐的资料
• 确定P值: 以较小绝对值的秩和为T值。 本例T=3.5 以n=11查附表6(P268,单侧) p<0.005, • 判定结果: 按α=0.05水准,拒绝H0,接受H1,故可以 认为该厂工人尿氟含量高于当地健康人。
第二节 成组设计两样本比较 的秩和检验
Wilcoxon rank sum test
这下面一行(记为Ri)就是上面一行数 据Xi的秩。
秩和检验原理
• 秩和检验(rank sum test):是通过对数 据依小到大排列的秩次,以求秩次之和来 进行假设检验的方法。
秩转换的非参数检验
2)正态近似法:大样本时 (n≥50时), 可按式11-1计算统计量u值,作正态检验:
| T-n(n+1) / 4|-0.5 u=
n(n+1)(2n+1) / 24
(11-1)
如有相同秩次,应用校正公式:
u=
| T n(n 1) / 4 | 0.5
n(n 1)(2n 1) 1
24
48
(t
3 j
Tests of Normality
Kolmogorov-Smirnova
Statistic
差值
.420
df
Sig.
8
.000
a. Lilliefors Significance Correction
Shapiro-Wilk
Statistic
df
.628
8
Sig. .000
Tests of Normality
第八章 秩转换旳非参数检验
癌症. 1997;16(3):219
用改良旳Seldinger’s插管技术对8例临床及病理证明旳恶性滋养细胞 肿瘤进行选择性盆腔动脉插管灌注化疗。治疗前后hCG放免测定值。 采用t检验进行分析,治疗前后血hCG值经统计学处理有明显性差别。
1、资料类型 2、何种设计 3、统计措施
差值对数
Kolmogorov-Smirnova
Statistic df
Sig.
.372
8 .002
Shapiro-Wilk
Statistic df
.559
8
a. Lilliefors Significance Correction
Sig. .000
参数统计
(parametric statistics)
非参数统计中的秩和检验方法详解(七)
非参数统计中的秩和检验方法详解统计学作为一门应用广泛的学科,其研究对象主要是各种数据的收集、整理、分析和解释。
在统计学中,参数统计和非参数统计是两种常用的分析方法。
在本文中,我们将重点介绍非参数统计中的一种常见方法——秩和检验。
一、秩和检验的基本原理秩和检验是一种基于秩次的非参数假设检验方法,它不需要对总体分布进行任何假设,因此在数据分布未知或不满足正态分布假设的情况下,秩和检验可以很好地进行统计推断。
秩和检验的基本原理是将样本数据进行排序,然后将排序后的数据转化为秩次,再通过对秩次进行比较来进行假设检验。
秩和检验适用于两组或多组独立样本的比较,常用于检验总体的中位数是否相等或者总体分布是否相同。
二、秩和检验的步骤秩和检验的步骤主要包括数据排序、秩次转换和秩和比较。
具体步骤如下:1. 数据排序:首先对样本数据进行排序,可以按照从小到大或者从大到小的顺序进行排序。
2. 秩次转换:将排序后的数据转化为秩次,即给每个数据赋予一个秩次,通常情况下,秩次是按照数据在样本中出现的顺序进行分配的。
如果出现相同的数据,可以采取加权秩次的方法进行处理。
3. 秩和比较:对计算得到的秩次进行比较,通过比较秩和的大小来进行假设检验,得出检验统计量并进行显著性检验。
三、秩和检验的应用秩和检验方法在实际应用中有着广泛的应用,特别是在医学、生物学、社会科学和工程领域等。
下面以两组独立样本的比较为例,介绍秩和检验的应用。
假设有两组独立样本,分别记为X和Y,我们要比较这两组样本的中位数是否相等。
首先对两组样本数据进行排序,并进行秩次转换,得到秩和值RX和RY,然后对秩和值进行比较,通过比较得到的检验统计量进行显著性检验,从而判断两组样本的中位数是否相等。
四、秩和检验的优缺点秩和检验作为一种非参数方法,具有一些优点和局限性。
