硝酸的物理性质

硝酸的物理性质
硝酸的物理性质

硝酸的物理性质

一物理性质:

1. 纯硝酸是无色油状液体, 开盖时有烟雾, 挥发性酸[沸点低→易挥发→酸雾]

2. M.p. -42℃, b.p. 83℃. 密度: 1.5 g/cm3, 与水任意比互溶.

3. 常见硝酸a%= 63%-69.2% c= 14-16mol/L. 呈棕色(分析原因) 发烟硝酸.

二化学性质:

1. 强腐蚀性: 能严重损伤金属、橡胶和肌肤, 因此不得用胶塞试剂瓶盛放硝酸.

2. 不稳定性: 光或热

4HNO3 ===== 4NO2 + O2 + 2H2O

所以, 硝酸要避光保存.

3. 强酸性: 在水溶液里完全电离, 具有酸的通性.

4. 强氧化性: 浓度越大, 氧化性越强.

氧化性:王水HNO3+HCI>浓HNO3>稀HNO3。

a) 与金属反应:

Cu + 4HNO3(浓) == Cu(NO3)2 + 2NO2 ↑+ 2H2O

3Cu + 8HNO3(稀) == 3Cu(NO3)2 + 2NO↑ + 4H2O

Ag + 2HNO3(浓) == AgNO3 + NO2 ↑+H2O

3Ag + 4HNO3(稀) == 3AgNO3 + NO ↑+ 2H2O

能氧化活泼金属,且无H2放出

硝酸能与除金、铂、钛等外的大多数金属反应.

通常浓硝酸与金属反应时生成NO2, 稀硝酸(<6mol/L)则生成NO.

钝化反应: 常温下浓硝酸可使铁、铝、铬(都可呈+3价金属化合物)表面形成具有保护性的氧化膜而钝化. 而稀硝酸则与它们反应.

Fe + 4HNO3(稀) == Fe(NO3)3 + NO + 2H2O

王水: 1体积浓硝酸与3体积浓盐酸的混合溶液.可溶解金、铂.

Au + HNO3 + 4HCl == HAuCl4 + NO + 2H2O

M + HNO3(12∽14mol/L) ↗NO2为主.

M + HNO3(6∽8mol/L) ↗NO为主

M + HNO3(约2mol/L)↗N2O为主, M较活泼.

M + HNO3(<2mol/L) ↗NH4+为主(M活泼)

M + HNO3还可能有H2产生(M活泼)

b) 与非金属反应: 浓硝酸; 需要加热.

C + 4HNO3(浓) == CO2 ↑+ 4NO2↑ + 2H2O (实验演示)

H2S + 8HNO3(浓) == H2SO4 + 8NO2↑ + 4H2O

3H2S + 2HNO3(稀) == 3S + 2NO + 4H2O (冷)

SO2 + 2HNO3(浓) == H2SO4 + 2NO2

3SO2 + 2HNO3(稀) + 2H2O == 3H2SO4 + 2NO

H2S、SO2以及S2-、SO32-都不能与硝酸共存.

c) 与有机物反应: 生成硝基化合物和硝酸酯.

三硝酸的制法:

1. 实验室制法: 微热

NaNO3(s) + H2SO4(浓) == NaHSO4 + HNO3

2. 氨氧化法制硝酸:

4NH3 + 5O2 == 4NO + 6H2O (氧化炉中)

2NO + O2 == 2NO2 (冷却器中)

3NO2 + H2O = 2HNO3 + NO (吸收塔)

4NO2 + O2 + 2H2O == 4HNO3 (吸收塔)

过程:

(1)先将液氨蒸发, 再将氨气与过量空气混合后通入装有铂、铑合金网的氧化炉中, 在800℃左右氨很快被氧化为NO. 该反应放热可使铂铑合金网(催化剂)保持赤热状态.

(2)由氧化炉里导出的NO和空气混合气在冷凝器中冷却, NO与O2反应生成NO2.

(3)再将NO2与空气的混合气通入吸收塔. 由塔顶喷淋水, 水流在塔内填充物迂回流下. 塔底导入的NO2和空气的混合气, 它们在填充物上迂回向上. 这样气流与液流相逆而行使接触面增大, 便于气体吸收. 从塔底流出的硝酸含量仅达50%, 不能直接用于军工、染料等工业, 必须将其制成98%以上的浓硝酸. 浓缩的方法主要是将稀硝酸与浓硫酸或硝酸镁混合后, 在较低温度下蒸馏而得到浓硝酸, 浓硫酸或硝酸镁在处理后再用.

尾气处理: 烧碱吸收氮的氧化物, 使其转化为有用的亚硝酸盐(有毒)即”工业盐”.

NO + NO2 + 2NaOH == 2NaNO2 + H2O

流体的物理性质

流体的物理性质 流体流动与输送过程中,流体的状态与规律都与流体的物理性质有关。因此,首先要了解流体的常见物理和化学性质,包括密度、压力、黏度、挥发性、燃烧爆炸极限、闪点、最小引燃能量、燃烧热等。 一、密度与相对密度 密度是用夹比较相同体积不同物质的质量的一个非常重要的物理量,对化工生产的操作、控制、计算等,特别是对质量与体积的换算,具有十分重要的意义。 流体的密度是指单位体积的流体所具有的质量,用符号ρ表示,在国际单位制中,其单位是ke/m3。 式中m——流体的质量,kg; y——流体的体积,m3。 任何流体的密度都与温度和压力有关,但压力的变化对液体密度的影响很小(压力极高时除外),故称液体是不可压缩的流体。工程上,常忽略压力对液体的影响,认为液体的密度只是温度的函数。例如,纯水在277K时的密度为1000kg/m3,在293K时的密度为998.2kg /m3,在373时的密度为958.4kg/ms。因此,在检索和使用密度时,需要知道液体的温度。对大多数液体而言,温度升高,其密度下降。

