高三数学知识点汇编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学知识点汇编

一.集合与简易逻辑

1.注意区分集合中元素的形式.如:{|lg }x y x =—函数的定义域;{|lg }y y x =—函数的值域; {(,)|lg }x y y x =—函数图象上的点集.

2.集合的性质:

①任何一个集合A 是它本身的子集,记为A A ⊆. ②空集是任何集合的子集,记为A ∅⊆.

③空集是任何非空集合的真子集;注意:当A B ⊆,在讨论的时候不要遗忘了A =∅的情况 如:}012|{2=--=x ax x A ,如果A R +=∅ ,求a 的取值.(答:0a ≤)

④含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为21n -;非空真子集个数为22n -.

3.补集思想常运用于解决否定型或正面较复杂的有关问题。

如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围.(答:3

2(3,)-)

4.原命题: p q ⇒;逆命题: q p ⇒;否命题: p q ⌝⇒⌝;逆否命题: q p ⌝⇒⌝;互为逆否的两个命题是等价的. 如:“βαsin sin ≠”是“βα≠”的 条件.(答:充分非必要条件)

5.若p q ⇒且q p ≠>,则p 是q 的充分非必要条件(或q 是p 的必要非充分条件).

6.注意命题p q ⇒的否定与它的否命题的区别: 命题p q ⇒的否定是p q ⇒⌝;否命题是p q ⌝⇒⌝.命题“p 或q ”的否定是“p ⌝且q ⌝”;“p 且q ”的否定是“p ⌝或q ⌝”. 如:“若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数”否定是“若a 和b 都是偶数,则b a +是奇数”.

7.常见结论的否定形式

1.①映射f :A B →是:⑴ “一对一或多对一”的对应;⑵集合A 中的元素必有象且A 中不 同元素在B 中可以有相同的象;集合B 中的元素不一定有原象(即象集B ⊆).

②一一映射f :A B →: ⑴“一对一”的对应;⑵A 中不同元素的象必不同,B 中元素都有原象.

2.函数f : A B →是特殊的映射.特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个.

3.函数的三要素:定义域,值域,对应法则.研究函数的问题一定要注意定义域优先的原则.

4.求定义域:使函数解析式有意义(如:分母0≠;偶次根式被开方数非负;对数真数0>,底数0>且1≠;零指数幂的底数0≠);实际问题有意义;

5.求值域常用方法: ①配方法(二次函数类);②逆求法(反函数法);③换元法(特别注意新元的范围).

④三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

⑤不等式法⑥单调性法;⑦数形结合:根据函数的几何意义,利用数形结合的方法来求值域; ⑧判别式法(慎用):⑨导数法(一般适用于高次多项式函数).

6.求函数解析式的常用方法:⑴待定系数法(已知所求函数的类型); ⑵代换(配凑)法; ⑶方程的思想----对已知等式进行赋值,从而得到关于()f x 及另外一个函数的方程组。

7.函数的奇偶性和单调性

⑴函数有奇偶性的必要条件是其定义域是关于原点对称的,确定奇偶性方法有定义法、图像法等;

⑵若()f x 是偶函数,那么()()(||)f x f x f x =-=;

定义域含零的奇函数必过原点((0)0f =);

⑶判断函数奇偶性可用定义的等价形式:()()0f x f x ±-=或

()()

1(()0)f x f x f x -=±≠;

注意:若判断较为复杂解析式函数的奇偶性,先化简再判断;既奇又偶的函数有无数个

(如()0f x =定义域关于原点对称即可).

⑸奇函数在对称的单调区间内有相同单调性;偶函数在对称的单调区间内有相反单调性; ⑹确定函数单调性的方法有定义法、导数法、图像法和特值法(用于小题)等. ⑺复合函数单调性由“同增异减”判定. (提醒:求单调区间时注意定义域) 8.函数图象的几种常见变换

⑴平移变换:左右平移---“左加右减”(注意是针对x 而言); 上下平移---“上加下减”(注意是针对()f x 而言). ⑵翻折变换:()|()|f x f x →;()(||)f x f x →. ⑶对称变换:

①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上. ②证明图像1C 与2C 的对称性,即证1C 上任意点关于对称中心(轴)的对称点仍在2C 上,反之亦然.

③函数()y f x =与()y f x =-的图像关于直线0x =(y 轴)对称;函数()y f x =与函数 ()y f x =-的图像关于直线0y =(x 轴)对称;

④若函数()y f x =对x R ∈时,()()f a x f a x +=-或()(2)f x f a x =-恒成立,则()y f x =图像关于直线x a =对称;

9.函数的周期性:

⑴若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 的周期为2||a ;

⑵若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 的周期为4||a ; 10.对数:

⑴log log n n a a b b =(0,1,0,)a a b n R +>≠>∈;⑵对数恒等式log (0,1,0)a N a N a a N =>≠>; ⑶log ()log log ;log log log ;log log n a a a a

a a a a M N

M N M N M N M n M ⋅=+=-=;

1

log log a a n

M ;

⑷对数换底公式log log log b b a N a

N =

(0,1,0,1)a a b b >≠>≠;

(以上120,0,0,1,0,1,0,1,,,0n M N a a b b c c a a a >>>≠>≠>≠> ) 11.()a f x ≥恒成立[()]a f x ⇔≥最大值, ()a f x ≤恒成立[()]a f x ⇔≤最小值.

12.恒成立问题的处理方法:⑴分离参数法(最值法); ⑵转化为一元二次方程根的分布问题; 13.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:

一看开口方向;二看对称轴与所给区间的相对位置关系;

14.二次函数解析式的三种形式: ①一般式:2()(0)f x ax bx c a =++≠;②顶点式:

相关文档
最新文档