信号与系统第一章
信号与系统复习课件全
(2) (b)计算零状态响应:
yzs [k ]
n
x[n]h[k
n]
u[k
]
3(
1 2
)
k
2( 1 ) k 3
u[k
]
n
u[n]
3(
1 2
)kn
2( 1 ) k n 3
u[k
-
n]
k n0
3(
1 2
)k
n
2( 1 ) k n 3
k 3(1 )kn k 2(1)kn
n0 2
CLTI系统数学模型——线性常系数微分方程,冲
激响应h(t);系统函数H(s);频率响应特性H( jw)
H (s) Yzs (s) X (s)
LT
h(t) H(s)
H ( j) H (s) |s j (系统稳定)
FT
h(t) H(j )
26
DLTI系统数学模型——线性常系数差分方程;冲
激响应h(n);系统函数H(z);频率响应特性H(ejw).
则
yzi[k ]
C1
(
1 2
)k
C2
(
1 )k 3
,k
0
代入初始条件,有:
y[1] 2C1 3C2 0
y[2] 4C1 9C2 1 C1 1/ 2, C2 1/ 3
则
yzi[k ]
1 2
(1)k 2
1 3
( 1 ) k ,k 3
0
= ( 1 )k1 (1)k1,k 0
2
3
17
n0 3
[ 3 3(1)k (1)k ]u[k] 23
完全响应: y[k] yzi[k] yzs[k]
[ 1 7 (1)k 4 (1)k ]u[k]
信号与系统
第一章信号与系统的基本概念一、信号的定义①广义地说,信号就是随时间和空间变化的某种物理量或物理现象.②在通信工程中,一般将语言、文字、图像、数据等统称为消息,在消息中包含着一定的信息③信号是消息的载体,是消息的表现形式,是通信的客观对象,而消息则是信号的内容④应当注意,信号与函数在概念的内涵与外延上是有区别的。
信号一般是时间变量t的函数,但函数并不一定都是信号,信号是实际的物理量或物理现象,而函数则可能只是一种抽象的数学定义。
二、信号的分类(1) 确定信号与随机信号。
按信号随时间变化的规律来分,信号可分为确定信号与随机信号。
实际传输的信号几乎都是随机信号。
因为若传输的是确定信号,则对接收者来说,就不可能由它得知任何新的信息,从而失去了传送消息的本意。
但是,在一定条件下,随机信号也会表现出某种确定性,例如在一个较长的时间内随时间变化的规律比较确定,即可近似地看成是确定信号。
随机信号是统计无线电理论研究的对象。
本书中只研究确定信号。
(2)连续时间信号与离散时间信号。
按自变量t取值的连续与否来分,信号有连续时间信号与离散时间信号之分,分别简称为连续信号与离散信号。
(3)周期信号与非周期信号。
设信号f(t),t∈R,若存在一个常数T,使得f(t-nT)=f(t) n∈Z (1-1)则称f(t)是以T为周期的周期信号。
从此定义看出,周期信号有三个特点:1) 周期信号必须在时间上是无始无终的,即自变量时间t的定义域为t∈R。
2) 随时间变化的规律必须具有周期性,其周期为T。
3) 在各周期内信号的波形完全一样。
(4) 正弦信号与非正弦信号。
(5) 功率信号与能量信号。
三、信号的相关名词1. 有时限信号与无时限信号若在有限时间区间(t1<t<t2)内信号f(t)存在,而在此时间区间以外,信号f(t)=0,则此信号即为有时限信号,简称时限信号,否则即为无时限信号。
2. 有始信号与有终信号设t1为实常数。
若t<t1时f(t)=0, t>t1时f(t)≠0,则f(t)即为有始信号,其起始时刻为t1。
《信号与系统》第一章知识要点+典型例题
y() 表示系统的输出。
1、线性系统与非线性系统 若系统满足下列线性性质: (1)可分解性 全响应 y () 可分解为零输入响应 y zi () 与零状态响应 y zs () 之和,即
y() y zi () y zs ()
(2)齐次性 零输入响应 y zi () 满足齐次性,零状态响应 y zs () 满足齐次性,即
( t ) 、 ( t ) 的重要性质
1
( t )dt 1 ,
t
( t )dt 0 , ( t )dt ( t ) ( k ) (k )
f ( k ) ( k ) f (0) ( k ) f ( k ) ( k k 0 ) f ( k 0 ) ( k k 0 )
f ( t ) ( t a )dt f (a )
k
f ( k ) ( k ) f (0)
(at )
5
1 (t ) a
1 b (at b) ( t ) a a f ( t ) ( t ) f (0) ( t ) f (0) ( t ) f ( t ) ( t ) f (0) ( t ) f (0) ( t )
2
。