液体纯净物的密度通常可以从《物理化学手册》或《化学工程手册》等查取。液体?昆合物的密度通常由实验测定,例如比重瓶法、韦氏天平法及波美度比重计法等。其中,前两者用于精确测量,多用于实验室中,后者用于快速测量,在工业上广泛使用。 在工程计算中,当混合前后的体积变化不大时,液体混合物的密度也可由下式计算,即: 式中ρ—液体混合物的密度,kg/ms; ρ1、ρ2、ρi、ρn——构成混合物的各纯组分的密度,ks/m3; w1、w2、wi、wn——混合物中各组分的质量分数。 气体具有明显的可压缩性及热膨胀性,当温度、压力发生变化时,其密度将发生较大的变化。常见气体的密度也可从《物理化学手册》或《化学工程手册》中查取。在工程计算中,如查压力不太高、温度不太低,均可把气体(或气体混合物)视作理想气体,并由理想气体状态方程计算其密度。 由理想气体状态方程式 式中ρ—气体在温度丁、压力ρ的条件下的密度,kg/m3; V——气体的体积,ITl3; 户——气体的压力,kPa; T一—气体的温度,K; m--气体的质量,kg;

10-2常见的酸物理性质及特性

10.1常见的酸练习题(一) 一、选择题: 1、酸溶液能使紫色石蕊溶液变红,是因为酸溶液中含有------------------------- () A、氢分子 B、氢离子 C、酸根离子 D、水分子 2、硫酸是一种常用的酸,在工农业生产上有广泛的应用,下列关于硫酸的用途不正确的是------------------------------------------------------------------------------------------()A、可生产农药、化肥B、用来精炼石油 C、存在于胃液中,帮助消化 D、用于车用电池 3、下列能证明浓硫酸具有强烈腐蚀性的是--------------------------------------------() A、浓硫酸慢慢的倒入水中产生大量的热 B、用浓硫酸可以干燥气体 C、浓硫酸敞口置于空气中质量增加 D、用小木棍蘸取少量浓硫酸,小木棍变黑 4、下列属于物质的物理性质的是--------------------------------------------------------() A、CO的还原性 B、浓盐酸的挥发性 C、浓硫酸使纸、木柴碳化 D、碳酸的不稳定性 5、下列各组物质属于同种物质的是------------------------------------------------------() A、干冰和水 B、盐酸和硫酸 C、水和过氧化氢 D、盐酸和氯化氢气体的水溶液 6、下列药品不需要密封保存的是---------------------------------------------------------() A、浓盐酸 B、浓硫酸 C、白磷 D、石灰石 7、日常生活中接触到的下列物质中,不含酸的是------------------------------------() A、汽水 B、食醋 C、食盐 D、山楂 8、要确定一瓶标签残缺的盐酸是否是浓盐酸,你认为应选用下列方法中的---() A、讨论 B、调查 C、观察和实验 D、上网 9、小东在自制酸碱指示剂的探究活动中记录如下,由下表判断,不能作为指示剂的是 10.下列物质露置在空气中质量增加的是---------------------------------() A、浓盐酸 B、浓硫酸 C、食盐水 D、石灰石 11.取四朵用石蕊溶液染成紫色的纸花,分别喷洒下列液体,能观察到纸花 变红的是-----------------------------------------------------------------------() A、氢氧化钠溶液 B、稀盐酸 C、蒸馏水 D、食盐水 12 某溶液能是使无色酚酞试液变红色,紫色石蕊试液遇到该溶液的颜色变化 应该是-------------------------------------------------------------------------------( ) A、变红色 B、变蓝色 C、变无色 D、不变色 13 向某溶液中滴入无色酚酞试液后不变色,向该溶液中滴入紫色石蕊试液,则() A、一定显红色 B、可能仍为紫色,也可能显红色 C、可能显蓝色 D、一定显无色 14、实验常用浓硫酸作某些气体的干燥剂,是因为浓硫酸有---------- () A、酸性 B、吸水性 C、氧化性 D、腐蚀性 二、填空题: 1、有Na、S、H、O四种元素,按要求各写出一种物质的化学式: (1)金属氧化物(2)非金属氧化物 (3)酸(4)碱(5)盐 2、浓盐酸的质量为A,敞口放置一段时间后,测得其质量为B,则A B (填“>”、“<”或“=”,下同);浓硫酸的质量分数为A,敞口放置一段时间后的质量分数为B,则A B;质量为A的锌片插到稀硫酸中,一 段时间后取出锌片,测得其质量为B,则A B。 3、打开盛有浓盐酸的试剂瓶盖后,在其瓶口会出现,说明盐酸具有 4、稀释浓硫酸时,要先在烧杯里放,后放。 5、酸碱指示剂跟酸或碱溶液作用显示不同的颜色,填写下表

食品物性学

1.名词解释:食品物性学 2.食品物性学研究的主要内容。 3.食品物性学要解决的主要问题。 1.食品胶体系统的分类有哪些? 2.非牛顿流体的分类有哪些? 3.假塑性液体的流动特征及特性曲线。 4.黏弹性体的特点有哪些? 应用质地学基础知识写出对冰激凌、羊肉、苹果、薯片的感官评价结果。 如何正确对食品的质地进行分析?(对食品质地的评价方法有感官评价法和仪器评价法,分别介绍其方法及特点,能列举3-4种测定仪器。) 1.影响水分子团构造的因素有哪些?功能性水具有哪些特征? 2.为什么陈酒的口感好? 3. 影响液体黏度的因素有哪些? 4. 测定泡沫表面张力的方法有哪些? 1.固态与半固态食品按组织形态可分为哪几种?每种分别列举3-4种食物,及其常用的物性测定仪器或指标。 2.烹饪时,蔬菜经加热、煎炒等处理,有的还能保持脆性,有的则很容易软化,试分析原因。 3.膨化干燥法有哪些膨化设备,膨化原理是什么,可用到哪些食品中? 4.粉体食品摩擦角指的是什么,有哪几种? 食品颜色的测定方法和仪器有哪些? 举例说明食品光学性质有哪些应用? 举例说明食品热物性在食品生产中的应用研究食品电特性的意义有哪些? 利用食品电特性加工的课题有哪些? 举例说明食品电物性在食品加工生产中的应用。

