高三数学知识点汇编
高三数学知识点全部汇总人教版

高三数学知识点全部汇总人教版高三数学知识点全部汇总一、函数与方程1. 函数概念及性质函数是描述两个变量之间相互关系的工具。
具有定义域、值域和对应关系等性质。
2. 一元二次函数一元二次函数是形如y=ax^2+bx+c的函数,其中a≠0。
3. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
4. 指数函数与对数函数指数函数是以底数为常数的幂函数,对数函数是指数函数的反函数。
5. 解方程与不等式解方程是求出使等式成立的未知数值,解不等式是求出使不等式成立的未知数值范围。
二、数列与数列求和1. 等差数列等差数列是具有相同公差的数列,常用通项公式an=a1+(n-1)d来表示。
2. 等比数列等比数列是相邻两项的比值相等的数列,常用通项公式an=a1*q^(n-1)来表示。
3. 递推数列递推数列是通过前一项和递推关系得到后一项的数列。
4. 数列求和数列求和是指对数列中的所有项进行加和运算,有等差数列求和公式和等比数列求和公式。
三、平面几何1. 平面图形的性质平面图形包括点、线、角、三角形、四边形、圆等,具有特定的性质和定理。
2. 三角形三角形是由三条边和三个内角组成的图形,有特殊的三边关系、三角形的性质和定理。
3. 圆与圆的相交关系圆与圆之间可以相离、相切或相交,并有相应的关系和定理。
四、空间几何1. 空间图形的性质空间图形包括点、线、面、体等,在三维空间中有特定的性质和定理。
2. 平行与垂直平行是指两条直线在同一平面内永不相交,垂直是指两条直线相交成直角。
3. 球与球的相交关系球与球之间可以相离、相切或相交,并有相应的关系和定理。
五、概率与统计1. 概率基本概念概率是用来描述事件发生可能性的大小,包括样本空间、事件、概率的概念。
2. 样本空间与事件样本空间是指随机试验的所有可能结果的集合,事件是样本空间的子集。
3. 随机变量与概率分布随机变量是随机试验结果的数值描述,概率分布用来描述随机变量取值的概率。
高三数学知识点总结(3篇)

高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。
AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
数学高考必考知识点

数学高考必考知识点一、代数1. 集合与函数- 集合的基本概念、运算及其性质- 函数的定义、性质和常见类型(如线性函数、二次函数、指数函数、对数函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 不等式与方程- 一元一次不等式和方程的解法- 二元一次不等式组和方程组的解法- 一元二次方程的解法及其判别式- 不等式的解集表示和基本性质3. 数列- 等差数列和等比数列的通项公式、求和公式- 数列的极限概念及其计算- 数列的递推关系和通项公式的求解二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式- 相似与全等的判定和应用2. 立体几何- 空间几何体的性质和计算(如棱柱、棱锥、圆柱、圆锥、球等) - 空间向量及其在立体几何中的应用- 立体几何中的表面积和体积计算3. 解析几何- 直线和圆的解析表达式- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程- 坐标变换和参数方程三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件的概念- 排列组合的基本原理和公式2. 统计- 数据的收集、整理和描述- 均值、中位数、众数、方差、标准差等统计量的计算- 概率分布(如二项分布、正态分布)的概念和应用四、数学分析1. 极限与连续- 数列极限的概念和性质- 函数极限的定义和计算- 连续函数的性质和判断2. 导数与微分- 导数的定义、几何意义和物理意义- 常见函数的导数公式- 微分的概念和应用3. 积分- 不定积分的概念和基本积分表- 定积分的定义、性质和计算- 微积分基本定理及其应用五、数学解题技巧- 快速准确的计算方法- 图形和代数方法的结合使用- 逻辑推理和证明技巧- 常见数学问题的解题策略六、数学思维与应用- 数学建模和实际问题的应用- 创新思维在数学问题解决中的运用- 数学与其他学科的交叉融合七、复习策略- 定期复习和巩固基础知识- 针对性练习和模拟考试- 错题分析和知识点查漏补缺以上是数学高考必考知识点的概览。
高三数学知识点整理目录

高三数学知识点整理目录
第一章:函数与方程
1.1 一次函数 - 定义与性质 - 增减性及应用 - 斜率与截距 - 一次函数的图像
1.2 二次函数 - 标准式及性质 - 抛物线的开口方向 - 顶点坐标及性质 - 二次函数的图像
1.3 三角函数 - 正弦函数 - 余弦函数 - 正切函数 - 图像与周期性
第二章:几何
2.1 三角形 - 三角形的分类 - 外角与内角性质 - 各类三角形的判定方法 - 三角形的面积
2.2 圆 - 圆的性质 - 弧长与扇形面积 - 切线与切线定理 - 圆内接四边形
第三章:空间几何
3.1 空间图形 - 空间坐标系 - 立体图形的表面积 - 立体图形的体积 - 空间几何的解题策略
3.2 空间向量 - 向量的基本概念 - 向量的加法与减法 - 数量积与向量积 - 向量的坐标表示
第四章:概率与统计
4.1 概率 - 随机事件的概念 - 事件的概率 - 互斥事件与独立事件 - 概率的计算方法
4.2 统计 - 数据的收集与整理 - 数据的分布特征 - 统计图的绘制 - 统计推断与假设检验
以上是高三数学知识点的整理目录,希望能对您的学习有所帮助。
高考数学全套知识点汇编(含答案)

高考数学全套知识点汇编(含答案)1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==, 4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
∨∧“非”().()()5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和⌝∧p q p q若为真,当且仅当、均为真∨若为真,当且仅当、至少有一个为真p q p q⌝p p若为真,当且仅当为假6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]>->=+-0义域是())()()f x a b b a F(x f x f x如:函数的定义域是,,,则函数的定_。
高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。
2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。
3. 幂函数与指数函数的性质。
4. 对数函数的性质:底数为正数时的定义、性质与常见公式。
5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。
6. 数列的概念及常见数列的通项公式和求和公式。
二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。
2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。
3. 圆的性质:圆周角、弧长和面积公式。
4. 球和立体几何的基本概念:体积、表面积和投影等。
三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。
2. 随机变量的概念及其分布函数和密度函数。
3. 统计的基本概念:总体、样本、参数和统计量。
4. 样本调查与统计分析的方法和步骤。
四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。
2. 平面的方程:一般式、点法式、两点式和法向量式等。
3. 空间几何基本概念:点、直线、平面的关系与位置。
4. 空间直角坐标系:空间直角坐标系的建立与距离公式。
五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。
2. 数学证明的基本方法:直接证明、间接证明、反证法等。
3. 数学建模的基本流程和方法。
4. 数学问题的模型转化与解决策略。
以上是高考必背的最完整的高中数学知识点。
希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。
75个高中数学高考知识点总结