优点:秩和检验不需要对数据分布进行假设,因此对于不满足正态分布假设的数据具有较好的适用性;同时,秩和检验是一种较为稳健的检验方法,对异常值和极端值的影响相对较小。
秩转换的非参数检验
非参数检验是相对于参数检验而言地.参数检验——如果总体分布为已知地数学形式,对其总体参数作假设检验.计量资料——正态分布——假设检验——检验、检验计量资料:不满足参数检验条件地假设检验方法,一变量变换,二非参数检验(等级资料)非参数检验对总体分布不作严格假定(任意分布检验)秩转换————推断一个总体表达分布位置地中位数(非参数)和已知、两个或多个总体地分布是否有差别.秩转换地非参数检验时先将数值变量资料自小到大,或等级资料从弱到强转换成秩后,再计算检验统计量,其特点是假设检验地结果对总体分布地形状差别不敏感,只对总体分布地位置差别敏感.文档来自于网络搜索配对样本比较地符号秩检验符号秩检验符号秩和检验——用于配对样本差值地中位数和比较——用于单个样本中位数和总体中位数比较配对样本差值地中位数和比较———————<—————————————目地是推断配对样本差值地总体中位数是否和有差别——即推断配对地两个相关样本所来自地两个总体中位数是否有差别.平均秩——相同秩—————————————>———————————单个样本中位数和总体中位数比较—————————————————————目地是推断样本所来自地总体中位数和某个已知地总体中位数是否有差别——用样本各变量值和地差值,即推断差值地总体中为数和是否有差别本法地原理()界值表制作地原理()正态近似法地原理第二节两个独立样本比较地秩和检验————————秩和检验()————用于推断计量资料或等级资料地两个独立样本所来自地两个总体分布是否有差别. ——————推断两个总体分布地位置是否有差别.原始数据地两样本比较————计量资料为原始数据频数表资料和等级资料地两样本比较————计量资料为频数表资料,是按数量区间分组————等级资料是按等级分组本法地原理界值表制作地原理正态近似法地原理、检验第三节完全随机设计多个样本比较地检验一、多个独立样本比较地检验————用于推断计量资料或等级资料地多个独立样本所来自地多个总体分布是否有差别.原始数据地多个样本比较————计数资料为原始数据——————————频数表资料和等级资料地多个样本比较————计量资料为频数表资料,是按数量区间分组————等级资料是按等级分组本法地原理界值表制作地原理地近似法原理多个独立样本两两比较地法检验————进一步推断两两总体分布位置不同——————————————————随机区组设计多个样本比较地检验多个相关样本比较地检验————用于推断随机区组设计地多个相关样本所来自地多个总体分布是否相等.、方法步骤————————————————————————————————、本法地原理()界值表制作地原理()近似法地原理————————————>或>——————————、近似法二、多个相关样本两两比较地检验——————进一步推断两两总体分布位置不同秩转换地非参数检验参数检验————如果总体分布为已知地数学形式,对其总体参数作检验假设非参数检验(任意分布检验)————对总体分布不作严格假定,直接对总体分布作假设检验秩转换地非参数检验————推断一个总体表达分布位置地中位数(非参数)和已知、两个或多个总体地分布是否有差别.————先将数值变量从小到大,或等级从弱到强转换成秩后,再计算检验统计量.————假设检验地结果对总体分布地形状差别不敏感,只对总体分布地位置差别铭感.应用范围:——————对于计量资料不满足正态和方差齐性条件地小样本资料分布不明地小样本资料一端或两端是不确定数值地资料——————对于等级资料若选行*列表资料地检验,只能推断构成比差别选秩转换地非参数检验,可推断等级强度差别注意:如果已知其计量资料满足(或近似满足)检验或检验条件,当然选检验或检验,因为这时若选秩转换地非参数检验,会降低检验效能.