1、食品物性学:是以食品(包括食品原料》为研充对象,研究其物理性质 和工程特性的一门科学。 2、内聚能:定义为1mol的聚集体汽化时所吸收的能量。 3、结品态:分子(或原子、离子)间的几何排列具有三维远程有序。 4、液品态:分子问儿何排列相当有序,接近于品态分子排列,但是具有一令 定的流动性(如动植物细胞膜和一定条件下的脂助). 5、破璃态:分子间的几何排列只有近程有序,而远程无序,即与液态分子 排列相似. 6、粒子故胶:具有相互吸引趋势的离子随机发生能撞会形成粒子团,当这 个粒子国再与另外的粒子国发生凝握时又会形成更大的较子团,最后形成 一定的结构形态。 7、聚合物磁胶:是由细而长的线形而分子,通过共价健,氨健、盐桥、= 依健、微品区域、缠绕等方式形成交联点。构成一定的网格结构形态。 8、热性:是表现流体流动性的指标,阻碍流体流动的性质。 9、牛顿流休,流功状态方程符合牛顿定律的流体统称为牛模流体;非牛根 流体,流动状态方程不符合牛领定律,且流体的黏度不是常数,它随剪切 连丰的变化而变化。这种流体称为非牛顿流体。 10、胀型性流体:在非牛顿流动状态方程式中,如果1

酸及其性质教案

密封线 第一节酸及其性质(第一课时) 一教学目标: 知识与技能:1、记住浓盐酸、浓硫酸的物理性质及特性; 2、掌握盐酸化学性质; 3会熟练书写酸的化学性质中的有关化学方程式, 记住相应的反应现象 过程与方法:运用实验的方法获取信息,运用比较,概括等方法对获取的信息进行加工,进一步体验科学探究的过程情感态度与价值观:增强对化学现象的探究欲,培养善于合作,勤于思考的科学精神 二教学重难点及突破: 教学重点:1、盐酸、硫酸的物理性质 2、盐酸的化学性质 教学难点:化学方程式的书写、记忆 重、难点突破:通过演示、观察、对比的方式来理解和掌握盐酸性质,对于化学性质中出现的化学方程式采用找规 律、多写、多练的方法来记忆。 三教学准备: 实验仪器和药品: 仪器:试管、试管

药品:一瓶浓盐酸、一瓶浓硫酸、稀盐酸、稀硫酸、镁条、 生锈铁钉、碳酸钠、、氯化铜溶液、硝酸银溶液、氯化钡溶 液紫色石蕊试液,无色酚酞试液 多媒体课件 四教法设计:实验探究,比较,概括的方法 五教学过程: 【情境导入】:多媒体展示一组诱人的水果,引导学生说出看到它们的即时感觉--酸 【设问】:水果为什么酸→什么是酸→酸有哪些性质→课题酸及其性质 【探究新知】:多媒体展示几种生活中常见的酸,激发学生的好奇心什么是酸引出酸的概念。 【活动天地】: 【过渡】:酸是广泛存在而又非常重要的物质,今天我们来认识两种在化学世界里常见的酸---盐酸硫酸。 【展示】:多媒体展示浓盐酸和浓硫酸试剂瓶标签上的内容 【交流】:学生交流讨论得到的信息。 【学生活动】:1观察浓盐酸,浓硫酸的颜色状态, 2打开瓶塞观察现象 3 闻气味,

石油物性

石油物性第一次作业 1.雾霾产生的基本体制: 雾霾,从表面的层次上不能看出,可以细分为雾和霾两部分。雾霾其实就是一种特殊的气溶胶。气溶胶(aerosol)是指由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系。雾霾就是空气中的灰尘、硫酸、硝酸或者是有机碳氢化合物颗粒物分散悬浮在液态水或冰晶组成的雾中,这样就组成了所谓的气溶胶系统。而且硫酸硝酸等这些粒子有一部分就是我们所相关的气煤柴油燃烧所生成的,所以治理好雾霾也与我们的产品油的品质有关。 SO2、NOx以及可吸入颗粒物这三项是雾霾主要组成,前两者为气态污染物,最后一项颗粒物才是造成我们看似灰蒙蒙的霾的主要原因所在。所以,治理点也应该放在治理有毒细颗粒物上,比如说减少工业排放的废气,北方冬天燃煤,汽车尾气等要加以控制,因为这些都会产生大量的有毒颗粒物。 2.消除雾霾的有效方法: 从雾霾的理化特性来看,消除雾霾最有效的方法就是破坏这层气溶胶。气溶胶的消除,主要靠大气的降水、小粒子间的碰并、凝聚、聚合和沉降过程。这是气溶胶消除的基本原理,应用到实际情况下,如果这种粗分散体质在一个巨大的引力场下,溶胶就会自己进行破坏。接下来一些是我的猜想,我觉得形成雾霾的时候比一些小的固体颗粒堆积在一起更容易治理一些,因为形成的雾霾是一种气溶胶,我们只要破坏了溶胶就可以治理雾霾,破除溶胶的方法我所了解有加热或者加入带想反电荷的溶胶体,显然,加热空气的方法不是非常的现实,但是溶胶既然是带电的,那或许可以在一个外加电厂的条件下给它分离,但是电厂消耗的能耗又不敢估算。还有,一些空气净化器产品据说可以消除雾霾,高效的活性炭滤网结合长距离的气流喷射,然后在滤网内锁住空气污染物。这种方法显然是可行的,但是回归到这么大空间的大气,去哪里找一个如此大的滤网和气流呢。所以,归根结底,还是要从源头出发来治理,治理雾霾最主要的方法是减少排放。 与我们专业息息相关的就是。各种化石能源的大规模使用是造成雾霾天气的最主要原因。现在的发电技术还是依靠燃烧煤来发电,而实际上被燃烧的煤只有