75个高中数学高考知识点总结高中数学高考知识点总结(共75个)1.数集与函数:数集的性质,集合的表示方法,集合的运算,函数的定义及性质,一元二次函数的图像与性质,复合函数的概念与性质等。
2.数论与代数:整数与有理数的运算性质,整式的运算性质,整式的因式分解与化简,多项式函数的概念与性质,复数的概念与运算性质等。
4.空间几何与立体几何:空间直线及其方程,空间平面及其方程,空间曲线及其方程,球面的定义与性质,空间几何体的表面积与体积等。
5.三角函数与三角恒等式:二次角与辅助角的概念,三角函数的定义及性质,三角函数的图像与变换,三角函数的基本恒等式等。
6.三角函数的应用:三角函数在坐标系中的应用,三角函数在三角恒等式中的应用,三角函数在物理问题中的应用等。
7.数列与数列的极限:数列的概念及性质,数列的极限及其性质,数列极限的运算法则,常用数列的极限等。
8.函数的极限与连续:函数的极限的定义及性质,函数的极限的运算法则,函数的连续性及其性质,连续函数的运算与初等函数的连续性等。
9.导数与导数应用:导数的定义及性质,函数的导数与函数的图像,导数的四则运算法则,函数的单调性与极值点等。
10.积分与定积分:定积分的概念及性质,定积分的计算方法,不定积分的概念与性质,不定积分的计算方法等。
11.微分方程:微分方程的基本概念与解法,可分离变量的微分方程,一阶线性微分方程,二阶齐次线性微分方程等。
12.概率与统计:随机事件与概率,随机变量及其分布,频率与概率的估计,统计图表的绘制与分析等。
13.线性规划:线性规划问题的建模,线性规划的基本概念与性质,线性规划的图形解法与解的存在性等。
14.解析几何:平面解析几何的基本概念与性质,平面曲线的方程与性质,空间解析几何的基本概念与性质等。
15.逻辑与集合论:命题与命题的连接词,逻辑等价命题,简单命题与复合命题,命题的充分必要条件与等价条件等。
以上是高中数学高考的主要知识点总结,包含了数学的基本概念、性质和应用。
高中数学重点知识点总结与核心公式汇编

高中数学重点知识点总结与核心公式汇编在高中数学学习中,有一些知识点是非常重要的,它们是我们理解和应用数学的基础。
同时,掌握关键的核心公式也是解题的关键。
本文将对这些知识点进行总结,并提供相应的核心公式供大家参考和学习。
1. 代数与函数1.1 二次函数二次函数是高中数学中的重点内容之一。
其一般式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。
常见的二次函数性质有: - 判别式D = b^2 - 4ac,当D > 0时,函数有两个不等实根;当D = 0时,函数有两个相等实根;当D < 0时,函数无实根。
- 对称轴的横坐标为x = -b/2a,顶点坐标为(-b/2a, f(-b/2a))。
- 函数开口方向由系数a的正负决定。
相关公式:- 平方差公式:(a+b)^2 = a^2 + 2ab + b^2,(a-b)^2 = a^2 - 2ab +b^2。
- 因式分解公式:ax^2 + bx + c = a(x-x1)(x-x2),其中x1、x2为函数的两个实根。
1.2 指数与对数指数和对数是数学中常见的运算方式。
- 指数的基本性质:- a^m * a^n = a^(m+n)- (a^m)^n = a^(mn)- (ab)^n = a^n * b^n- 对数的基本性质:- loga(MN) = logaM + logaN- loga(M/N) = logaM - logaN- loga(M^p) = p*logaM- loga1 = 0,logaa = 1相关公式:- 指数函数与对数函数互为反函数:y = a^x,x = loga(y)2. 几何与三角2.1 三角函数三角函数是与角度相关的函数,其中最常见的三角函数是正弦函数、余弦函数和正切函数。
其定义如下:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边三角函数的性质有:- 周期性:sin(θ + 2π) = sinθ,cos(θ + 2π) = cosθ,tan(θ + π) = tanθ - 正交性:sinθ * cosθ + cos^2θ = 1相关公式:- 二倍角公式:sin2θ = 2sinθcosθ,cos2θ = cos^2θ - sin^2θ,tan2θ = 2tanθ/(1 - tan^2θ)2.2 平面几何平面几何是研究平面内图形的性质和变换的数学学科。
高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。
o运算:交集、并集、补集(相对于全集)。
2.函数o概念:输入与输出之间的对应关系。
o表示法:解析法、列表法、图像法。
o单调性:增函数、减函数。
o奇偶性:奇函数、偶函数、非奇非偶函数。
二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。
o表示法:通项公式、递推公式。
2.等差数列o定义、通项公式、前n项和公式。
o性质:中项性质、等差中项。
3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。
o性质:中项性质、等比中项。
4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。
5.数列的极限o数列极限的概念、性质及简单计算。
三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。
2.诱导公式o角度加减变换公式。
3.同角关系式o基本恒等式、平方关系、商数关系。
4.性质o周期性、奇偶性、单调性、有界性。
5.图像与性质o各三角函数图像特征、相位变换、振幅变换。
6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。
7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。
四、向量1.基本概念o向量的模、方向、坐标表示。
2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。
o模长与夹角的关系、平行与垂直的条件。
五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。
o斜率:定义、公式、倾斜角。
o位置关系:平行、垂直的条件。
2.圆o方程:标准方程、一般方程。
o性质:圆心、半径、切线、弦的性质(如相交弦定理)。
3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。
六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。
2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。
3.三视图o正视图、侧视图、俯视图及其绘制方法。
七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。
高三数学108个知识点