文档来自于网络搜索配对样本比较地符号秩检验(符号秩和检验)————用于配对样本差值地中位数和比较;————用于单个样本中位数和总体中位数比较配对样本差值地中位数和比较————目地是推断配对样本差值地总体中位数是否和有差别——即推断配对地两个相关样本所来自地两个总体中位数是否有差别检验步骤()建立检验假设,确定检验水平()求检验统计量值()确定值,作出推断结论——————————————《时,查界值表——————————————>时,正态近似法作检验注意:配对等级资料采用符号秩和检验最好选用大样本单个样本中位数和总体中位数比较————目地是推断样本所来自地总体中位数和某个已知地总体中位数是否有差别————用样本各变量值和地差值,即推断差值地总体中位数和是否有差别第二节两个独立样本比较地秩和检验————用于推断两个独立样本所来自地两个总体分布是否有差别.————目地是推断两个总体分布地位置是否有差别、原始数据地两样本比较——————————《和《时,查界值表——————————> 或> 时,用正态近似法作检验频数表资料和等级资料地两样本比较————计数资料为频数表资料,是按数量区间分组————等级资料是按等级分组第三节完全随机设计多个样本比较地检验一、多个独立样本比较地检验————用于推断计量资料或等级资料地多个独立样本所来自地多个总体分布是否有差别.、原始数据地多个样本比较—————————————————或————查界值表———————且最小样本地例数大于或>时,查界值表、频数表资料和等级资料地多个样本比较二、多个独立样本两两比较地法检验————————————进一步推断两两总体分布位置不同第四节随机区组设计多个样本比较地检验一、多个相关样本比较地检验————用于推断随机区组设计地多个相关样本所来自地多个总体分布是否有差别.————————————————《和《时,查界值表————————————————>或>时,用近似法多个相关样本两两比较地检验——————进一步推断两两总体分布位置不同————检验。
秩转换的非参数检验
秩和(rank sum)
同组秩次之和。编秩 NhomakorabeaA组: - 、、+、+、+、++ B组: +、++、++、++、+++、+++
A组:- ± + + + 1 2 3 4 5
B组: + 6
++ 7
++ ++ ++ +++ +++ 8 9 10 11 12
第二节 两独立样本差别的秩和检验 Wilcoxon rank sum test
对于计量数据,如果资料方差相等,且服从
正态分布,就可以用t检验比较两样本均数。如
果此假定不成立或不能确定是否成立,就应采用
秩和检验来分析两样本是否来自同一总体。
Wilcoxon秩和检验(Wilcoxon rank sum test),用于推 断计量资料或等级资料的两个独立样本所来自的两个总体分 布是否有差别。 秩和检验的目的是推断两个总体分布的位置是否有差别, 如要推断两个不同人群的某项指标值的大小是否有差别或哪
秩 吸烟工人
和 不吸烟工人
(7) (6) (8)=(3) = (2) (6) 2 4 152 437 768 528 685 274 310 0 1917(T1) 1243(T2)
如果两 总体分 布相同
基本思想 两样本来自同一总体
任一组秩和不应太大或太小
T
与平均秩和 n0 (1 N ) / 2 应相差不大
非参数统计中的秩和检验方法详解(Ⅲ)
非参数统计中的秩和检验方法详解在统计学中,非参数统计是一种不依赖于总体分布的统计方法。
与参数统计相比,非参数统计更加灵活,适用范围更广。
秩和检验方法是非参数统计中的一种重要方法,本文将对秩和检验方法进行详细的介绍。
一、秩和检验的基本原理秩和检验的基本原理是将样本数据转化为秩次,然后通过比较样本秩和的大小来进行假设检验。
秩和检验方法不要求总体分布的形式,适用于不满足正态分布假设的情况。
秩和检验方法主要应用于两组样本比较或者相关性分析。
二、秩和检验的应用场景秩和检验方法适用于样本数据不满足正态分布假设的情况,例如小样本数据、偏态数据或者离群值较多的情况。
此外,秩和检验方法还适用于等级数据或者序数数据的分析。
三、秩和检验的常用方法1. Wilcoxon秩和检验Wilcoxon秩和检验是一种常用的秩和检验方法,用于比较两组独立样本的中位数是否有显著差异。