苯的理化性质

苯的性质: 苯的分子式C6H6,分子量78,沸点为80.1℃,熔点为+5.5℃,闪点-10.11℃(闭杯) 自燃点562.22℃爆炸极限1.2 - 8.0 % 在常温下是一种无色、有芳香气味的透明液体,易挥发。苯比水密度低,相对密度0.8787g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯。苯能与水生成恒沸物,沸点为69.25℃,含苯91.2%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。苯的危害性及处理方法: 苯对中枢神经系统产生麻痹作用,引起急性中毒,有致癌可能性。重者会出现头痛、恶心、呕吐、神志模糊、知觉丧失、昏迷、抽搐等,严重者会因为中枢系统麻痹而死亡。少量苯也能使人产生睡意、头昏、心率加快、头痛、颤抖、意识混乱、神志不清等现象。吸入20000ppm的苯蒸气5-10分钟便会有致命危险。摄取:可引起急性中毒,麻痹中枢神经,需要充分漱口,喝水,尽快洗胃。 吸入:可导致呼吸困难。严重者可能导致呼吸及心跳停止。 皮肤:变干燥,脱屑,皴裂,有的可能发生过敏性湿疹。 眼睛:有刺激性,需用大量清水冲洗。 进入苯的环境中要带防毒面具或空气呼吸器以作防护处理。 灭火方法 燃烧性:易燃 灭火剂:泡沫、干粉、二氧化碳、砂土。用水灭火无效。 乙苯的性质: 分子式:C8H10 分子量:106.16 ,无色液体,有芳香气味。熔点(℃):-94.9 沸点(℃):136.2 ,相对密度(水=1):0.87 ,相对蒸气密度(空气= 1): 3.66 ,饱和蒸气压(kPa): 1.33(25.9℃) ,临界温度(℃):343.1 ,临界压力(MPa):3.70 ,闪点(℃):15 ,引燃温度(℃):432 ,爆炸上限%(V/V):6.7 ,爆炸下限%(V/V):1.0 。 主要用途:用于有机合成和用作溶剂,造苯乙烯的原料等。 健康危害:本品对皮肤、粘膜有较强刺激性,高浓度有麻醉作用。急性中毒:轻度中毒有头晕、头痛、恶心、呕吐、步态蹒跚、轻度意识障碍及眼和上呼吸道刺激症状。重者发生昏迷、抽搐、血压下降及呼吸循环衰竭。可有肝损害。直接吸入本品液体可致化学性肺炎和肺水肿。慢性影响:眼及上呼吸道刺激症状、神经衰弱综合征。平时接触可用水清洗,多喝纯牛奶。 危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。与氧化剂接触猛烈反应。流速过快,容易产生和积聚静电。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。

食品物性学

食品物理性质:以食品(食品原料)的物理性质为研究对象的科学。食品的物理性质:这是一门研究食品(食品原料)的物理性质的科学。8.7.8.7包括两个方面的研究:8.7.8.7 1.食品本身的理化特性分析8.7.8.7 2.人类感官生产的感官特性研究从加工的角度看,一次产品加工一次,例如用作食用油,糖,奶粉,面粉和其他食用油,糖,奶粉,水产品以及其他食用油,糖,奶粉,面粉和半成品,例如面团,面包,糕点,果汁等米粉和其他半成品以及面团,面包,蛋糕,果汁,米粉等制成品可以分为无机,有机和多孔结构。它们可以分为无机,有机和多孔结构。从食物形式上讲,它们可以分为液体,凝胶,细胞,纤维和多孔食物。食品的机械性能是指食品在力的作用下变形,振动,流动和破裂的规律,以及机械性能与感官评价之间的关系。1,食品的机械性能是指食品在力的作用下变形,振动,流动和破裂的规律,以及它们与感官评价之间的关系。8.5感觉评估的重要内容;8.5与食物的生化变化和变质密切相关;8.5与食品加工密切相关。食品的电性能主要是指食品及其原料的电和介电性能,以及其他电磁和物理性能。它主要是指食品及其原料的电和介电特性,以及其他电磁和物理特性。研究领域:1.食

品质量监测(无损检测)。2.电磁物理处理(静电场保存,微波加热,电渗脱水等)电磁物理处理(静电场保存,微波加热,电渗脱水等)3.食品的热特性为了改善商品化和保存和现代食品的循环功能,加热,冷却和冷冻已成为食品加工的最基本方法。为了改善现代食品的商品化,保存和流通功能,加热,冷却和冷冻已成为食品加工的最基本方法。8.7.8.7主要研究食品加工中的比热容,潜热,相变定律,传热定律和温度相关的热膨胀定律。主要研究对象是食品加工过程中的比热容,潜热,相变定律,传热定律和温度相关的热膨胀定律。目的是提高食品质量。食物的光学特性是指食物物质对光的吸收,反射和感觉响应。它是指光的吸收和反射以及食物物质的感官反应特性。8.7.8.7领域:(糖(a)(糖可用于通过光学特性(糖度计,酸度计等)确定食物成分);b)研究食物的颜色(判断新鲜度,成熟度,食品质量,cr-300色差很小,是对食品颜色的研究(判断食品的新鲜度,成熟度,食品质量等)结论食品物理性质的历史相对较短,研究对象很多,系统也很复杂。研究内容主要包括机械,光学,热学和电学性质,研究内容主要包括机械,光学,热学和电学性质第二章食品的机械基础食品的机械基础食品的

原油物性

重油是原油提取汽油、柴油后的剩余重质油,其特点是分子量大、粘度高。重油的比重一般在0.82~0.95,比热在10,000~11,000kcal/kg左右。其成分主要是炭水化点物素,另外含有部分的(约0.1~4%)的硫黄及微量的无机化合物。 因为原油是混合物,因各种物质含量不同那么他的燃烧值是有所不同的,也确定不了比热的。 原油的性质包含物理性质和化学性质两个方面。物理性质包括颜色、密度、粘度、凝固点、溶解性、发热量、荧光性、旋光性等;化学性质包括化学组成、组分组成和杂质含量等。 密度:原油相对密度一般在0.75~0.95之间,少数大于0.95或小于0.75,相对密度在0.9~1.0的称为重质原油,小于0.9的称为轻质原油。 粘度:原油粘度是指原油在流动时所引起的内部摩擦阻力,原油粘度大小取决于温度、压力、溶解气量及其化学组成。温度增高其粘度降低,压力增高其粘度增大,溶解气量增加其粘度降低,轻质油组分增加,粘度降低。原油粘度变化较大,一般在1~100mPa?s之间,粘度大的原油俗称稠油,稠油由于流动性差而开发难度增大。一般来说,粘度大的原油密度也较大。 凝固点:原油冷却到由液体变为固体时的温度称为凝固点。原油的凝固点大约在-50℃~35℃之间。凝固点的高低与石油中的组分含量有关,轻质组分含量高,凝固点低,重质组分含量高,尤其是石蜡含量高,凝固点就高。 含蜡量:含蜡量是指在常温常压条件下原油中所含石蜡和地蜡的百分比。石蜡是一种白色或淡黄色固体,由高级烷烃组成,熔点为37℃~76℃。石蜡在地下以胶体状溶于石油中,当压力和温度降低时,可从石油中析出。地层原油中的石蜡开始结晶析出的温度叫析蜡温度,含蜡量越高,析蜡温度越高。 析蜡温度高,油井容易结蜡,对油井管理不利。含硫量是指原油中所含硫(硫化物或单质硫分)的百分数。原油中含硫量较小,一般小于1%,但对原油性质的影响很大,对管线有腐蚀作用,对人体健康有害。根据硫含量不同,可以分为低硫或含硫石油。 含胶量:含胶量是指原油中所含胶质的百分数。原油的含胶量一般在5%~20%之间。胶质是指原油中分子量较大(300~1000)的含有氧、氮、硫等元素的多环芳香烃化合物,呈半固态分散状溶解于原油中。胶质易溶于石油醚、润滑油、汽油、氯仿等有机溶剂中。 其他:原油中沥青质的含量较少,一般小于1%。沥青质是一种高分子量(大于1000以上)具有多环结构的黑色固体物质,不溶于酒精和石油醚,易溶于苯、氯仿、二硫化碳。沥青质含量增高时,原油质量变坏。 原油中的烃类成分主要分为烷烃、环烷烃、芳香烃。根据烃类成分的不同,可分为的石蜡基石油、环烷基石油和中间基石油三类。石蜡基石油含烷烃较多;环烷基石油含环烷烃、芳香烃较多;中间基石油介于二者之间。 目前我国已开采的原油以低硫石蜡基居多。大庆等地原油均属此类。其中,最有代表性的大庆原油,硫含量低,蜡含量高,凝点高,能生产出优质煤油、柴油、溶剂油、润滑油和商品石蜡。胜利原油胶质含量高(29%),比重较大(0.91左右),含蜡量高(约15-21%),属含硫中间基。汽油馏分感铅性好,且富有环烷烃和芳香烃,故是重整的良好原料。