而对离散的正弦(或余弦)序列 sin( k ) [或 cos( k ) ]( 称为数字角频率,单位为 rad ), 只有当
2
为有理数时才是周期序列,其周期 N M
2
, M 取使 N 为整数的最小整数。
如对信号 cos(6 k ) ,由于
2
2 1 为有理数,因此它是周期序列,其周期 N 1 。 6 3
清华电子系山秀明《信号与系统》1
第一章:绪论§1.1 信号与系统(《信号与系统》第二版(郑君里)1.1)图1-1消息(Message):信源的输出+语义学上的理解。
信号(Signal):Information Vector(Signum),它携带或蕴含或本身即为信息。
信息(Information):消息,内容,情报(牛津英文词典)。
语用层次上的信息:效用信息 语义层次上的信息:含义语法层次上的信息:形式(狭义信息——Shannon信息论)系统(System):由若干个相互作用的物理对象和物理条件(统称为系统元件)组成的具有特定功能的整体。
本课程要解决的两个问题:信号表示(分析):把信号分解成它的各个组成分量或成分的概念、理论和方法,即用简单表示复杂。
信号通过系统的响应:9系统分析:在给定系统的条件下,研究系统对于输入激励信号所产生的输出响应。
9系统综合:按某种需要规定出系统对于给定激励的响应,并根据此要求设计系统。
§1.2 信号分类与典型确定性信号(《信号与系统》第二版(郑君里)1.2,1.4) 确定性信号:由确定系统产生、具有确定参数、按确定方式变化的信号。
随机信号:具有不可预知的不确定性的信号。
非确定性信号模糊信号:(例:高矮,胖瘦)。
周期信号:f(t) = f(t + nT),n ∈Z非周期信号:f(t)≠f(t + nT),∀ n ∈Z伪随机信号:具有周期性的随机信号。
周期无穷大则为随机信号。
连续时间信号:在所讨论的时间区域内任意时间点上都有定义(给出确定但可能不唯一的信号取值)的信号。
模拟信号:时间和取值都连续的信号。
阶梯信号:时间连续、取值离散的信号。
离散时间信号:只在某些不连续的时间点或区间上有定义(给出信号取值)的信号。
抽样信号:幅值具有无限精度的离散时间信号。
数字信号:幅值具有有限精度的离散时间信号。
图1-2典型确定性信号: 指数信号:()t f t K e α=⋅(1-1)其中,K 、α为实数。
信号与线性系统分析第一章
相关是描述两个信号相似程度 的一种度量,包括自相关和互 相关。自相关描述信号自身在 不同时刻的相似程度,互相关 描述两个不同信号之间的相似 程度。
卷积与相关在数学表达式上具 有相似性,但物理意义不同。 卷积表示系统对输入信号的响 应,而相关表示信号之间的相 似程度。
03 信号的频域分析
信号的频谱
05 信号通过线性系统的分析
信号通过线性系统的时域分析
信号的时域表示
信号在时域中表示为时间的函数,描述了信号随时间的变换,输出信号是输入信号的加权和。
卷积积分
线性时不变系统对输入信号的响应可以通过卷积积分来计算,即输 出信号等于系统冲激响应与输入信号的卷积。
失真与噪声的抑制
为了减小失真和噪声对信号的 影响,可以采取一系列措施,
如滤波、放大、调制等。
06 信号与线性系统分析方法 总结
时域分析方法总结
时域波形分析
直接观察信号的时域波形,了解信号的基本特征 和变化规律。
相关函数分析
通过计算信号的自相关函数和互相关函数,研究 信号的时域特性和不同信号之间的相关性。
根据信号的性质和特征,信号可以分 为连续时间信号和离散时间信号、周 期信号和非周期信号、能量信号和功 率信号等。
系统的定义与分类
系统的定义
系统是由相互关联和相互作用的元素组成的集合,它能够对输入信号进行变换 和处理,产生输出信号。
系统的分类
根据系统的性质和特征,系统可以分为线性系统和非线性系统、时不变系统和 时变系统、因果系统和非因果系统等。
快速变化部分。
信号的相乘与相加
03
相乘可实现信号的调制,相加可实现信号的合成。
信号的卷积与相关
卷积的定义与性质
信号与系统的概念
f
[
n N
],
0,
n为N整倍数 其它
1.4 信号的基本运算 1.4.1 两信号相加
两信号相加,是指两信号对应时刻的信号值(函数 值)相加,得到一个新的信号。
f (t) f1(t) f2 (t) 或 f [n] f1[n] f2[n] (1.4.1)
f1(t) 1
1
0
1
t
(a) 信号f1(t)波形
(1.2.5)
可以看出,复信号是由两个实信号a(t )和 (t )构成的, 当然也可看成是由两个实信号 和i(t) 构q(成t) 的,且
i(t) a(t) cos((t)) q(t) a(t)sin((t))
或
a(t) i2(t) q2(t) tan[(t)] q(t)
i(t)
1.2.4 周期信号与非周期信号