高三数学108个知识点在高三数学学习过程中,熟练掌握并深入理解各个知识点是非常重要的。
下面将列举出高三数学的108个知识点,帮助同学们进行系统学习和总结。
【1-10个知识点】1. 一元一次方程与一元一次不等式2. 二次函数与二次方程3. 平面坐标系与直线方程4. 三角函数与同角三角函数5. 几何平均值与算术平均值6. 二次根式与分式方程7. 平面向量与几何应用8. 集合与概率9. 模运算与同余定理10. 立体几何与几何体的计算【11-20个知识点】11. 反比例函数与反比例方程12. 三角恒等变换与三角方程13. 勾股定理与解三角形14. 空间向量与空间几何15. 不等式与区间16. 碰撞实验与动量守恒17. 绝对值与绝对值方程18. 导数与导数应用19. 包含和与包含关系20. 线性规划与最值问题【21-30个知识点】21. 二次函数与二次函数图像的应用22. 常数项的正负与二次函数图像23. 极坐标与极坐标方程24. 几何综合与特殊平面图形25. 立体几何应用题与平行四边形26. 不等式与模运算的组合27. 排列组合与计数原理28. 空间向量与向量表示方法29. 感兴趣区域与定积分30. 镜面变幻与折纸几何【31-40个知识点】31. 半径向量与向量的线性运算32. 一次函数与一元二次方程33. 平面向量与向量应用34. 数列与数列求和35. 空间几何中的直线与平面36. 连通性与平面图形的表示37. 二次函数与二次函数图像38. 区域与区域的包含关系39. 余弦定理与正弦定理40. 空间向量与立体几何【41-50个知识点】41. 相似性与全等性42. 点、线、面的投影43. 线段坐标与向量共线44. 极坐标方程与函数图像45. 乘法公式与因式分解46. 圆锥曲线与圆锥曲线方程47. 二次函数应用题与二次方程48. 多种函数组合应用49. 连通性与平面图形的判断50. 函数极值问题与最值问题【51-60个知识点】51. 平面直角坐标系与直线52. 焦点坐标与椭圆方程53. 频率与统计图形54. 空间向量与坐标系55. 点到平面的距离56. 直线方程与线性规划57. 圆方程与圆的性质58. 超越方程与反比函数59. 不等式与集合的表示60. 函数极值问题与求最值【61-70个知识点】61. 三角恒等变换与例证62. 函数与函数性质63. 拓扑性质的判断与应用64. 三角函数图像与性质65. 因式定理与 polynomial66. 极坐标方程与曲线绘制67. 直角三角形与锐角三角形68. 函数的复合与反函数69. 面积讨论与不等式应用70. 等腰三角形与等边三角形【71-80个知识点】71. 三角函数的复合与反函数72. 函数的综合应用与性质73. 幂函数与幂函数曲线74. 结合与合并应用题75. 复合函数与函数求导76. 函数的图像与性质分析77. 直角坐标系与映射78. 平面向量与平行四边形性质79. 绝对值与不等式综合运用80. 函数性质与组合函数【81-90个知识点】81. 函数与极限的关系82. 递推数列与通项公式83. 曲面方程与立体几何参数方程84. 函数的图像与性质应用85. 反函数与函数求导86. 函数的复合与幂函数87. 圆锥曲线与相互位置关系88. 直线的方程与空间几何性质89. 圆的方程与圆扩展题90. 函数极值与多项式函数【91-100个知识点】91. 特殊直线与直线方程92. 函数导数与函数性质93. 集合与统计94. 数列极限与递推公式95. 空间几何问题的解析法96. 函数的模和函数的极值97. 集合与区间的表示98. 向量的坐标表示与性质99. 勾股定理与圆的应用100. 平面图形的性质与作图【101-108个知识点】101. 导函数与导数的应用102. 圆锥曲线与性质103. 变量替换与数列求和104. 空间解析几何与应用105. 双曲线与平移对称性106. 求解不等式与集合的运算107. 极坐标方程与极坐标图108. 综合题与解题思路总结了高三数学的108个知识点,希望同学们可以认真学习并熟练掌握每一个知识点。
高三数学高考考试复习知识点归纳

高三数学高考考试复习知识点归纳要提高复习效率,必须使自己的思维与老师的思维同步。
而预习则是达到这一目的的重要途径,要做到“两先两后” ,即先预习后听课,先复习后作业。
以提高听课的主动性,减少听课的盲目性。
以下是小编给大家整理的高三数学高考考试复习知识点归纳,希望大家能够喜欢!1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列 1,2,3,4,5 与数列 5,4,3,2,1 是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1 的 1 次幂,2 次幂,3 次幂,4 次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于 f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于 f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别. 如:2,3,4,5,6 这 5 个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列. 在写数列时,对于有穷数列,要把末项写出,例如数列 1,3,5,7,9,…,2n-1 表示有穷数列,如果把数列写成 1,3,5,7,9,…或 1,3,5,7,9,… ,2n-1,… ,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子 f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列 1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集 N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用 1,2,3,…去替代公式中的n 就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如 2 的不足近似值,精确到 1,0.1,0.01,0.001,0.0001,…所构成的数列 1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列 4,5,6,7,8,9,10 每一项的序号与这一项有下面的对应关系:这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集 N_ (或它的有限子集{1,2,3,… ,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以 1 为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于 1 ;5、三角函数正切函数 y=tanx 中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
高三数学全部的知识点归纳