苯的性质及应用

苯的性质及应用 分子式:C6H6 物理性质 苯的沸点为80.1℃,熔点为5.51℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,易溶于有机溶剂,苯也是一种良好的有机溶剂。 化学性质 苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在碳原子之间的共价键上的加成反应;一种是苯环的断裂。 一、取代反应 1、卤代反应 苯的卤代反应的通式可以写成:PhH+X2——→PhX+HX 反应过程中,卤素分子在苯和催化剂的共同作用下异裂,X+进攻苯环,X-与催化剂结合。 以溴为例,将液溴与苯混合,溴溶于苯中,形成红褐色液体,不发生反应,当加入铁屑后,在生成的三溴化铁的催化作用下,溴与苯发生反应,混合物呈微沸状,反应放热有红棕色的溴蒸汽产生,冷凝后的气体遇空气出现白雾(HBr)。反应后的混合物倒入冷水中,有红褐色油状液团(溶有溴)沉于水底,用稀碱液(如NaOH溶液)洗涤后生成可溶性盐(NaBr 和NaBrO),溴苯比水重且分层,在用干燥剂除水,最后蒸馏得无色液体溴苯。 注意:实验过程中,跟瓶口垂直的玻璃管起导气和冷凝的作用、导管不能伸入水中,因为HBr 极易溶于水,发生倒吸。 2、硝化反应 向浓硝酸中加入浓硫酸,待温度为50到60摄氏度时,再加入苯,反应生成硝基苯。其中,浓硫酸既做催化剂。

PhH+HO-NO2-----H2SO4(浓)△---→PhNO2+H2O 硝化反应是一个强烈的放热反应,若加入苯太快,温度急剧上升,而得到副产物,而且温度过高,苯容易挥发。 3、磺化反应 用浓硫酸或者发烟硫酸在较高温度下可以将苯磺化成苯磺酸。 PhH+HO-SO3H------△→PhSO3H+H2O 苯环上引入一个磺酸基后反应能力下降,不易进一步磺化,需要更高的温度才能引入第二、第三个磺酸基。这说明硝基、磺酸基都是钝化基团,即妨碍再次亲电取代进行的基团。 二、加成反应 苯环虽然很稳定,但是在一定条件下也能够发生加成反应。通常经过催化加氢,镍作催化剂,苯可以生成环己烷。但反应极难。 C6H6+3H2------催化剂△----→C6H12 此外由苯生成六氯环己烷(“六六六”剧毒农药)的反应可以在紫外线照射的条件下,由苯和氯气加成而得。 三、氧化反应 1、燃烧 苯和其他的烃一样,都能燃烧。当氧气充足时,产物为二氧化碳和水。但在空气中燃烧时,火焰明亮并有浓黑烟。这是由于苯中碳的质量分数较大。 2C6H6+15O2——→12CO2+6H2O 2、臭氧化反应 苯在特定情况下也可被臭氧氧化,产物是乙二醛。这个反应可以看作是苯的离域电子定域后生成的环状多烯烃发生的臭氧化反应。 赞同

石油及其产品的物理性质

石油及其产品的物理性质 石油及其产品的物理性质是评定石油加工性能及油品使用质量的重要指标,同时也是设计炼油设备和装置的必要依据。 一、蒸汽压 蒸气压是在某一温度下一种物质的液相与其上方的气相呈平衡状态时的压力,也称饱和蒸气压。蒸气压表示该液体在一定温度下的蒸发和气化的能力,蒸气压愈高的液体愈易于气化。蒸气压是石油加工设备设计的重要基础物性数据,也是某些轻质油品的质量指标。 1、纯烃的蒸气压 对于同一族烃类,在同一温度下,相对分子质量较大的烃类的蒸气压较小。就某一种纯烃而言,其蒸气压是随温度的升高而增大的。 2、烃类混合物及石油馏分的蒸气压 与纯烃不同,烃类混合物的蒸气压不仅取决于温度,同时也取决于其组成。在一定的温度下,只有其气相、液相或整体组成一定,其蒸气压才是定值。 二、平均沸点 在求定石油馏分的各种物理参数时,为简化起见,常用平均沸点来表征其气化性能。石油馏分的平均沸点的定义有下列五种: ①体积平均沸点tV(℃); ②质量平均沸点tW(℃); ③实分子平均沸点tm(℃); ④立方平均沸点tcu(K); ⑤中平均沸点tMe(℃); 这五种平均沸点中,仅有体积平均沸点可由石油馏分的馏程测定数据直接算得,其他几种平均沸点可借助体积平均沸点与蒸馏曲线斜率查表算出。 三、密度 1、密度和相对密度