t
(a) 信号 f (t)的波形
0 1/ 2 1
t
(b) 信号 f (2t)的波形
0
1
2
3
4
t
(c) 信号 f (1 t)的波形 2
图1.3.3 信号 f (t)及其尺度变换
2. 离散时间信号的展宽和压缩
设离散时间信号 f [n] 的波形如图1.3.4(a)所示, 其时间展宽 倍的N情况可表示为
f1[n]
抽样信号(函数)
Sa(t) sin(t) t
抽样信号是信号处理中的一个重要信
号,在t 0时,函数取得最大值1,
而在t k 时(为非零整数),函数
Sa(t)
值为0,如图1.2.5所示。
1
(1.2.3)
4 3 2
0
2 3 4
t
图1.2.5
《信号与系统教案》课件
《信号与系统教案》课件第一章:信号与系统导论1.1 信号的概念与分类讲解信号的定义和特性介绍常见信号的分类,如连续信号、离散信号、模拟信号和数字信号等1.2 系统的概念与分类讲解系统的定义和特性介绍常见系统的分类,如线性系统、非线性系统、时不变系统等1.3 信号与系统的研究方法讲解信号与系统的研究方法,如数学分析、仿真实验等第二章:连续信号与系统2.1 连续信号的基本性质讲解连续信号的定义和特性,如连续性、周期性、对称性等2.2 连续信号的运算介绍连续信号的基本运算,如加法、乘法、积分等2.3 连续系统的基本性质讲解连续系统的基本性质,如线性、时不变性等第三章:离散信号与系统3.1 离散信号的基本性质讲解离散信号的定义和特性,如离散性、周期性、对称性等3.2 离散信号的运算介绍离散信号的基本运算,如加法、乘法、求和等3.3 离散系统的基本性质讲解离散系统的基本性质,如线性、时不变性等第四章:模拟信号处理4.1 模拟信号处理的基本方法讲解模拟信号处理的基本方法,如滤波、采样、量化等4.2 模拟滤波器的设计与分析介绍模拟滤波器的设计方法,如巴特沃斯滤波器、切比雪夫滤波器等讲解滤波器的频率响应、阶数等特性分析4.3 模拟信号处理的应用讲解模拟信号处理在实际应用中的案例,如音频处理、通信系统等第五章:数字信号处理5.1 数字信号处理的基本方法讲解数字信号处理的基本方法,如离散余弦变换、快速傅里叶变换等5.2 数字滤波器的设计与分析介绍数字滤波器的设计方法,如IIR滤波器、FIR滤波器等讲解滤波器的频率响应、阶数等特性分析5.3 数字信号处理的应用讲解数字信号处理在实际应用中的案例,如图像处理、语音识别等第六章:信号与系统的时域分析6.1 线性时不变系统的时域特性讲解线性时不变系统的时域特性,如叠加原理和时移特性6.2 常用时域分析方法介绍常用时域分析方法,如单位脉冲响应、零输入响应和零状态响应6.3 时域分析在实际应用中的案例讲解时域分析在实际应用中的案例,如信号的滤波、去噪等第七章:信号与系统的频域分析7.1 傅里叶级数与傅里叶变换讲解傅里叶级数的概念和性质介绍傅里叶变换的定义和性质,包括连续傅里叶变换和离散傅里叶变换7.2 频域分析方法介绍频域分析方法,如频谱分析、滤波器设计等7.3 频域分析在实际应用中的案例讲解频域分析在实际应用中的案例,如通信系统、音频处理等第八章:信号与系统的复频域分析8.1 拉普拉斯变换和Z变换讲解拉普拉斯变换的概念和性质介绍Z变换的定义和性质8.2 复频域分析方法介绍复频域分析方法,如系统函数分析、滤波器设计等8.3 复频域分析在实际应用中的案例讲解复频域分析在实际应用中的案例,如数字通信系统、信号的调制与解调等第九章:信号与系统的状态空间分析9.1 状态空间模型的概念和性质讲解状态空间模型的定义和性质,如状态向量、状态方程和输出方程等9.2 状态空间分析方法介绍状态空间分析方法,如状态预测、状态估计等9.3 状态空间分析在实际应用中的案例讲解状态空间分析在实际应用中的案例,如控制系统的设计和分析等第十章:信号与系统的应用案例分析10.1 通信系统中的应用讲解信号与系统在通信系统中的应用,如信号的调制与解调、信道编码与解码等10.2 音频处理中的应用讲解信号与系统在音频处理中的应用,如音频信号的滤波、均衡等10.3 图像处理中的应用讲解信号与系统在图像处理中的应用,如图像的滤波、边缘检测等重点解析信号与系统的基本概念及其分类信号与系统的研究方法连续信号与系统的性质和运算离散信号与系统的性质和运算模拟信号处理的基本方法和应用数字信号处理的基本方法和应用信号与系统的时域分析方法及其应用信号与系统的频域分析方法及其应用信号与系统的复频域分析方法及其应用信号与系统的状态空间分析方法及其应用信号与系统在不同领域中的应用案例分析难点解析信号与系统理论的数学基础和抽象概念的理解不同信号与系统分析方法的相互转换和应用信号与系统在实际工程应用中的复杂性和挑战高频信号处理和数字信号处理的算法优化和实现状态空间分析方法的数学推导和系统设计的实践应用。