高三数学全部的知识点归纳在高三数学的学习过程中,我们会接触到各种各样的数学知识点。
这些知识点既有基础的概念和定理,也有较为复杂的应用和解题方法。
为了帮助同学们更好地进行复习总结,下面将对高三数学全部的知识点进行归纳。
一、函数与方程1. 函数基本概念和性质2. 一次函数及其图像3. 二次函数及其图像4. 指数函数与对数函数5. 三角函数与图像变换6. 不等式与绝对值7. 方程与不等式的解法二、平面与立体几何1. 平面几何中的基本概念2. 平面直角坐标系与直线方程3. 平面图形的性质与判定4. 空间几何中的基本概念5. 空间直角坐标系与平面方程6. 空间立体图形的性质与判定三、立体几何与向量1. 空间直角坐标系与向量的表示2. 向量的运算与性质3. 空间中的点和向量的位置关系4. 平面与向量的垂直、平行关系5. 空间直线与向量的位置关系6. 空间立体的性质与计算四、概率与统计1. 随机事件的概念与性质2. 概率的计算方法3. 随机变量与概率分布4. 离散型与连续型随机变量5. 参数估计与假设检验6. 统计图表的表示与分析五、数列与数学归纳法1. 等差数列与等比数列的定义与性质2. 数列的通项公式与求和公式3. 数学归纳法的原理与应用4. 数列极限及其性质六、三角与数学恒等式1. 任意角的概念与性质2. 各种三角函数的定义与性质3. 三角函数的图像与变换4. 三角函数的和差公式与倍角公式5. 三角函数的积化和差公式6. 三角函数的逆函数与解三角方程七、数学推理与证明1. 命题与合取、析取2. 充分条件与必要条件3. 直接证明、反证法与归谬法4. 数学归纳法与条件证明5. 平行线性质的证明6. 三角形性质的证明八、微积分与导数1. 重要概念与性质2. 函数的极限与连续性3. 导数与导数的应用4. 函数的最值与导数的求解5. 反函数与参数方程6. 微分与微分方程九、平面向量与行列式1. 平面向量的定义与性质2. 平面向量的线性运算3. 向量的数量积与向量积4. 平面向量的应用5. 行列式的定义与性质6. 行列式的计算方法与应用以上对高三数学部分知识点的归纳只是涉及到了一些基础的内容,实际上还有很多其他的知识点需要大家掌握。
高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。
高三数学知识点汇总归纳

高三数学知识点归纳高三数学知识点汇总归纳在日复一日的学习中,大家都背过各种知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
那么,都有哪些知识点呢?以下是小编为大家整理的高三数学知识点汇总归纳,仅供参考,希望能够帮助到大家。
高三数学知识点归纳篇1高三上册数学知识点整理1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.人教版高三数学知识点总结1.定义:用符号〉,=,〈号连接的式子叫不等式。
2.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:①解一元一次不等式(组)②根据具体问题中的数量关系列不等式(组)并解决简单实际问题③用数轴表示一元一次不等式(组)的解集高三数学知识点归纳篇21、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3 高三数学知识点归纳篇3复数的概念:形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。
高三的数学知识点大全

高三的数学知识点大全一、集合论集合的概念:集合是指具有某种特定性质的对象的总体或者一定范围内的元素的集合。
集合的表示方法:列举法、描述法、符号法等。
常见集合运算:并集、交集、补集、差集等。
二、数与代数实数的性质:实数的四则运算、实数的比较、实数的性质等。
代数式的展开和因式分解:根据代数式的性质进行展开和因式分解。
一次函数与二次函数:一次函数与二次函数的性质、图像、方程等。
三、平面几何平面几何中的基本概念:点、线、面、角等。
平面图形的性质:三角形、四边形、多边形等的性质。
平面几何的证明方法:直接证明、间接证明、反证法等。
四、空间几何空间几何中的基本概念:点、直线、平面、曲线等。
空间图形的性质:球、圆柱、圆锥等的性质与计算。
空间几何的运算与计算:体积、表面积的计算,运用解析几何解决问题。
五、数列和数列的极限数列的概念:数列的定义、常见数列的特点与性质。
数列的极限:数列的极限定理、数列极限的性质与计算。
六、函数与导数函数的概念:函数的定义、函数的性质与四则运算。
基本初等函数:常量函数、幂函数、指数函数、对数函数、三角函数等。
导数的概念与计算:导数的定义、导数的四则运算、使用导数解决问题。
七、概率论与数理统计随机事件与概率:随机事件的基本概念、概率的定义与计算。
概率分布与统计:离散型随机变量、连续型随机变量的概率分布。
统计的基本概念与方法:样本、总体、抽样与统计量的计算与应用。
八、三角函数与三角恒等式三角函数的基本概念:正弦函数、余弦函数、正切函数等。
三角恒等式与三角方程:基本恒等式的运用、解三角方程的方法。
九、解析几何向量的基本概念:向量的定义、向量的加法、数量积与向量积。
空间中的直线与平面:点线面的位置关系、直线与平面之间的关系。
空间解析几何的计算问题:点到直线的距离、直线的方程、平面的方程等。
以上是高三数学的知识点大全,通过掌握这些知识点,可以帮助同学们更好地备战高考,并取得优异的成绩。
希望同学们能够认真学习,坚持练习,相信自己的能力,相信一切都会有收获。
高三数学基础知识点大全

高三数学基础知识点大全一、代数与函数1. 数与式- 实数与复数- 四则运算与整式- 代数式的运算与等式辨识2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 绝对值方程与不等式- 分式方程与不等式3. 函数与图像- 一次函数与二次函数- 幂函数与指数函数- 对数函数与指数方程4. 等差数列与等比数列- 基本性质与通项公式- 求和公式与应用二、几何与实数1. 平面图形- 直线与角度- 三角形与四边形- 圆与圆内接正多边形2. 立体图形- 空间几何体的性质与计算- 空间坐标与向量3. 合作的基本原理- 合作原理与比例- 合作原理与百分数4. 推理与证明- 相似三角形与比例应用- 数列的应用问题三、概率与统计1. 概率与事件- 随机事件与概率- 事件的运算与应用2. 随机变量与概率分布- 随机变量的概念与性质- 离散型随机变量与分布3. 统计与抽样- 数据的收集与整理- 统计指标与样本均数四、数学思维与方法1. 分析与综合- 问题分析与解决方法- 综合应用与技巧2. 探究与证明- 探究问题与数学模型- 数学证明与思维方法3. 推理与推断- 数学推理与推断- 数学归纳与猜想4. 沟通与交流- 数学沟通与表达- 数学交流的方法和技巧五、考试与应试技巧1. 高考数学命题规律- 高考命题特点与基本规律- 高考数学试题类型概述2. 高考数学答题技巧- 高考数学常见题型解题技巧- 高考数学复习与备考建议六、数学知识的应用领域1. 自然科学与工程技术- 数学在物理、化学、生物等领域的应用- 数学在工程技术中的应用2. 经济与金融- 数学模型与经济问题- 数学在金融领域的应用3. 计算机与信息技术- 数学在计算机科学中的应用- 数学在信息技术中的应用4. 社会与统计学- 数学在社会科学中的应用- 数学在统计学中的应用以上是高三数学基础知识点的大全,通过掌握这些知识,将能够更好地应对数学考试,并将数学知识运用到实际生活和各个领域中。
2024高考数学知识点归纳总结