对于小样本数据,Wilcoxon秩和检验是一个比较有效的非参数检验方法。
2. Mann-Whitney U检验Mann-Whitney U检验是Wilcoxon秩和检验的一种特例,适用于两组独立样本的比较。
与t检验相比,Mann-Whitney U检验不要求数据满足正态分布假设,适用范围更广。
3. Wilcoxon符号秩检验Wilcoxon符号秩检验适用于配对样本的比较,用于检验配对样本中位数是否有显著差异。
对于配对设计的实验研究,Wilcoxon符号秩检验是一种常用的非参数检验方法。
四、秩和检验的步骤进行秩和检验时,通常需要经历以下几个步骤:1. 数据处理:对样本数据进行秩次转换,得到秩和。
2. 假设检验:根据具体情况选择合适的秩和检验方法,进行假设检验。
3. 结果解释:根据检验结果进行统计推断,对研究问题给出合理的结论。
五、秩和检验的优缺点秩和检验方法具有一定的优点和局限性:优点:不依赖于总体分布的形式,适用范围广泛;对偏态数据和离群值不敏感;适用于小样本数据的比较。
2425第十章--基于秩次的非参数检验(1)
秩和检验(rank sum test)
秩号:将各原始数据从小到大排列,分别给每个数
据一个顺序号,也就是秩号(rank)。
如:
9 6 7.5 13
秩号: 3 1 2
4
秩和:秩号的和
秩和检验:用各组秩和代替原始数据进行假设检验。
T=7663 (样本量较小组 对应的秩和)
①先确定各等级的合计人数、 秩范围和平均秩,见表4的(4) 栏、(5)栏和(6)栏,再计 算两样本各等级的秩和,见(7) 栏和(8)栏;
②本例T=7663;
3 计算Z值
7663 69 (189 1) / 2 0.5
Z
3.0587
120 69 (189 1) /12
0.05
2.5
2.12
-0.03
-1
2.42
0.27
4
2.52
0.37
5
2.62
0.47
6
2.72
0.57
7
2.99
0.84
8
3.19
1.04
9
3.37
1.22
10
4.57
2.42
11
T+=62.5 T-=3.5
确定P值并做出推断结论
本例,n=11,T=3.5,查配对
设计用T界值表,得P<0.005,
检验步骤 1. 建立检验假设,确定检验水平
H0 :差值的总体中位数Md 0 H1 :M d 0
0.05
2. 求检验统计量T值
(1) 编秩:
① 差数为0的数据忽略不计; ② 余下的n个差数按绝对值由小到大排秩号,
秩转换非参数检验
其总体参数作假设检验。
如: t 检验和 F 检验 。
非参数检验
➢对总体分布不作严格假定,又称任意分
布检验(distribution-free test),
它直接对总体分布作假设检验。
a
3
秩转换的非参数检验
➢ 推断一个总体表达分布位置的中位数M (非参数)和已知M0、两个或多个总体的分 布是否有差别。
用 Wilcoxon 符号秩检验。
a
21
检验步骤
H 0: 尿 氟 含 量 的 总 体 中 位 数 M 45.30 H 1: M 45.30
0.05
据表8-2第(3)、(4)栏,取T=1.5。
有效差值个数n11。据n11和T1.5查 附表9(P534) , 得单侧P0.005, 按 0.05 水 准拒绝H0,接受H1,可认为该厂工人的尿氟 含量高于当地正常人的尿氟含量。
合计
(1)-45.30
(2)
-1.09
0
1.09
4.17
5.75
7.86
7.96
9.07
11.86
22.07
25.75
42.07
─
a
正秩 (3)
1.5 3 4 5 6 7 8 9 10 11 64.5
负秩 (4)
1.5
1.5
20
本例样本资料经正态性检验,推断
得总体不服从正态分布( P <0.05),现
对子数为n,见表8-1第(4)栏,本例 n=11;
➢若多个差值为0,可通过提高测量工具的精
度来解决。
a
13
②按差值的绝对值从小到大编秩,然后分别 冠以正负号。遇差值绝对值相等则取平均秩,称为 相同秩(ties)(样本较小时,如果相同秩较多, 检验结果会存在偏性,因此应提高测量精度,尽量 避免出现较多的相同秩), 表8-1第(4)栏差值的 绝对值为2有2个,其秩依次应为1,2,皆取平均秩 为1.5,见表8-1第(5)、(6)栏;