信号与系统引论第一章
单边指数信号
第一章 绪论
(二) 正弦信号 正弦信号也包括余弦信号, 因为两者只在
相位上相差π/2 , 一般正弦信号表示为
f(t)=Ksin(ωt+θ)
其中, K是振幅、 ω是角频率、 θ是初相位。
1 T f 2
周期
第一章 绪论
正弦信号
第一章 绪论
实际工作中通常遇到的是衰减正弦信 号, 即包络按指数规率变化的振荡信号。
ke at sin t f (t ) 0 t 0 t0
第一章 绪论
单边衰减振荡信号
第一章 绪论
(三) 复指数信号
f(t)=Kest 其中, s=σ+jω为复数, σ为实部系数, ω为虚部系数。 借用欧拉公式: Kest=Ke(σ+jω)t=Keσt e jωt=Keσt (cosωt+j sinωt )
第一章 绪论
三、常用连续信号
(一) 指数信号
实指数信号如图所示, 其函数表达式为
f(t)=Keat
第一章 绪论
指数信号
第一章 绪论
式中, a>0时, f(t)随时间增长;
a<0时, f(t)随时间衰减; a=0时, f(t)不变。 常数k表示t=0时的初始值;|a|的大小 反映信号随时间增、 减的速率。 通常还定义时间常数τ=1/|a|, τ越小, 指数函数增
第一章 绪论
第一章 绪
1.1 信号与系统
论
1.2 信号的描述、分类和典型示例 1.3 信号的运算 1.4 阶跃信号与冲激信号 1.5 信号的分解
1.6 系统模型及其分类
1.7 线性时不变系统 1.8 系统分析方法
第一章 绪论
信号与系统郑君里第一章绪论资料
1.信号的反折
反折 (3)反折:f4 (t) f5 (t) f4 (-t)
以t ~ f(t)的纵坐标f (t )为轴反转所有函数值 (如倒转磁带来播放)
f4(t)
1
1
f5(t)
-1
0 -1
1
t
-1
0 -1
1
t
时间轴反转
2. 信号的移位
移位 (4)移位:f5 (t) f6 (t) f5 (t t 0 )
本课的主要参考书
1、教材:信号与系统 郑君里 杨为理 应启珩编 2、信号与系统 Signals & Systems ALAN V.OPPENHEIM ALANS. WILLSKY 清华大学出版社(英文影印版) (中译本)刘树棠 西安交通大学出版社 3、信号与系统例题分析及习题 乐正友 杨为理 应启珩编 4、信号与系统习题集 西北工业大学
at
1 , a
(对时间的微、积分仍是指数)
a 0 信号将随时间而增长
a0
K
f (t )
a0 a0
t
a 0 信号将随时间而衰减; a 0 信号不随时间而变化,为直流信号
0
: 指数信号的时间常数, 越大,指数信号增长或衰减的
速率越慢。
K为振幅
w为角频率
为初相角
(2)正弦信号:f
t
1 如正弦函数sint与门函数g (t ) 0
确定信号,周期信号
t t
2
2
本课程着重讨论确定信号(周期与非周期)分析。
除若干不连续点外,对于任意时刻t定义了 函数值(时间和幅值均连续—模拟信号); (3)连续与离散时间 仅在某些不连续的规定瞬时定义了函数值 (幅值连续—抽样信号,均否—数字信号)
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。
信号与系统概论第一章
2)冲激函数定义 (多种方式演变) ①单位冲激函数(狄拉克函数)
( ※ 0时刻取不定值,面积为1。为广义函数)
1.5 奇异信号及其基本特性(续)
◆ t=t0时刻的单位冲激函数:
②矩形脉冲定义的单位冲激函数
( ※ 面积为冲激强度,强度为1时为单位冲激)
1.5 奇异信号及其基本特性(续)
※ 对于冲激偶函数可继续二次求导。(如双边指数脉冲等)
冲激函数
冲激偶函数
强度无穷大
(单向面积:1/τ)
1.5 奇异信号及其基本特性(续)
2)冲激偶函数的性质 ①
推导:
0
性质
1.5 奇异信号及其基本特性(续)
②面积为零:
③冲激偶函数与普通函数乘积的性质: (证:两边取积分)
-f’(0)
0
-f’(0)
1.4 信号的基本运算及波形变换(续)
② 若以变量 at+b 代替 t,可得沿时间轴伸缩平移的 新信号 f(at+b)。 a>0时:信号沿时间轴伸缩、平移。
(a>1, a<1)
a<0时:信号沿时间轴伸缩、平移、反褶。(a>-1,a<-1) ◆特点:
所有运算都是自变量t的变换,且变换前后端点函数值不变。
③其他函数形式定义的单位冲激函数
1.5 奇异信号及其基本特性(续)
1.5 奇异信号及其基本特性(续)
3)冲激函数的性质 ①抽样性质(筛选特性)
1.5 奇异信号及其基本特性(续)
冲激函数与普通函数乘积的积分可将普通 函数在冲激出现时刻的函数值抽取出来!