2024高考数学知识点归纳总结一、集合与常用逻辑用语。
1. 集合。
- 集合的概念:元素与集合的关系(属于、不属于),集合的表示方法(列举法、描述法、韦恩图)。
- 集合间的关系:子集(包含、真包含)、相等集合的判定与性质。
- 集合的运算:交集、并集、补集的定义、性质和运算规则。
例如:A∩ B = {xx∈ A且x∈ B},A∪ B={xx∈ A或x∈ B},∁_U A={xx∈ U且x∉ A}(U为全集)。
2. 常用逻辑用语。
- 命题:命题的概念(能判断真假的陈述句),命题的真假性判断。
- 四种命题:原命题、逆命题、否命题、逆否命题的相互关系(互为逆否命题同真同假)。
- 充分条件与必要条件:若pRightarrow q,则p是q的充分条件,q是p的必要条件;若pLeftrightarrow q,则p是q的充要条件。
- 逻辑联结词:“且”(∧)、“或”(∨)、“非”(¬)的含义和真假判断规则。
例如:p∧ q为真当且仅当p真且q真;p∨ q为真当且仅当p真或q真;¬ p 的真假与p相反。
二、函数。
1. 函数的概念。
- 函数的定义:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y = f(x)和它对应,那么就称f:A→ B为从集合A到集合B的一个函数。
- 函数的三要素:定义域、值域、对应关系。
定义域是自变量x的取值范围;值域是函数值y = f(x)的取值集合;同一函数的判定(定义域和对应关系相同)。
2. 函数的性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1 < x_2时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
判断函数单调性的方法有定义法、导数法等。
- 奇偶性:对于函数y = f(x)的定义域内任意一个x,都有f(-x)= - f(x)(或f(-x)=f(x)),那么函数y = f(x)是奇函数(或偶函数)。
高三数学知识点总结全提纲

高三数学知识点总结全提纲一、函数与方程1.一次函数与二次函数- 线性函数与仿射函数的概念- 一次函数与二次函数的图像特征- 一次函数与二次函数的性质及应用2.指数与对数函数- 指数函数与对数函数的定义与性质- 指数方程与对数方程的解法- 指数函数与对数函数在实际问题中的应用二、数列与数列的极限1.等差数列与等比数列- 等差数列与等比数列的概念及性质- 等差数列与等比数列的通项公式与求和公式 - 等差数列与等比数列的应用2.数列的极限- 数列极限的定义与性质- 数列收敛与发散的判定- 数列极限的计算方法与应用三、三角函数与立体几何1.三角函数- 三角函数的定义与性质- 求解三角方程与三角不等式 - 三角函数的应用2.立体几何- 空间几何体的基本概念与性质 - 空间几何体的计算与应用- 空间几何体的投影与旋转四、概率与统计1.基本概念与统计图- 概率与统计的基本概念与方法- 统计图的绘制与分析- 频率与概率的关系2.样本与抽样- 样本与总体的概念与表示 - 不同抽样方法的特点与应用 - 样本统计量的计算与推断五、微积分1.导数与微分- 导数的定义与性质- 导数的计算方法与应用- 微分的概念与微分法的应用 2.不定积分与定积分- 不定积分的概念与性质- 不定积分的计算与定义- 定积分的概念与性质- 定积分的计算与应用六、平面几何与圆锥曲线1.平面几何- 平面几何中的基本概念与性质- 平面几何中的直线和圆的性质- 平面几何中的相似与全等2.圆锥曲线- 椭圆、双曲线、抛物线的定义与性质 - 圆锥曲线的参数方程与一般方程- 圆锥曲线的应用七、数论与离散数学1.数与式的整除性- 整数的性质与分类- 整除、最大公因数与最小公倍数- 素数与素数分解2.离散数学- 集合论与命题逻辑- 排列与组合- 图论与网络优化综上所述,高三数学知识点总结全提纲包括了函数与方程、数列与数列的极限、三角函数与立体几何、概率与统计、微积分、平面几何与圆锥曲线以及数论与离散数学等方面的内容。
高考数学必考知识点大全

高考数学必考知识点大全1.代数运算
-同底数幂的乘除法
-倍数关系与比例
-有理数的概念与运算法则
-一元一次方程的解法
-二次函数的三种表示形式
2.平面几何
-圆的基本概念与性质
-圆心角、弧度制与弧长的关系
-相似三角形的性质和判定方法
-平行线的性质和判定方法
-三角形的基本性质与判定方法
3.立体几何
-正方体、长方体、棱柱、棱锥、棱台的计算公式-圆锥的体积、曲面积的计算公式
-球的表面积、体积的计算公式
-空间向量的运算法则
-平面与立体图形的位置关系
4.概率论与数理统计
-随机事件的概念与性质
-事件的关系与运算法则
-事件的概率计算方法
-抽样调查与统计分析的基本方法-随机变量与概率分布的概念与性质5.函数与导数
-函数的概念与性质
-函数的求值与运算法则
-一元函数的最大值与最小值问题-导数的概念与基本性质
-导数的计算方法和应用
6.数列与数学归纳法
-等差数列与等比数列的概念与性质-数列的通项公式与前n项和公式-数列极限的概念与性质
-递推数列与其计算公式
-数学归纳法的基本原理和应用
7.三角函数与解三角形
-三角函数的基本性质与计算方法
-三角函数的图像与性质
-三角函数的运算法则
-解三角形的基本原理和方法
-解三角形的应用问题和求解技巧
8.数与图的关系
-数据的收集和整理方法
-数据的分析和解释方法
-数据的图表表示与分析
-数据统计和概率的计算方法
-利用图表解决实际问题的技巧与方法。
高三数学知识梳理(20篇)

