三角形的证明(二)经典讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 11 页

图2 

图1

A

B C

D O O D C

B A 第二章三角形的证明

1.等腰三角形

一、主要知识点

1、 证明三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL)及全等三角形

的性质是对应边相等,对应角相等。 2、 等腰三角形的有关知识点。

等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。(三线合一)

3、 等边三角形的有关知识点。

判定:有一个角等于60°的等腰三角形是等边三角形; 三条边都相等的三角形是等边三角形; 三个角都是60°的三角形是等边三角形; 有两个叫是60°的三角形是等边三角形。 性质:等边三角形的三边相等,三个角都是60°。

4、反证法:先假设命题的结论不成立,然后推导出 与定义、公理、已证定理或已知条件相矛盾的结果,

从而证明命题的结论一定成立。这种证明方法称为反证法

二、重点例题分析

例1: 如下图,在△ABC 中,∠B =90°,M 是AC 上任意一点(M 与A 不重合)MD ⊥BC ,交∠ABC 的平分线于点D ,求证:MD =M A .

例2 如右图,已知△ABC 和△BDE 都是等边三角形,求证:AE =CD .

例3: 如图:已知AB=AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 求证: ① AC =AD ; ②CF =DF 。

例4 如图1、图2,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90º,

(1)在图1中,AC 与BD 相等吗?请说明理由(4分)

(2)若△COD 绕点O 顺时针旋转一定角度后,到达力2的位置,请问AC 与BD 还相等吗?为什么?

第 2 页 共 11 页

例5 如图,在△ABC 中,AB=AC 、D 是AB 上一点,E 是AC 延长线上一点,且CE=BD ,连结DE 交BC 于F 。(1)猜想DF 与EF 的大小关系;(2)请证明你的猜想。

例6 证明:在一个三角形中至少有两个角是锐角.

2.直角三角形

一、主要知识点

1、直角三角形的有关知识。

直角三角形两条直角边的平方和等于斜边的平方;

如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 在直角三角形中,斜边上的中线等于斜边的一半。 2、互逆命题、互逆定理

在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.

如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 二、典型例题分析

例1 :说出下列命题的逆命题,并判断每对命题的真假: (1)四边形是多边形;

(2)两直线平行,同旁内角互补; (3)如果ab=0,那么a=0,b=0;

(4)在一个三角形中有两个角相等,那么这两个角所对的边相等 例2:如图,ABC ∆中,3

5

90,12,,22

C C

D BD ∠=︒∠=∠=

=,求AC 的长。

例3 :如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

第 3 页 共 11 页

C

A

D

B

例4:如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?

A 1

B A

例5 :如图2-5所示.在等边三角形ABC 中,AE=CD ,AD ,BE 交于P 点,BQ ⊥AD 于Q .求证:BP=2PQ .

3.线段的垂直平分线

4.角平分线

一、主要知识点

1、 线段的垂直平分线。

线段垂直平分线上的点到这条线段两个端点的距离相等;

到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。 2、 角平分线。

角平分线上的点到这个角的两边的距离相等。

在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。 3、 逆命题、互逆命题的概念,及反证法

如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

二、重点例题分析

例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =0

40,求∠NMB 的大小

第 4 页 共 11 页

(2)如果将(1)中∠A 的度数改为0

70,其余条件不变,再求∠NMB 的大小 (3)你发现有什么样的规律性?试证明之.

(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改

例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。

例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。求证:直线AB 是线段CD 的垂直平分线。

A

C D E

B

例4:如图所示,在△ABC 中,AB=AC ,∠BAC=1200

,D 、F 分别为AB 、AC 的中点,DE AB FG AC ⊥⊥,,

E 、G 在BC 上,BC=15cm ,求EG 的长度。

A

A B

C N M

A B C N

M A B

C

N

M

相关文档
最新文档