原油及油品的密度和相对密度在生产和储运中有着重要意义,在原料及产品的计量以及炼油装置的设计等方面都是必不可少的。 2、石油及油品的密度、相对密度 密度是物质的质量与其体积的比值,其单位为g/cm3或kg/m3。由于油品的体积随温度的升高而膨胀,而密度则随之变小,所以,密度还应标明温度。例如,油品在t℃的密度用ρt来表示。我国规定油品在20℃时的密度为其标准密度,表示为ρ20。 物质的相对密度是其密度与规定温度下水的密度之比。因为水在4℃时的密度等于1.0000 g/cm3,所以通常以4℃水为基准,将温度t℃的油品密度对4℃时的水的密度之比称为相对密度。常用来表示,它在数值上等于油品在t℃时的密度。我国常用的相对密度是 。 气体的密度一般用kg/m3表示,其相对密度是该气体的密度与空气在标准状态(0℃,0.1013Mpa)下的密度之比,空气在标准状态下的密度为1.2928kg/m3。在较低的压力下(小于0.3MPa),气体的密度和比容(密度的倒数)可用理想气体状态方程式计算。而当压力较高时,就需要用计算真实气体的状态方程式来求取。 3、液体油品相对密度与温度、压力的关系 当温度升高时,油品的体积就会膨胀,这就导致其密度和相对密度的减小。当温度变化不大时,油品的体积膨胀系数γ只随油品相对密度的不同而有所变化,其范围为(0.0006~0.00l0)/℃。当温度在0~50℃范围内,不同温度(t℃)下的相对密度可按下式换算: =-γ(t - 20) 其中的γ值可以查得。若温度与20℃差别较大.则须查专门的图表(GB1885-1983)。 液体受压后体积变化很小,通常压力对液体油品密度的影响可以忽略。只有在几十兆帕的极高压力下才考虑压力的影响。 4、混合油品的密度 当属性相近的两种或多种油品混合时,其混合物的密度可近似地按可加性计算。 一般情况下,油品混合时,体积基本是可加的,按上式计算不会引起很大误差。但当属性相差很大的两类组分(如烷烃和芳香烃)混合时,体积可能增大;而密度相差悬殊的两个组分(如重油和轻烃)混合时,体积可能收缩,这样便须加以校正。 5、相对密度与化学组成及相对分子质量的关系 当分子中碳原子数相同时,芳香烃的相对密度最大,环烷烃的次之,烷烃的最小,烯烃

苯的理化性质表

苯的理化性质表 标识中文名:苯;纯苯;安息油英文名:Benzene 分子式:C6H6 分子量:78.11 CAS号:71-43-2 RTECS号:CYl400000 UN编号:1114 危险货物编号:32050 IMDG规则页码:3185 理化性质外观与性状:无色透明液体,有强烈芳香味。冰点为6℃ 主要用途:用作溶剂及合成苯的衍生物、香料、染料、塑料、医药、炸药、橡胶等。熔点:5.5 沸点:80.1 相对密度(水=1):0.88 相对密度(空气=1): 2.77 饱和蒸汽压(kPa):13.33/26.1℃ 溶解性:不溶于水,溶于醇、醚、丙酮等多数有机溶剂。 临界温度(℃):289.5 临界压力(MPa): 4.92 燃烧热(kj/mol):3264.4 燃烧爆炸危险性避免接触的条件: 燃烧性:易燃 建规火险分级:甲 闪点(℃):-11 自燃温度(℃):560℃ 爆炸下限(V%):1.2 爆炸上限(V%):8.0 危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇吹源引 着回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。流速过快,容易产 生和积聚静电。 燃烧(分解)产物:一氧化碳、二氧化碳。 稳定性:稳定 聚合危害:不能出现 禁忌物:强氧化剂。 灭火方法:泡沫、二氧化碳、干粉、砂土。用水灭火无效。如果该物质或其被污染的流体进入水路,通知有潜在水体污染的下游用户,通知地方卫生、消防官员和污染 控制部门。在安全防爆距离以外,使用雾状水冷却暴露的容器。若冷却水流不 起作用(排放音量、音调升高,罐体变色或有任何变形的迹象),立即撤离到安 全区域。 包装与储运危险性类别:第3.2类中闪点易燃液体 危险货物包装标志:7 包装类别:Ⅱ 储运注意事项:储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过30℃。防止阳光直射。保持容器密封。应与氧化剂分开存放。储存间内的照明、通风等设施应采 用防爆型,开关设在仓外。配备相应品种和数量的消防器材。罐储时要有防火 防爆技术措施。禁止使用易产生火花的机械设备和工具。灌装时应注意流速(不 超过3m/s),且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及 容器损坏。夏季应早晚运输,防止日光曝晒。运输按规定路线行驶。 ERG指南:130 ERG指南分类:易燃液体(非极性/不溶于水/有毒) 毒性接触限值:中国MAC:40mg/m3[皮] 苏联MAC:5mg/m3[皮]

常见的酸及其化学性质

酸及其化学性质

A 牵牛花瓣红色紫色蓝色 B 胡萝卜橙色橙色橙色 C 紫萝卜皮红色紫色黄绿色 D 月季花瓣浅红色红色黄色 4、欲鉴别澄清石灰水、盐酸和蒸馏水三瓶失去标签的无色液体||,可选用||,请简述实验过程: 把三种溶液各取少许放入试管||, 巩固练习 1、日常生活中的下列物质中加入紫色石蕊溶液无明显变化的是() A.柠檬汁B.苹果汁C.纯净水D.石灰水 2、用下列方法能把稀盐酸、蒸馏水、石灰水一次区别开来的是() A.品尝B.闻气味C.滴加酚酞试液D.滴加石蕊试液 3、推理是化学学习中常见的思维方法||。下列推理正确的是() A.碱性溶液能使酚酞试液变红||,滴入酚酞试液后变红的溶液一定呈碱性 B.锌和铜均是金属||,锌与稀硫酸反应生成氢气||,则铜也能与稀硫酸反应生成氢气 C.酸能使石蕊溶液变红||,CO2也能使紫色的石蕊溶液变红||,所以CO2是酸 D.溶液中有晶体析出||,其溶质质量减小||,所以溶质的质量分数一定减小 本知识点小结 本节知识点讲解2(浓盐酸和浓硫酸) 几种常见的酸 1.浓盐酸与浓硫酸的物理性质的比较 浓硫酸浓盐酸