高三数学知识梳理(20篇)1.高三数学知识梳理篇一直线与平面垂直定义:直线与平面内任意一条直线都垂直判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直性质:垂直于同一直线的两平面平行推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面直线和平面所成的角:(0,90)度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度2.高三数学知识梳理篇二平面与平面平行定义:两个平面没有公共点判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3.高三数学知识梳理篇三异面直线:平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);两条直线不是异面直线,则两条直线平行或相交(反证);异面直线不同在任何一个平面内。
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角4.高三数学知识梳理篇四空间点、直线、平面之间的位置关系:直线与直线—平行、相交、异面;直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);平面与平面—平行、相交。
5.高三数学知识梳理篇五平面的基本性质:公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;公理2过不在一条直线上的三点,有且只有一个平面;公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
6.高三数学知识梳理篇六求动点的轨迹方程的基本方法:直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学知识点汇编一.集合与简易逻辑1.注意区分集合中元素的形式.如:{|lg }x y x =—函数的定义域;{|lg }y y x =—函数的值域; {(,)|lg }x y y x =—函数图象上的点集.2.集合的性质:①任何一个集合A 是它本身的子集,记为A A ⊆. ②空集是任何集合的子集,记为A ∅⊆.③空集是任何非空集合的真子集;注意:当A B ⊆,在讨论的时候不要遗忘了A =∅的情况 如:}012|{2=--=x ax x A ,如果A R +=∅ ,求a 的取值.(答:0a ≤)④含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为21n -;非空真子集个数为22n -.3.补集思想常运用于解决否定型或正面较复杂的有关问题。
如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围.(答:32(3,)-)4.原命题: p q ⇒;逆命题: q p ⇒;否命题: p q ⌝⇒⌝;逆否命题: q p ⌝⇒⌝;互为逆否的两个命题是等价的. 如:“βαsin sin ≠”是“βα≠”的 条件.(答:充分非必要条件)5.若p q ⇒且q p ≠>,则p 是q 的充分非必要条件(或q 是p 的必要非充分条件).6.注意命题p q ⇒的否定与它的否命题的区别: 命题p q ⇒的否定是p q ⇒⌝;否命题是p q ⌝⇒⌝.命题“p 或q ”的否定是“p ⌝且q ⌝”;“p 且q ”的否定是“p ⌝或q ⌝”. 如:“若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数”否定是“若a 和b 都是偶数,则b a +是奇数”.7.常见结论的否定形式1.①映射f :A B →是:⑴ “一对一或多对一”的对应;⑵集合A 中的元素必有象且A 中不 同元素在B 中可以有相同的象;集合B 中的元素不一定有原象(即象集B ⊆).②一一映射f :A B →: ⑴“一对一”的对应;⑵A 中不同元素的象必不同,B 中元素都有原象.2.函数f : A B →是特殊的映射.特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个.3.函数的三要素:定义域,值域,对应法则.研究函数的问题一定要注意定义域优先的原则.4.求定义域:使函数解析式有意义(如:分母0≠;偶次根式被开方数非负;对数真数0>,底数0>且1≠;零指数幂的底数0≠);实际问题有意义;5.求值域常用方法: ①配方法(二次函数类);②逆求法(反函数法);③换元法(特别注意新元的范围).④三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑤不等式法⑥单调性法;⑦数形结合:根据函数的几何意义,利用数形结合的方法来求值域; ⑧判别式法(慎用):⑨导数法(一般适用于高次多项式函数).6.求函数解析式的常用方法:⑴待定系数法(已知所求函数的类型); ⑵代换(配凑)法; ⑶方程的思想----对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程组。
7.函数的奇偶性和单调性⑴函数有奇偶性的必要条件是其定义域是关于原点对称的,确定奇偶性方法有定义法、图像法等;⑵若()f x 是偶函数,那么()()(||)f x f x f x =-=;定义域含零的奇函数必过原点((0)0f =);⑶判断函数奇偶性可用定义的等价形式:()()0f x f x ±-=或()()1(()0)f x f x f x -=±≠;注意:若判断较为复杂解析式函数的奇偶性,先化简再判断;既奇又偶的函数有无数个(如()0f x =定义域关于原点对称即可).⑸奇函数在对称的单调区间内有相同单调性;偶函数在对称的单调区间内有相反单调性; ⑹确定函数单调性的方法有定义法、导数法、图像法和特值法(用于小题)等. ⑺复合函数单调性由“同增异减”判定. (提醒:求单调区间时注意定义域) 8.函数图象的几种常见变换⑴平移变换:左右平移---“左加右减”(注意是针对x 而言); 上下平移---“上加下减”(注意是针对()f x 而言). ⑵翻折变换:()|()|f x f x →;()(||)f x f x →. ⑶对称变换:①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上. ②证明图像1C 与2C 的对称性,即证1C 上任意点关于对称中心(轴)的对称点仍在2C 上,反之亦然.③函数()y f x =与()y f x =-的图像关于直线0x =(y 轴)对称;函数()y f x =与函数 ()y f x =-的图像关于直线0y =(x 轴)对称;④若函数()y f x =对x R ∈时,()()f a x f a x +=-或()(2)f x f a x =-恒成立,则()y f x =图像关于直线x a =对称;9.函数的周期性:⑴若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 的周期为2||a ;⑵若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 的周期为4||a ; 10.对数:⑴log log n n a a b b =(0,1,0,)a a b n R +>≠>∈;⑵对数恒等式log (0,1,0)a N a N a a N =>≠>; ⑶log ()log log ;log log log ;log log n a a a aa a a a M NM N M N M N M n M ⋅=+=-=;1log log a a nM ;⑷对数换底公式log log log b b a N aN =(0,1,0,1)a a b b >≠>≠;(以上120,0,0,1,0,1,0,1,,,0n M N a a b b c c a a a >>>≠>≠>≠> ) 11.()a f x ≥恒成立[()]a f x ⇔≥最大值, ()a f x ≤恒成立[()]a f x ⇔≤最小值.12.恒成立问题的处理方法:⑴分离参数法(最值法); ⑵转化为一元二次方程根的分布问题; 13.