1.5 奇异信号及其基本特性(续)
②偶函数性质: ③与阶跃函数的关系: ◆冲激函数的积分是阶跃函数: δ(t) = δ(-t)
信号与系统第1章
速率越慢。 指数信号的一个重要特性是其对时间的微 分和积分仍然是指数信号。 实际上, 用得较多的是单边指数信号, 其表达式为
0, f (t ) e 1 t, K t0 t0
(1.5)
第一章 信号与系统的基本概念
当a为复数时, f(t)为复指数信号, 其数学表达式为
第一章 信号与系统的基本概念
除此以外, 抽样信号还具有以下性质:
Sa (t )dt 2
0
(1.9)
Sa(t )dt
(1.10)
第一章 信号与系统的基本概念
图 1.7 抽样信号
第一章 信号与系统的基本概念
1.2.3 阶跃信号与冲激信号
1. 单位阶跃信号 单位阶跃信号ε(t)的数学表达式为
第一章 信号与系统的基本概念
第一章
信号与系统的基本概念
1.1 信号的概念与分类 1.2 基本的连续时间信号 1.3 信号的运算与变换
1.4 系统的描述与分类
1.5 线性时不变系统的基本性质 1.6 连续时不变系统分析方法综述 1.7 信号变换与运算及系统判断的 MATLAB实现
第一章 信号与系统的基本概念
描述信号的基本方法是写出它的数学表达式, 此表达式
是时间的函数, 依据函数绘出的图像称为信号的波形。 为方便讨论, 本书中将信号与函数两名词通用。 除了用 数学表达式和波形进行描述外, 随着问题的深入, 还引用 了频谱分析、 各种变换等方式来描述和研究信号。
第一章 信号与系统的基本概念
1.1.2 信号的分类
g 2 (t ) (t ) e(t ) 2 2
(1.13b)
第一章 信号与系统的基本概念
信号与系统PPT课件
-2 o
2 t t → 0.5t 扩展
f (2 t ) 1
-1 o 1
t
f (0.5 t )
1
-4
o
4t
对于离散信号,由于 f (a k) 仅在为a k 为整数时才有意义, 进行尺 度变换时可能会使部分信号丢失。因此一般不作波形的尺度变换。
平移与反转相结合举例
例 已知f (t)如图所示,画出 f (2 – t)。 解答 法一:①先平移f (t) → f (t +2)
结论
由上面几例可看出: ①连续正弦信号一定是周期信号,而正弦序列不一定是 周期序列。 ②两连续周期信号之和不一定是周期信号,而两周期序 列之和一定是周期序列。
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E (2)信号的功率P
def
E
f(t )2 d t
P
def
lim
T
1
T
T
2
T
f(t )2 d t
2
若信号f (t)的能量有界,即 E <∞ ,则称其为能量有限信号, 简称能量信号。此时 P = 0
若信号f (t)的功率有界,即 P <∞ ,则称其为功率有限信号, 简称功率信号。此时 E = ∞
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。
《信号与系统》第一章课件
x(t)
x[n]
时间t连续取值
序号 n 取零和整数
信号的描述:
连续时间信号 x(t ) x(t1, t2 )..... 离散时间信号 x[n] x[n1, n2 ]....
鸟鸣声的时域波形,其幅值是时间的一元函数
心电图 —— 幅值是时间的一元函数
C(m, n)
图片上: (m, n) 是像素的位置 C是 {R,G, B}的函数
二. 周期信号与非周期信号:
周期信号:x(t ) = x(t + T ) x[n] = x[n + N ]
满足此关系的正实数(正整数)中最小的一个,
称为信号的基波周期 T0( N0 )。
x(t ) = C 可视为周期信号,但基波周期没有
确定的定义。
x[n] = C 可以视为周期信号,基波周期 N0 =1
−T
•离散时间情况下:
∑ P∞
=
lim
N →∞
1 2N +1
N x[n] 2
n=−N
三类重要信号:
1. 能量信号—总能量有限:
E∞ < ∞, P∞ = 0
2. 功率信号—总能量无限平均功率有限:
E∞ = ∞, 0 < P∞ < ∞
3. 信号的总能量和平均功率都是无限的:
E∞ = ∞, P∞ = ∞
对复信号而言:
x(t) = x[n] =
x*(−t) x*[−n]
则称该信号为共轭偶信号
x(t) x[n]
= =
− −
x* (−t ) x*[−n]
则称为共轭奇信号
任何信号都能分解成一个偶信号与 一个奇信号之和
对实信号有: x(t ) = xo (t ) + xe(t )
信号与系统第一章
0 t ≠ 0 δ (t) = 和 ∞ t = 0
∫
∞
∞
δ (t)dt =1
3. 复指数信号(complex exponential signal)
f (t) = est
s = σ + jω 为复数,称复频率.