溶质的化学式H2SO4HCl 颜色无色无色||,工业盐酸因含Fe3+略显黄色 状态黏稠油状液体液体 气味无刺激性气味有刺激性气味 密度(与水比较)大于水大于水 挥发性无有||,打开瓶塞||,瓶口有白雾出现 2.浓硫酸的特性 ⑴浓硫酸具有吸水性||,可用作某些气体的干燥剂||。 ⑵具有脱水性||,能使纸张、木材等炭化||。 ⑶具有强腐蚀性||,沾到皮肤或衣物上||,应立即用大量水冲洗||,然后涂上3%~5%的碳酸氢钠溶液||。 ⑷具有强氧化性||,与金属反应时一般生成水而不生成氢气||,因而实验室制氢气时不用浓硫酸||。 ⑸浓硫酸与水混合时||,放出大量的热||。 3.浓硫酸的稀释 将浓硫酸沿着容器内壁慢慢注入水中||,并用玻璃棒不断搅拌||。切不可将水倒入浓硫酸中||,否则可能导致浓硫酸液滴向四周飞溅||。 4.用途 ⑴盐酸:制造药物||,金属表面除锈||,胃液中含有盐酸||,可以帮助消化||。 ⑵硫酸:重要的化工原料||,广泛用于生产化肥、农药、火药、染料以及冶炼金属、精炼石油和金属除锈等||。【易错提示】 ⑴浓盐酸具有较强的挥发性||,打开盛浓盐酸试剂瓶的瓶塞||,瓶口有白雾产生||,是挥发出的氯化氢气体溶于空气中的水形成盐酸小液滴的缘故||,不能说成白烟||。浓盐酸具有挥发性||,所以在实验室制取二氧化碳气体时||,不能用浓盐酸代替稀盐酸||,否则制取的二氧化碳气体中混有挥发出的氯化氢气体||,不纯净||。 ⑵浓硫酸的吸水性是物理性质||,脱水性和强氧化性是化学性质||。 ⑶稀释浓硫酸时||,不能将水倒入浓硫酸中||,将浓硫酸倒入水中时||,不能倒入过快||,不能在量筒中进行||,应在烧杯中稀释||,并不断搅拌||。

食品物性学期末题汇总总结

第一章 1.什么是食品物性学? 定义:食品物性学是以食品( ( 包括食品原料) )为研究对象,研究其物理性质的一门学,这些特性与食品组成、微观结构、次价力、表面状态等因素相关。影响食品质构特性,影响食品 生物化学反应速率,影响食品分析检测。 2.食品物性学的“指纹”概念 (1)食品自身表现的物理性质 (2)物理因子对食品各种性质的影响 (3)食品检验的物理方法 (4)食品加工的物理方法 (5)食品物性对加工的影响 (6)食品物性对消费感官嗜好及选购的影响 3.研究食品物性学的目的 (1)了解食品与加工、烹饪有关的物理特性 (2)建立食品品质客观评价的方法 (3)通过对物性的试验研究,可以了解食品的组织结构和生化变化 (4)为改善食品的风味、质地和嗜好性提供科学依据 (5)为研究食品分子论提供实验依据 (6)为快速无损检测食品品质提供理论依据 第二章 1.物质的结构:物质的组成单元( ( 原子或分子) ) 之间相互吸引和相互排斥的作用达到平衡 时在空间的几何排列。 分子结构:分子内原子之间的几何排列 聚集态结构:分子之间的几何排列 2.键合力:又称盐键或盐桥,它是正电荷与负电荷之间的一种静电相互作用。 吸引力与电荷电量的乘积成正比,与电荷质点间的距离平方成反比,在溶液中吸引力随周围介质的介电常数增大而降低。——库伦定律 (1)在近中性环境中,蛋白质分子中的酸性氨基酸残基侧链电离后带负电荷,而碱性氨基酸残基侧链电离后带正电荷,二者之间可形成离子键。 (2)离子键平均键能为20kJ/mol 3.范德华力

4.高分子链结构与柔性

高分子链在绕单键内旋转时可导致高分子链构象的变化,因为伴随着状态熵增大,自发地 趋向于蜷曲状态,这种特性就称为高分子链柔性高分子链之所以具有柔性的根本原因在于它含有 许多可以内旋转的σ单键 自由联结链:线形高分子链中含有成千上万个σ键。如果主链上每个单键的内旋转都是完 全自由的,则这种高分子链称为自由联结链。它可采取的构象数将无穷多,且瞬息万变。这是 柔性高分子链的理想状态。 实际:高分子链中,键角是固定的。 就碳链而言,键角为109°28′,所以即使单键可能自由旋转,每一个键只能出现在以前一 个键为轴,以 2θ(θ=π-109° 28′)为顶角的圆锥面上。 如果高分子主链上没有单键,则分子中所有原子在空间的排布是确定的,即只存在一种构 象,这种分子就是刚性分子。 5.影响高分子柔性的因素 (1)如果高分子主链上虽有单键但数目不多,则这种分子所能采取的构象数也很有限,柔性不 大。 (2)另外,影响高分子柔性的因素还包括主链成分、取代基的数量、取代基的体积和极性,以 及温度等 (3)键越长,键角越大,链的柔性也越好 (4)取代基数越大,数量越多,极性越强,链的柔性越差 (5)如果主链上含有芳香环或杂环成分,由于环的结构体积大,电子云密度高、色散力,阻碍 了主链单键的内旋转,链的柔性也越差。 6.食品形态微观结构 按分子的聚集排列方式主要有三种类型: 晶态:分子(或原子、离子) 间的几何排列具有三维远程有序; 液态:分子间的几何排列只有近程有序(即在1- -2 分子层内排列有序),而远程无序; 气态:分子间的几何排列不但远程无序,近程也无序; 玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同。 液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如一定条件下的脂肪) 。 凝胶态:有一定尺寸范围的粒子或者高分子在另一种介质中构成的三维网络结构形态,或者说另一种介质(例如:水、空气)填充在网络结构中。 粒子凝胶:具有相互吸引趋势的粒子随机发生碰撞形成粒子团,当这个粒子团再与另外的粒子团 发生碰撞时又形成更大的粒子团,最后形成一定的结构形态 聚合物凝胶:都是由细而长的线形高分子,通过共价键、氢键、盐桥、二硫键、微晶区域、缠 绕等方式形成交联点,构成一定的网络结构形态。 7.水的基本物性 水异常的物理性质 (1)高熔点(0 ℃), 高沸点(100 ℃) (2)介电常数大 (3)表面张力高 (4)热容和相转变热焓高熔化热、蒸发热和升华热 (5)密度低(1 g/cm 3 ) ,凝固时的异常膨胀率 (6)粘度正常(1 cPa·s) 水的异常性质可以推测水分子间存在强烈的吸引力,水具有不寻常的结构。