卫生统计学 第十二章 基于秩转换的非参数检验
分析步骤:
1.建立检验假设,确定检验水准(α) H0:两总体分布位置相同,总体中位数
M1=M2 H1:两总体分布位置不同,总体中位数 2.选择B组,清点M每1≠组M数2据B前A组数据的 个数. 按数值由小α到=大0.0排5列。,若有相同数据,
取平均秩。
2020/6/27
分析步骤:
第十二章 基于秩 转换的非参数检验
2020/6/27
非参数检验的优点:
①适用范围广 ②受限条件少。参数检验对总体分布等有特别限定,而非 参数检验的假定条件少,也不受总体分布的限制,更适合 一般的情况。 ③具有稳健性。参数检验是建立在严格的假设条件基础之 上的,一旦不符合假设条件,其推断的正确性将受到怀疑; 而非参数检验都是带有最弱的假定,所受的限制很少,稳 健性好。
2020/6/27
2020/6/27
第四节 随机区组设计资料比较的秩和检验
随机区组设计资料比较,如果观察结果 不满足方差分析条件,可用Friedman M 检验(Friedman’s M test)。
分析步骤
1.建立检验假设和确定检验水准 2.编秩:
•先在每一配伍组内将数据从小到大编秩, 如有相同数据,取平均秩次;
•再求各处理组秩和Ri,i=1,2,...,k。
2020/6/27
分析步骤
3.计算检验统计量M值
(1)查表法(b≤15,k≤15): ➢M=Σ(Rj-R)2 ==》M界值表 ➢基于χ2分布近似法得到χ2值查有关的 M界值表 (2)χ2分布近似法
H1:k个总体分布位置不同或不全相同; α=0.05。
2.混合编秩 将各组数据混合,由小到大编秩。遇有 原始数据相同时,若相同数据在同一组内 ,则仍按顺序编秩;若相同数据在不同组
秩转换的非参数检验
A法
B法
差值 d 正秩
负秩
3 0 .6
3 0 .6
0
--
--
5 9 .9
6 3 .1
-3 .2
3
4 6 .0
5 8 .0
-1 2 .0
6
2 3 .0
1 0 .9
1 2 .1
7
2 0 .3
3 3 .7
-1 3 .4
9 .5
4 8 .6
9 9 .5
-5 0 .9
11
2 5 .0
2 4 .4
0 .6
1
2 3 .4
3 6 .2
-1 2 .8
8
4 4 .1
4 5 .2
-1 .1
2
3 9 9 .8 4 0 4 .1 -4 .3
4
2 5 .9
3 9 .3
-1 3 .4
9 .5
5 3 5 .6 5 4 4 .8 -9 .2
5
——
——
——
8
58
可编辑ppt
9
秩和分布的特点
对子号
1 2 3
N = 3 时两样本配对比较
10
•秩和分布的特点 (1)离散型的对称分布; (2)N一定时,秩和分布也一定; (3)靠近中央的频数较多; (4)当N足够大时,秩和分布逼近正态分布。
可编辑ppt
11
配对资料的秩和均数:
T+与T-是以T为中心的两个对称点 例11.2资料:T= 11(11 + 1)/ 4 = 33 T+ = 8 , T- = 58, 差值均为 25。
可编辑ppt
4
一、秩和检验的基本思想
总体A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数检验
参数检验方法:t 检验,方差分析; 总体分布假定:各组样本所来自的总体为 正态分布(已知的分布形式),各组样本所 来自的总体方差齐性。
非参数检验
定义:不依赖于总体的分布类型,对样本 所来自总体的分布不作严格假定的统计推 断方法,称为非参数检验(nonparametric test)。直接对总体分布做假设检验。 又称为任意分布检验(distribution-free test)。
(1) 很低 低 中 偏高 高 合计
(2) 1 8 16 10 4
(3) 2 23 11 4 0
(4) 3 31 27 14 4 79
(5) 1~3 4~34 35~61 62~75 76~79 —
(6) 2 19 48 68.5 77.5 —