由于复指数信号能概括多种情况,所以可利用它来描述多种 基本信号,如直流信号,指数信号,等幅,增幅或减幅正弦 或余弦信号,因此,它是信号与系统分析中经常遇到的重要 信号. 上面我们介绍了几种最基本的信号,接着来介绍有关信号的 各种运算. 1.2 信号的运算 1.2.1 信号的相加与相乘 两个信号相加(相乘)可得到一个新的信号,它在任意时刻 的值等于两个信号在该时刻的值之和(积).信号相加与相 乘运算可以通过信号的波形 ( 或信号的表达式 ) 进行.
信号的特性可以从两个方面来描述,即时间特性和频率特性. 信号可写成数学表达式,即是时间 t 的函数,它具有一定的 波形,因而表现出一定波形的时间特性,如出现时间的先后, 持续时间的长短,重复周期的大小及随时间变化的快慢等. 另一方面,任意信号在一定条件下总可以分解为许多不同频 率的正弦分量,即具有一定的频率成份,因而表现为一定波 形的频率特性,如含有大小不同频率分量,主要频率分量占 有不同的范围等. 信号的形式所以不同,就因为它们各自有不同的时间特性和 频率特性,而信号的时间特性和频率特性有着对应的关系, 不同的时间特性将导致不同的频率特性的出现. 1.1.2 信号的分类 对于各种信号,可以从不同的角度进行分类. 1.确定信号和随机信号
信号与系统
沈元隆 周井泉
第一章
第1章 信号与系统的基本概念 1.1 信号的描述及分类 1.2 信号的运算 1.3 系统的数学模型及其分类 1.4 系统的模拟 1.5 线性时不变系统分析方法概述 习题1
信号与系统 第一章_绪论(青岛大学)小白发布
∫
∞
−∞ ∞
Sa (t )dt = π Sa 2 (t )dt = π
∫
−∞
另外一个类似的函数:
sin π t sinc( t ) = πt
§1.3 信号的运算
(一)对自变量进行的运算: 移位、反褶与尺度 对自变量进行的运算: 移位、 1. 移位: f (t ) → f (t ± t0 ) 移位:
t
t
t
sin (Ωt ) + sin (8 Ωt )
× sin ( Ωt ) sin (8 Ωt )
t
t
反相点
§1.4 阶跃信号与冲激信号 奇异信号: 奇异信号:
(一)单位斜变信号tu(t) (二)单位阶跃信号 u(t) (三)单位冲激信号δ (t) (四)冲激偶信号δ ' (t)
(一)单位斜变信号tu(t)
(3) cos(3n − )
当 当
2π
2π
π
ω0
为有理数时, 为周期序列; 为有理数时,sin(ω0n) 为周期序列; 为无理数时, 为非周期序列。 为无理数时,sin(ω0n) 为非周期序列。
2π 为无理数, 为无理数, 3
非周期序列
4
ω0
4.能量(有限)信号与功率(有限)信号 能量(有限)信号与功率(有限)
2.信号的传输、 2.信号的传输、交换和处理 信号的传输
信号传输(Transmission)
——古代烽火传送边疆警报 ——击鼓、信鸽、旗语等 击鼓、信鸽、 ——电信号传输(19世纪开始): 电信号传输( 世纪开始 世纪开始):
1837年莫尔斯发明了电报 年莫尔斯发明了电报 1876年贝尔发明了电话 年
信号系统第一章信号与系统PPT课件
系统具有输入、输出、 转换、反馈等基本特 性。
系统的分类
01
根据系统的特性,可以 将系统分为线性系统和 非线性系统。
02
03
04
根据系统的动态特性, 可以将系统分为时不变 系统和时变系统。
根据系统的参数是否随时 间变化,可以将系统分为 连续系统和离散系统。
根据系统的功能和用途,可 以将系统分为控制系统、信 号处理系统、电路系统等。
控制系统中的信号处理
01
02
03
信号采集与转换
将物理量转换为电信号, 以便进行后续处理和控制。
信号处理算法
如PID控制、模糊控制等, 对采集到的信号进行计算 和分析,以实现系统的自 动控制。
信号反馈与调节
将系统的输出信号反馈给 控制器,通过调节输入信 号来控制系统的运行状态。
图像处理中的信号处理
变化规律是确定的,例如正弦波;随机 续变化的信号,例如声音的波形;数字
信号则是指信号的变化规律是不确定的, 信号则是指幅度离散变化的信号,例如
例如噪声。
计算机中的进制数。
02
系统的定义与分类
系统的基本概念
系统是由相互关联、 相互作用的若干组成 部分构成的有机整体。
系统可以用于描述自 然界、工程领域、社 会现象等各种领域中 的事物。
冲激响应与阶跃响应