石油的组分分析和物理性质测定(doc5)

V c 20 4 100 石油的组分分析和物理性质测定 一、实习目的 石油的性质包括物理性质和化学组成,二者之间有密切的联系,了解石油的性质对石油地质研究和评价石油的工业品质有着十分重要的意义。通过观察和简易的实验演示了解:(1)石油的主要族组分组成分析;(2)石油的基本物理性质。 二、实习内容和方法 (一)石油馏份试验 石油是由各种碳氢化合物为主的有机化合物所组成的,每一种化合物均有一定的沸点和凝点。按一定的温度间隔蒸馏切割出不同沸点范围的原油组分,为原油的一个馏分。 实验时称50g油样,倒入恩氏蒸馏烧瓶中(图实1-1 ),将烧瓶均匀加温,记下馏出第一滴时的温度(初馏点)及温度为150C、170C、210C、230C、250 C、270C、300C时馏出 的体积,根据下式可计算各馏分的数量: 式中:U:为每一馏分含量(体积百分数); Vc :为每一馏分馏出量(ml); Wo :为油样量(g); D 420:为20C时油样的比重。 (二)石油组分分析 石油的组分,包括饱和烃、芳烃、胶质和沥青质。根据石油中不同组分的化合物同吸附剂间的吸附性能不同,以及各种有机冲洗剂的极性不同,其脱附快慢也不同的原理,选择适当的吸附剂配比及冲洗剂的用量,可以把原油中各族组分分离。目前常采用柱色层法,以硅胶和氧化铝为吸附剂,用正己烷和无水乙醇、苯与上述组分相似性质的溶剂作为冲洗剂,冲洗色层柱,从而将原油各组分分离。试验时,首先将脱硫、脱水并经馏程切割(210C以上馏份)的原油溶于正己烷中,静置后用滤纸脱去沥青质,再将滤液通过漏斗倒入色层柱中,见图实 1-2 ;然后用正己烷淋洗脱附饱和烃,收集冲洗液,自然挥发干即可得出含量。再用苯淋洗脱附芳烃,收集冲洗液得其含量;残留在色层柱上的为胶质,是吸附能力极强的含氧、氮、硫的非烃化合物,可由减差法计算其含量。若要专门研究可用苯一甲醇将其全部冲洗下来。若定量分析时,一切仪器用品均应事先洗净, 严格称重。 (三)石油的物理性质 1. 石油颜色的观察 石油颜色的深浅取决于胶质和沥青质的含量。一般胶质和沥青质含量愈高, 颜色愈深。 观察原油的颜色有两种方法,一种是在透射光下观察,即将样品朝光源方向,观察试管中对着眼睛一侧的颜色。若原油色深,透明度差,可摇动原油样品,观察留在试管壁上原油薄膜的颜色。另一种是在反射光下的观察,即向着光源一侧试管壁的颜色,常有荧光颜色干扰,不常采用。

苯的物理性质

物理性质 中文名:苯外文名:安息油 别名:Benzol 分子式:C6H6 密度0.8786 g/mL 相对蒸气密度(空气=1):2.77 蒸汽压(26.1℃):13.33kPa 二、物理性质 中文名:苯外文名:安息油 别名:Benzol 分子式:C6H6 密度 0.8786 g/mL 相对蒸气密度(空气=1):2.77 蒸汽压(26.1℃):13.33kPa 临界压力:4.92MPa 熔点 278.65 K (5.51 ℃) 沸点 353.25 K (80.1 ℃) 在水中的溶解度0.18 g/ 100 ml 水 标准摩尔熵So298 173.26 J/mol·K 标准摩尔热容Cpo 135.69 J/mol·K (298.15 K) 闪点-10.11℃(闭杯) 冰点:5 ℃ 自燃温度 562.22℃ 结构平面正六边形 最小点火能:0.20mJ。 爆炸上限(体积分数):8% 爆炸下限(体积分数):1.2% 燃烧热:3264.4kJ/mol

溶解性:不溶于水,可与乙醇、乙醚、乙酸、汽油、丙酮、四氯化碳和二硫化碳等有机溶剂互溶。 无色透明液体。有芳香气味。具强折光性。易挥发。能与乙醇、乙醚、丙酮、四氯化碳、二硫化碳、冰乙酸和油类任意混溶,微溶于水。燃烧时的火焰光亮而带黑烟。易燃。低毒,半数致死量(大鼠,经口) 3800mG/kG。有致癌可能性。密度比水小。 临界压力:4.92MPa 熔点278.65 K (5.51 ℃) 沸点353.25 K (80.1 ℃) 在水中的溶解度0.18 g/ 100 ml 水 标准摩尔熵So298 173.26 J/mol·K 标准摩尔热容Cpo 135.69 J/mol·K (298.15 K) 闪点-10.11℃(闭杯) 冰点:5 ℃ 自燃温度562.22℃ 结构平面正六边形 最小点火能:0.20mJ。 爆炸上限(体积分数):8% 爆炸下限(体积分数):1.2% 燃烧热:3264.4kJ/mol 溶解性:不溶于水,可与乙醇、乙醚、乙酸、汽油、丙酮、四氯化碳和二硫化碳等有机溶剂互溶。 无色透明液体。有芳香气味。具强折光性。易挥发。能与乙醇、乙醚、丙酮、四氯化碳、二硫化碳、冰乙酸和油类任意混溶,微溶于水。燃烧时的火焰光亮而带黑烟。易燃。低毒,半数致死量(大鼠,经口) 3800mG/kG。有致癌可能性。密度比水小。

相关文档
最新文档