39(n1) 40(n2)
1917(T1) 1243(T2)
查T界值表。
(3)确定P值,作出结论
若n1≤10且n2-n1≤10,可通过查阅T界值表
(附表10)确定P值;
若两样本量不满足上述条件,则可采用正
态近似法作u检验,按公式(8-2)计算u值。
正态近似法
| T n 1(N 1)/2 | n 1 n 2(N 1) ( t j t j ) ) (1 3 12 N N
(通常取秩和较小者)。
, 较小例数组的秩和 n 1 n 2 T min(R1 ,R 2 ),n 1 n 2
N n1 n2 n0 min( n1 , n2 )
较小例数组的平均秩和为:
n0(1 N)/2
若H0成立,T值应接近 n0(1 N)/2 ,若T值严重偏离
n0(1 N)/2 ,则提示H0可能是不正确的。小样本时,
n1=10
T1=141.5
(1)建立检验假设,确定检验水准
H0:两组患者RD值总体分布位置相同 H1:肺癌病人RD值高于矽肺0期工人RD值
α=0.05
(2)混合编秩,求统计量T
将两样本数据混合,从小到大排序;
对混合数据进行秩转换,获得每一观察值对应
的秩次;
观察值相等者取平均秩次; 分别计算两样本的秩和; 取样本量较小者为n1,其秩和作为统计量T; 两样本量相等者任取其中一个作为统计量T
总秩和 : TA+TB=12(12+1)/2=78
A组(x) 3, 5, 7, 9 11 (i) 1 2 3 4 5 B组(x) 12 13 (i) 6 7
14 8.5 T=23.5 14 16 20 22 8.5 10 11 12 T=54.5
秩次:在一定程度上反映了原始数据大小(等级)的信息。 秩和:反映了一组数据在分布上的范围位置。 平均秩次:反映一组数据平均水平 A组平均秩次=23.5/6=3.92 B组平均秩次=54.5/6=9.08
参数检验
parametric test 要求:样本来自给定分 布的总体,该总体分布 依赖于若干参数: , 2
非参数检验
Non-parametric test
要求:对总体的分布 类型不作任何要求
统计分析: 参数估计 假设检验:参数
统计分析: 假设检验: 总体的分布位置
注意:如果已知其计量资料满足(或近
3
u
例8-3分析结果
本例n1=10,
n2-n1=2,T=T1=141.5,满足查 T界值表的条件;
查表得单侧0.025<P<0.05;
拒绝H0
,认为肺癌病人的RD值高于矽肺0 期病人的RD值。
2. 等级资料两样本比较
例8-4 吸烟和不吸烟工人HbCO含量比较
含量 吸烟 不吸烟 合计 秩范围 平均秩 秩和 吸烟 不吸烟 (7)=(2)×(6) (8)= (3)×(6) 2 152 768 685 310 4 437 528 274 0
在H0成立(两配对样本差值的总体中位数 为0)的条件下,两配对样本的差值的正负 及其绝对值的相对大小是随机的; 在此情况下,正秩和与负秩和之间应当相 近,差别不会太大; 如果正秩和与负秩和之间相差足够大,则 可认为H0成立的可能性很小,从而加以拒 绝。
1. 配对样本差值的中位数与0比较
配对设计两组处理效应的比较一
非参数检验的应用场合
计量资料: 不满足参数检验的条件,且无适当的变量变 换方法解决此问题时; 分布类型无法获知的小样本计量资料; 一端或两端存在不确定数值(如>1000IU) 的计量资料;
等级资料:比较各组间等级强度的差别。
非参数检验的优缺点:
优点:
适用范围广
对数据要求不严
方法简便、易于理解和掌握
(1)建立检验假设,确定检验水准
H0:两组工人HbCO含量总体分布位置相同
H1:吸烟工人HbCO含量高于不吸烟工人
α=0.05
1.5 3 4 5 6 7 8 9 10 11 64.5
1.5
假设检验过程
与配对资料符号秩检验基本相同。
此处先计算每一测量值与给定的值的差数;
然后对此差数进行秩转换,进行与配对资料符
号秩检验完全相同的操作过程。
此例得T=1.5,量高于当地正
缺点:
损失信息、检验效能低
符合条件 不符合条件 首选参数检验 非参数检验