冲激响应
系统对单位冲激信号的响应,反 映了系统对单位冲激信号的传递 特性。
阶跃响应
系统对单位阶跃信号的响应,反 映了系统对单位阶跃信号的传递 特性。
卷积积分与卷积和
卷积积分
描述信号与系统的相互作用,通过将 输入信号与系统的冲激响应进行卷积 积分来计算输出信号。
卷积和
将卷积积分简化为离散时间系统的卷 积和运算,用于计算离散时间系统的 输出序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结
信号的定义
➢ 信号在数学上表示为一个或多个独立变量的函 数,包含自然界物理现象中存在的行为和特征 等信息量。 例如:电路中的电压和电流信号,语音信号等。
返回
系统的定义
➢系统是若干相互间联系的事物组合而成并 且具有特定功能的整体。 例如:通信系统、控制系统等。
输入信号 x(t)
系统
传输或处理
x(t )
t
01 2 (a)
x(t 1)
t
1 0 1
(b)
返回
自变量变换举例
x(t+1)反褶过程如下:
x(t )
t
01 2 (a)
x(t 1)
t
1 0 1
(b)
x(t 1)
t
1 0 1
(c)
返回
自变量变换举例
x(-t& )
t
01 2 (a)
x(t 1)
t
1 0 1
(b)
2
T0
1
或者
f0
T0
周期复指数信号
欧拉公式:
e j0t cos(0t) j sin(0t)
或者
e j0t cos(0t) j sin(0t)
c os (0t )
1 2
(e j0t
e j0t )
s in(0t )
1 2j
(e j0t
e j0t )
周期复指数信号
进一步推导:
Acos(0t )
x(t) Ceat e j0t
令a=jω0 , C=1 则x(t)为周期函数
T为周期
x(t) e j0t
e e e j0 (tT )
j0T j0t
则: e j0T 1
周期复指数信号
e j0T 1
T 2 k 0
基波周期: T0 2 /0
基波频率定义如下:
k=0, ±1, ±2,…
0
A (e j (0t ) 2
e j (0t ) )
A (e j e j0t e j e j0t ) Re{ Ae } j(0t )
2
A s in( 0t
)
A 2j
(e j (0t )
e j (0t ) )
A (e j e j0t e j e j0t ) Im{ Ae j(0t )} 2j
x(t) ak e jk0t k N
返回
一般复指数信号
➢一般复指数信号 最一般情况下的复指数信号可以借助已 经讨论过的实指数信号和周期复指数信 号来给予表示和说明。如:
x(t) Ceat
如果 C 和a 为复数, 则 x(t)为复指数信号。
一般复指数信号
通常用极坐标表示C ,用直角坐标表示a。 如:
3. 股票市场指数索引
返回
信号的描述
➢信号的描述方法主要有以下三种: 1. 数学函数描述:
x(t) sin(100t) x[n] cos(0.2n) 2. 图像描述:
信号的描述
3. 对离散信号而言的序列描述: x[n] = {…, 0, 0.1, 0.23, -1.2, 1, 2, …}
返回
尺度变换
x(t)
x(2t)
x(0.5t)
X(t)经过尺度变换后的图象变化
返回
自变量变换举例
例 1.1, 1.2, 1.3 :给定信号x(t), 求x(-3t+1)。
解答:
步骤:
x(t )
x(t) → 时移 → x(t+1)
t
x(t+1) → 反褶 → x(-t+1)
01 2 (a)
x(-t+1) → 尺度变换 → x(-3t+1)
主要内容
➢1.3, 1.4 典型信号 1.正弦信号 2.指数信号 3.单位冲激信号和单位阶跃信号
主要内容
➢1.5 连续时间和离散时间系统 1.连续时间和离散时间系统 2.系统的举例 3.系统的互联
主要内容
➢1.6 系统的基本性质
1.记忆和无记忆性 2.可逆性和可逆系统 3.因果性 4.稳定性 5.时不变性 6.线性
课程框架
第一章: 信号与系统 ➢建立信号与系统的基本概念 第二章: 线性时不变系统 ➢介绍线性时不变系统在时域上的理论和
分析方法。 ➢重点是卷积理论。
系统
x(t)
y(t)
课程框架
第三、四章:连续时间付立叶级数和变换 ➢重要的信号分析方法 第六章:信号与系统的时域和频域特性 ➢注意分析方法的掌握 第七章: 采样 ➢采样是模拟信号与数字信号之间的桥梁。