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;14.二次函数解析式的三种形式: ①一般式:2()(0)f x ax bx c a =++≠;②顶点式:2()()(0)f x a x h k a =-+≠; ③零点式:12()()()(0)f x a x x x x a =--≠.15.一元二次方程实根分布:先画图再研究0∆>、轴与区间关系、区间端点函数值符号; 16. 函数(0,0)bx y ax a b =+>>:增区间为(,)-∞+∞,减区间为[-.如:函数12()ax x f x ++=在区间(2,)-+∞上为增函数,实数a 的取值范围是_____(答:12(,)+∞).三.数列1.由n S 求n a ,1*1(1)(2,)n nn S n a S S n n N -=⎧⎪=⎨-≥∈⎪⎩ 注意验证1a 是否包含在后面n a 的公式中,若不符合要单独列出.如:数列{}n a 满足111534,n n n a S S a ++=+=,求n a (答:{14(1)34(2)n n n a n -==⋅≥). 2.等差数列(1)定义:成等差数列}{)2(1n n n a n d a a ⇔≥=--(2)通项公式:B An d n a a n +=-+=)1(1 推广:d m n a a m n )(-+= (3)前n 项和公式:Bn An d n n na n a a S n n +=-+=⋅+=2112)1(2 等差数列1{}n n n a a a d -⇔-=(d 为常数)112(2,*)n n n a a a n n N +-⇔=+≥∈ 21122(,)(,)n n dda anb a d b a d S An Bn A B a ⇔=+==-⇔=+==-;3.等差数列的性质: ①()n m a a n m d =+-,m n a a m nd --=;②m n l k m n l k a a a a +=+⇒+=+(反之不一定成立);当2m n p +=时,有2m n p a a a +=; ③等差数列的“间隔相等的连续等长片断和序列”即 232,,,m m m m m S S S S S -- 仍是等差数列;④首项为正(或为负)的递减(或递增)的等差数列前n 项和的最大(或最小)问题,转化为解不等式 100n n a a +≥⎧⎨≤⎩(或100n n a a +≤⎧⎨≥⎩).也可用2n S An Bn =+的二次函数关系来分析.4.等比数列(1)定义:成等比数列}{)0,0,2(1n n n na q a n q a a ⇔≠≠≥=- (2)通项公式:11-=n n q a a (3)前n 项和⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n nn等比数列121111{}(0)(2,*)n nn n n n n n a a a q q a a a n n N a a q +--+⇔=≠⇔=≥∈⇔=.5.等比数列的性质① 若{}n a 、{}n b 是等比数列,则{}n ka 、{}n n a b 等也是等比数列; ② 111111(1)1111(1)(1)(1)(1)n n n n q q a a a a a q q q q na q na q S q q q ------==⎧⎧⎪⎪==⎨⎨-+≠=≠⎪⎪⎩⎩③ m n l k m n l k a a a a +=+⇒=(反之不一定成立);④ 等比数列中232,,,m m m m m S S S S S -- (注:各项均不为0)仍是等比数列. 7.数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式.⑵已知n S (即12()n a a a f n +++= )求n a 用作差法:11,(1),(2)n nn S n a S S n -=⎧=⎨-≥⎩.⑶已知12()n a a a f n ⋅⋅⋅= 求n a 用作商法:()(1)(1),(1),(2)n f n f n f n a n -=⎧⎪=⎨≥⎪⎩.⑷若1()n n a a f n +-=求n a 用迭加法. ⑸已知1()n na af n +=,求n a 用迭乘法.8.数列求和的方法:①公式法:等差数列,等比数列求和公式;②分组求和法;③倒序相加;④错位相减; ⑤分裂通项法.公式:12123(1)n n n ++++=+ ; 常见裂项公式111(1)1n n nn ++=-;9.“分期付款”、“森林木材”型应用问题⑴这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”. ⑵利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金p 元,每期利率为r ,则n 期后本利和为:(1)2(1)(12)(1)()n n n S p r p r p nr p n r +=+++++=+(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分n 期还清.如果每期利率为r (按复利),那么每期等额还款x 元应满足:12(1)(1)(1)(1)n n n p r x r x r x r x --+=+++++++ (等比数列问题). 四.三角函数1.α终边与θ终边相同2()k k Z αθπ⇔=+∈;α终边与θ终边共线()k k Z αθπ⇔=+∈;α终边与θ终边关于x 轴对称()k k Z αθπ⇔=-+∈;α终边与θ终边关于y 轴对称2()k k Z απθπ⇔=-+∈;α终边与θ终边关于原点对称2()k k Z απθπ⇔=++∈; α终边与θ终边关于角β终边对称22()k k Z αβθπ⇔=-+∈.2.弧长公式:||l r θ=;扇形面积公式:21122||S lr r θ==扇形;1弧度(1rad )≈57.3︒.3.三角函数符号(“正号”)规律记忆口诀:“一全二正弦,三切四余弦”.4. 对于诱导公式,可用“奇变偶不变,符号看象限”概括;(注意:公式中始终视...α.为锐角...).5. 角的变换:已知角与特殊角、已知角与目标角、已知角 与其倍角或半角、两角与其和差角等变换.如:()ααββ=+-;2()()ααβαβ=++-;2()()αβαβα=+--;22αβαβ++=⋅;222()()αββααβ+=---等;“1”的变换:221sin cos tan cot 2sin30tan 45x x x x =+=⋅=︒=︒ 6.辅助角公式:sin cos )a x b x x ϕ++其中tan ba ϕ=);7.降幂公式22cos 1sin 2αα-=;2cos α=1cos 22α+;8. 熟知正弦、余弦、正切的和、差、倍公式,正、余弦定理,处理三角形内的三角函数问题勿忘三内角和等于180︒,一般用正、余弦定理实施边角互化; 正弦定理:sin sin sin 2a b c ABCR ===;余弦定理:22222222()222cos ,cos 1b c ab c abcbca b c bc A A +-+-=+-==-;面积公式:124sin abc RS ab C ∆==;10.ABC ∆中,易得:A B C π++=,①sin sin()A B C =+,cos cos()A B C =-+,tan tan()A B C =-+. ②22sincosA B C +=,22cossinA B C +=.③sin sin a b A B A B >⇔>⇔>11.角的范围:异面直线所成角2(0,]π;直线与平面所成角2[0,]π;二面角和两向量的夹角[0,]π;直线的倾斜角[0,)π; 1l 与2l 的夹角2(0,]π.12.五.平面向量1.设11(,)a x y = ,22(,)b x y =.(1)1221//0a b x y x y ⇔-= ; (2)121200a b a b x x y y ⊥⇔⋅=⇔+=.2.平面向量基本定理:如果1e 和2e是同一平面内的两个不共线的向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .3.