第一节 配对样本比较的Wilcoxon 符号秩检验
Wilcoxon符号秩检验简介
符号秩检验由Wilcoxon于1945年提出;
应用:
配对样本差值的中位数与0比较; 单个样本中位数与总体中位数(给定值) 的比较。
符号秩检验的基本思想
般采用配对t 检验,如果差数严重
偏离正态分布,可采用Wilcoxon符
号秩检验。
例8-1:两种方法测量12份血清ALT测量结果
编号 (1) 1 2 3 4 5 6 7 8 9 10 11 12 合计 原法 (2) 60 142 195 80 242 220 190 25 198 38 236 95 — 新法 (3) 76 152 243 82 240 220 205 38 243 44 190 100 — 差值d (4)=(3)-(2) 16 10 48 2 -2 0 15 13 45 6 -46 5 —
分布形状相同或类似的两个总体分布位置 比较,可以简化地理解为两总体中位数的 比较。
1. 计量资料两样本比较
例8-3 两类肺病患者RD值比较
肺癌病人 RD值 2.78 3.23 4.20 4.87 5.12 6.21 7.18 8.05 8.56 9.60 秩次 1 2.5 7 14 17 18 19 20 21 22 RD值 3.23 3.50 4.04 4.15 4.28 4.34 4.47 4.64 4.75 4.82 4.95 5.10 n2=12 矽肺0期工人 秩次 2.5 4 5 6 8 9 10 11 12 13 15 16 T2=111.5
相同秩次较多时的校正值:
uc
| T n(n 1) / 4 | 0.5 n(n 1)(2n 1) / 24 (t ti ) / 48
3 i
注意:仍为非参数检验
2.配对设计等级资料的符号秩检验
1. 把等级从弱到强转换成秩,如某指标的检测结果
为-,+,++,+++,可转化为相应的秩次1,2, 3,4; 2. 求各对秩次的差值,省略所有差值为0的对子数, 令余下的有效对子数为n;
—
差值d (4)=(3)-(2) 16 10 48 2 -2 0 15 13 45 6 -46 5
—
正秩 (5) 8 5 11 1.5
7 6 9 4
负秩 (6)
1.5
10 3 54.5 11.5
1.检验假设
H0 : M d 0 H1 : M d 0;
2.编秩号
(1)剔去差数为 0 的数据; (2)余下的 n 个差数按绝对值自小至大排秩号,但排好后秩号 要保持原差数的正负号; (3)差数绝对值相等时,要以平均秩号表示;
似满足)t 检验或 F 检验条件,当然选 t
检验或 F 检验,因为这时若选秩转换的
非参数检验,会降低检验效能。
秩转换的非参数检验
非参数检验是一类统计学方法的总称,
基于秩转换(rank transformation)的
非参数检验只是其中的一种。
秩转换的非参数检验
秩次(rank):某种测量值按照从小到大 的顺序排序后,每一测量值所对应的序号。 秩转换:将某一变量值从小到大排序后, 获得每一变量值的秩次,并用此秩次代替 原有变量值的过程。
例8-1:两种方法测量12份血清ALT测量结果
编号 (1) 1 2 3 4 5 6 7 8 9 10 11 12
合计
原法 (2) 60 142 195 80 242 220 190 25 198 38 236 95
—
新法 (3) 76 152 243 82 240 220 205 38 243 44 190 100
0.05
3.求秩号和,即将正、负秩号分别相加,正负秩号绝对值之
和应等于 n(n 1) / 2 ,可用以核对。
4. 检验统计量 T 取较小一个秩和(或任取) ,根据 T 值查附表 9 进行判断,该表左侧为对子数,表身内部 是秩和,与上端纵标目之概率相对应。 判断标准:
若 T 在上下界范围内时,P 大于相应的概率水平(如 0.05) 若 T 在上下界范围外时,P 小于相应的概率水平 若 T 等于界值时,P 等于相应的概率水平
例8-1分析结果
取负秩和为T,则T=11.5;
查T界值表得0.05<P<0.1;
结论:不拒绝H0,不能认为两种方法检测