课程框架
第八章: 通信系统 ➢付立叶变换的应用 第九章:拉普拉斯变换 ➢简称拉氏变换,是信号与系统中的重要
分析工具。
第一章
信号与系统
主要内容
➢1.1 连续时间和离散时间信号 1 信号的定义 2 系统的定义 3 连续时间和离散时间信号 4 信号的描述 5 信号的举例 6 小结
主要内容
➢1.2 自变量的变换 1.时移 2.反褶 3.尺度变换 4.举例 5.周期信号 6.奇偶信号
➢正弦信号:
其中:
x(t) Acos(0t )
A : 幅值
φ: 相位,单位为弧度
ω0: 角频率,单位弧度/秒
返回
1.3 指数信号和正弦信号
➢连续时间复指数信号
x(t) Ceat
其中, C和 a为参数,通常为复数, 根据这些 参数值的不同,复指数信号具有不同特征:
实指数信号 周期复指数信号 谐波关系 一般复指数信号 举例
信号与系统
奥本海姆
教师:黄松柏
E-mail: huangsongbai78@
电子信息工程系
引言
➢概述: 信号与系统是一门非常重要的基础课 程,其基本理论,基本概念和分析方 法是我们专业的基础。
引言
➢目的: 讨论和研究确定性信号经过线性时不 变系统传输与处理的基本概念和基本 理论和分析方法。
x(t)
x1 (t )
t
t
T
T
x(t) x1(t kT)
k
周期信号
对离散时间信号而言,如果满足
x[n] x[n kN]
则具有周期性。 其中,k , N都为整数 ,N为周期。
x[n]
x1[n]
n
n
N
N
x[n] x1[n kN]
k
周期信号
➢基波周期和基波频率 基波周期:周期信号的最小周期。
这一章,我们用以下方法描述系统: ➢系统框图 ➢数学方程 分析研究了系统的基本性质以及这些性
质的证明方法。
总结
➢重点:线性性,时不变性,因果性,稳 定性。
➢同时满足线性性和时不变性的系统称为 LTI 系统。
➢本书主要重点讨论LTI 系统,因为现实 中的很多物理过程都可以用LTI 系统来 描述。
作业
小结
➢ 通常来讲,信号包含信息量。 ➢ 可以用数学函数,图象以及序列来描述
信号。 ➢ 连续时间信号的自变量是连续的,但函
数值可以离散。
小结
➢离散时间信号的自变量是离散的。 ➢对某些离散时间信号而言,其自变量本来
就是离散的,但对有些离散时间信号而言, 可以由连续时间信号进行采样得到。
返回
时移
➢时移 原信号为:x(t) 时移信号为:x(t t0 ) t0 为位移量, t0 >0
基波频率:基波周期的倒数。
x(t) x(t kT0 )
0
2
T0
弧度 / s
x[n] x[n kN0 ]
0
2
N0
弧度
返回
奇偶信号
1.2.3 奇偶信号 一个实信号可以描述为奇信号和偶信号之和。
x(t) xev(t) xod (t)
xev (t )
1 2
x(t)
x(t)
xod
(t)
1 2
x(t)
x(t 1)
x(t 1)
t
1 0 1
(c)
x(3t 1)
t
1 0 1
(c)
1 01
33
t (d) 返回
实指数信号
➢实指数信号 C 和a 为实数
x(t) Ceat 当 a>0, x(t) 值递增。 当 a<0, x(t) 值递减。 当 a=0, x(t) 值保持不变。
返回
周期复指数信号
➢周期复指数信号 假定 a 为纯虚数,
1.3 指数信号和正弦信号
➢离散时间复指数信号 离散时间复指数信号一般表达式如下:
x[n] C n
和连续时间复指数信号一样,基于参数 C 和α的不同, 信号具有不同特性。
1.3 指数信号和正弦信号
时间离散复指数信号一般表达式如下:
x[n] C n
实指数信号 正弦信号 一般复指数信号 周期性 谐波关系
x(3t 1)
t
1/ 3 01/ 3
自变量变换举例
给定一个连续时间信号x(t), 求x(at+b) 的步骤如下:
➢ 求 x(t+b) ---时移 ➢ 求 x(-t+b) ----反褶
若 a<0 ➢ 求 x(at+b) ---根据 |a|值压缩或拓展
返回
自变量变换举例
x(t)左移一个单位过程如下:
增长因子为: r>0
C ert
r<0
返回
1.3.1 连续时间复指数信号
例1.5 给定一个信号: x(t) e j2t e j3t
把其表示为单一的复指数信号和单一的 正弦信号乘积为:
x(t) 2 cos(0.5t)e j2.5t
返回
1.3.1 连续时间复指数信号
解答: x(t) 可表示为: