百分数应用题的教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百分数应用题的教学设计
百分数应用题的教学设计
教学目标:
1、通过本课的学习,使学生掌握求一个数是另一个数的百分之几和一个数比另一个数多(少)百分之几的应用题的解题思路及方法,会解答这类应用题。
2、培养学生类比、推理、分析、比较以及合作解决问题的能力。
说教学重点、难点:
1、重点:学会求一个数是另一个数的几分之几和一个数比另一个数多(少)百分之几的应用题。
2、难点:理解解法二,即为把单位“1”的量看作100%解求一个数比另一个数多(少)百分之几的应用题。
说教学准备:
相关复习题及视频展示台。
说设计思路:
1、主线:
复习引入提出问题探讨解法归纳总结巩固应用
小数分数百分数应用题互化例1、模拟解答例1关键句子的专项练习
由中心句说单位“1“的量及例2合作交流重点探讨第二种以突破难点
数量关系。解法(单位“1”的量对比练习
复习题为100%)
改变问题练习
完成作业提高练习
2、呈现方式:
问题探讨归纳应用生活
说教学过程:
一、复习引入:
1、把0.
2、0.15、化成百分数。
2、填空:
(1)三好学生的人数占学生总人数的,这句中的单位“1”的量是()
数量关系式是()÷()=。
(2)火车的速度比小汽车快,这句把()作为单位“1”的量,数量关系是()÷()=,也可以写成[()—()]÷()=,根据乘法分配律即:()÷()—()÷()=,即()÷()—1=。
3、做复习题。(口答)
[复习题1帮助学生回忆小数、分数和百分数的'互化,为学习新知扫清障碍。
复习2帮助学生回忆分数应用题的结构和数量关系,促进学生向百分数应用题的学习迁移,为发展学生模拟思维能力作了铺垫。其中后半部分的设计为突破本节课的难点做好了知识上的准备。复习3有
利于新旧知识的衔接。]
二、新授:
1、例1
(1)将复习题3中的问题改为“三好学生占六年级学生人数的百分之几?”
学生独立完成,后由教师总结:用三好学生人数除以六年级人数,再把结果化成百分数。
[例1难度小,学生已会的不要讲,这里根据学生已有的知识和学习经验,放手让学生去做,并共同小结,有利于培养学生模拟、归纳等方面的能力。]
(2)完成第97页的练一练1。
2、出示例2
(1)读题,弄清题意;
(2)从问题出发,引导学生画出线段图。
先画什么?为什么?找单位“1”的量及对应的数量。
原计划造林
16公顷
实际造林
20公顷实际比计划多的
(3)结合线段图,从问题出发,求实际比原计划多百分之几?怎样想?
(主要由学生根据已学过的解分数应用题的思维规律和分析思路,
从抓关键句子入手加以分析,独立解答。)
(4)还可以怎样列式?(难点)
学生合作讨论,教师根据具体情况灵活选择教法,可以根据复习题2的第2题,加以类比,找出理论依据:乘法分配律。
学生看书,说明这样列式的理由。
(实际造林的公顷数—计划造林的公顷数)÷计划造林的公顷数=实际造林的公顷数÷计划造林的公顷数—计划造林的公顷数÷计划造林的公顷数
=实际造林的公顷数÷计划造林的公顷数—100%(1)
看书第97页,说明为什么可以把计划造林的公顷数看作100%来列式?
[这一部分是这节课的难点,教师应让学生在复习题作铺垫的基础上,通过类比,合作交流,丰富学习的经验和策略,使学生在相互补充、相互启发的过程中达到共识,从而突破难点。]
3、将例2的问题改成:原计划造林比实际少百分之几?
(1)要求学生用两种方法独立解答这道题,并说出分析思考的过程。
(2)比较观察:这两道题的结果相同吗?为什么?
(让学生通过讨论得出结论,因为单位“1”的量不同,所以结果也不相同。这里培养了学生比较的能力。)
[1可以检测学生本节课内容的学习情况,2通过比较,讨论合作得出解这一类型题目的方法,使学生对百分数应用题的结构有更加
深刻的认识,突出了重点。]
4、完成第97页的练一练2
三、巩固练习:
1、完成第98页的对比练习。(说思考过程)
2、完成第98页第3题。
板演,说出思考过程,分析对比,说出两道题有什么不同?
四、总结:
通过师生共同总结,交流反思,你这节课学到了什么?你有什么收获?对于百分数应用题,你还想学哪些知识?
五、完成作业:
第98页2、4
六、你能正确地解答下面的题目吗?
1、姜堰市某小学改造办公楼,实际投资18万元,比原计划节约投资2万元,节约投资百分之几?
2、搜集你身边的数据,编一道反映实际情况的百分数应用题。
[让学生带着问题走出教室,将所学知识加以内化,同时通过编题,让学生懂得,生活中到处都有数学,数学来源于生活,为生活服务,激发学生的学数学的兴趣,同时也培养学生搜集信息的能力。]