设11(,)a x y = ,22(,)b x y = ,则1212||||cos a b a b x x y y θ⋅==+;其几何意义是a b ⋅ 等于a 的长度与b 在a 的方向上的投影的乘积;a 在b的方向上的投影||cos ||a b a b θ⋅=4.三点A 、B 、C 共线AB ⇔ 与AC 共线;与AB 共线的单位向量||ABAB ±.5.平面向量数量积性质:设11(,)a x y = ,22(,)b x y = ,则cos ||||a ba b θ⋅==;注意:,a b 〈〉 为锐角0a b ⇔⋅> ,,a b 不同向; ,a b 〈〉为钝角0a b ⇔⋅< ,,a b 不反向.6. 平面向量数量积的坐标表示: ⑴若11(,)a x y = ,22(,)b x y = ,则1212a b x x y y ⋅=+;||AB⑵若(,)a x y = ,则222a a a x y =⋅=+ .7. 1P ,P ,2P 三点共线⇔存在实数λ、μ使得12OP OP OP λμ=+且1λμ+=.8. 13()0PG PA PB PC GA GB GC G =++⇔++=⇔为ABC ∆的重心;9. PA PB PB PC PA PC P ⋅=⋅=⋅⇔为ABC ∆的垂心;||||||0BC PA CA PB AB PC P ++=⇔为ABC ∆的内心; ||||()(0)AB ACAB AC λλ+≠ 所在直线过ABC ∆内心.六.不等式1.掌握课本上的几个不等式性质,注意使用条件,另外需要特别注意: ①若0ab >,b a >,则11ab>.即不等式两边同号时,不等式两边取倒数,不等号方向要改变.②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论.2.掌握几类不等式(一元一次、二次、绝对值不等式、简单的指数、对数不等式)的解法,尤其注意用分类讨论的思想解含参数的不等式;勿忘数轴标根法,零点分区间法.3.掌握重要不等式,(1)若0,>ba ,2211a b a b++≥(当且仅当b a =时取等号)使用条件:“一正二定三相等 ” 常用的方法为:拆、凑、平方等; (2)公式注意变形如:22222()a b a b ++≥, 22()a b ab +≤;4. 证明不等式常用方法:⑴比较法:作差比较:0A B A B -≤⇔≤.注意:若两个正数作差比较有困 难,可以通过它们的平方差来比较大小;⑵综合法:由因导果;⑶分析法:执果索因.基本步骤:要证… 需证…,只需证…; ⑷反证法:正难则反;⑸放缩法:将不等式一侧适当的放大或缩小以达证题目的. 放缩法的方法有:①添加或舍去一些项,||a;n >.②将分子或分母放大(或缩小) ⑹换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元、代数换元.如:知222x y a +=,可设cos ,sin x a y a θθ==;知221x y +≤,可设cos x r θ=,sin y r θ=(01r ≤≤);知221x y ab+=,可设c o s,s i n x a y b θθ==;已知22221x y ab-=,可设s e c ,t a n x a y b θθ==.⑺最值法,如:()a f x >最大值,则()a f x >恒成立.()a f x <最小值,则()a f x <恒成立.七.直线和圆的方程1.直线的倾斜角α的范围是[0,π);2.直线的倾斜角与斜率的变化关系2tan ()k παα=≠(如右图):3.直线方程五种形式:⑴点斜式:已知直线过点00(,)x y 斜率为k 方程为00()y y k x x -=-,它不包括垂直于x 轴的直线.⑵斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线. ⑶两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为112121y y x x y y x x ----=,它不包括垂直于坐标轴的直线. ⑷截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1xy ab+=,它不包括垂直于坐标轴的直线和过原点的直线.⑸一般式:任何直线均可写成0Ax By C ++=(,A B 不同时为0)的形式.提醒:⑴直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?)⑵直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为1-或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点.⑶截距不是距离,截距相等时不要忘了过原点的特殊情形.4.直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系: ⑴平行⇔12210A B A B -=(斜率)且12210B C B C -≠(在y 轴上截距); ⑵相交⇔12210A B A B -≠;(3)重合⇔12210A B A B -=且12210B C B C -=.5.直线系方程:①过两直线1l :1110A x B y C ++=,2l :2220A x B y C ++=.交点的直线系方程可设为111222()0A x B y C A x B y C λ+++++=;②与直线:0l Ax By C ++=平行的直线系方程可设为0()Ax By m m c ++=≠;③与直线:0l Ax By C ++=垂直的直线系方程可设为0Bx Ay n -+=.6.夹角公式:1l 与2l 的夹角是指不大于直角的角2,(0,πθθ∈且2112121tan ||(1)k k k k k k θ-+=≠-.7.点00(,)P x y 到直线0Ax By C ++=的距离公式d =两条平行线10Ax By C ++=与20Ax By C++=的距离是d .8.设三角形ABC ∆三顶点11(,)A x y ,22(,)B x y ,33(,)C x y ,则重心123123(,33x x x y y y G ++++;9. ⑴圆的标准方程:222()()x a y b r -+-=.⑵圆的一般方程:22220(40)x y Dx Ey F D E F ++++=+->.特别提醒:只有当2240D E F +->时,方程220x y Dx Ey F ++++=才表示圆心为22(,)DE --,(二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆0A C ⇔=≠,且220,40B D E AF =+->).10. 点和圆的位置关系的判断通常用几何法(计算圆心到直线距离).点00(,)P x y 及圆的方程 222()()x a y b r -+-=.①22200()()x a y b r -+->⇔点P 在圆外;②22200()()x a y b r -+-<⇔点P 在圆内;③22200()()x a y b r -+-=⇔点P 在圆上. 11. 直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①d r >⇔相离 ②d r =⇔相切 ③d r <⇔相交12. 圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系.设两圆的圆心距为d ,两圆的半径分别为,r R :d R r >+⇔两圆相离;d R r =+⇔两圆相外切; ||R r d R r -<<+⇔两圆相交;||d R r =-⇔两圆相内切; ||d R r <-⇔两圆内含;0d =⇔两圆同心.13. 过圆1C :221110x y D x E y F ++++=,2C :222220x y D x E y F ++++=交点的圆(相交弦)系方程为2222111222()()0x y D x E y F x y D x E y F λ+++++++++=.1λ=-时为两圆相交弦所在直线方程.14. 解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等). 八.圆锥曲线方程 一 、椭圆定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。