翻折专题(1)

合集下载

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年填空题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年填空题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年填空题版答案解析答案解析答案解析答案解析2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题1.(2020苏州.七上期末) 将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=________°.考点: 翻折变换(折叠问题);2.(2020扬州.七上期末) 如图,一个宽度相等的纸条按如图所示方法折叠压平,则∠1的度数等于________°.考点: 翻折变换(折叠问题);3.(2020长清.七上期末)将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,若∠CBD =66°,则∠ABE =________.考点: 翻折变换(折叠问题);4.(2020长兴.七上期末) 如图,射线OC 平分角形纸片的∠AOB ,若把∠AOB 沿射线OC 对折成∠COB(OA 与OB 重合),从点O 引一条射线OE ,使∠BOE= ∠EOC ,再沿射线OE 把角剪开,若把纸片展开后得到的3个角中最大的一个角为76°,则∠AOB= ________。

考点: 角的运算;翻折变换(折叠问题);5.(2020南京.七上期末) 把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62 ,则∠DEF =________ .答案解析答案解析答案解析答案解析6.(2019西湖.七上期末) 在数学拓展课上,小林发现折叠长方形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在CD 边上的点E 处,折痕为AF,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH,点H 在CD 边上.若AD=6,AB=则∠HAF=________,GE=________.考点: 角的大小比较;翻折变换(折叠问题);7.(2019鄞州.七上期末) 如图,将长方形纸片沿直线AB 折叠,若 ∠1=40° ,则∠2的度数是________.考点: 翻折变换(折叠问题);8.(2019铁西.七上期末) 如图,将长方形纸片沿AC 折叠,使点B 落在点 处,CF平分 则∠ACF 的度数为________.考点: 翻折变换(折叠问题);9.(2019皇姑.七上期末) 如图,把一张长方形纸条按如图的方式折叠后量得∠AOB '=110°,则∠B 'OC=________.考点: 翻折变换(折叠问题);10.(2019锦州.七上期末) 如图,将一张长方形纸片的角A ,角E 分别沿BC ,BD 折叠,点A 落在A′处,点E 落在边BA′上的E′处,则∠CBD 的度数是________.2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:。

勾股定理的翻折问题(一)

勾股定理的翻折问题(一)

勾股定理的翻折问题(一)勾股定理的翻折问题引言勾股定理是数学中的基本定理之一,它描述了直角三角形中三边关系的定理。

而“勾股定理的翻折问题”则是指在勾股定理的基础上,通过将定理中的元素进行翻折、转化或推广,来探讨更多有趣的数学问题。

相关问题以下是勾股定理的翻折问题的一些相关问题:1.翻折证明定理: 如何通过翻折的方法来证明勾股定理?这个问题可以引导我们思考证明方法的灵活性,也有助于对勾股定理的理解。

2.翻折应用: 除了证明定理,我们是否可以通过翻折的方法应用勾股定理解决其他几何问题?通过翻折,我们能否得到更多的几何性质?这个问题可以拓宽我们对勾股定理的应用范围。

3.翻折推广: 能否将勾股定理中的三角形翻折推广到其他多边形?通过翻折的方法,我们能否得到其他几何图形的边长关系和角度关系?这个问题可以引出更多几何形状的特性和定理。

4.几何拼贴: 是否可以利用翻折的方法构建出更多有趣的几何拼贴?通过翻折的方式,我们能否创造出新的几何形状、图案和艺术作品?这个问题可以在美学和创意领域引发讨论。

解释说明勾股定理的翻折问题是一种通过对定理中的元素进行折叠、转化和推广来探索更多数学问题的方法。

通过翻折,我们可以在勾股定理的基础上发现新的性质、解决其他几何问题,并且在美学和艺术领域中创造出有趣的图案和作品。

这些相关问题的探讨和解答不仅可以拓宽我们对勾股定理的理解和应用,还能够培养我们的数学思维、创造力和美学观察力。

综上所述,勾股定理的翻折问题是一个具有挑战性和创造性的数学探索领域,通过对相关问题的研究,我们可以进一步认识和应用勾股定理,同时也可以在艺术和美学领域中发现新的可能性。

初中数学翻折教案

初中数学翻折教案

教案:初中数学——翻折变换一、教学目标:1. 让学生理解翻折变换的定义及基本性质。

2. 培养学生运用翻折变换解决实际问题的能力。

3. 培养学生的空间想象能力和抽象思维能力。

二、教学内容:1. 翻折变换的定义及基本性质。

2. 翻折变换在实际问题中的应用。

三、教学重点与难点:1. 翻折变换的定义及基本性质。

2. 如何在实际问题中运用翻折变换。

四、教学过程:1. 导入:利用多媒体展示一些生活中的翻折现象,如打开书本、折叠纸张等,引导学生关注翻折变换。

2. 新课讲解:(1)翻折变换的定义:解释翻折变换的概念,即在平面内,将一个图形沿着某条直线折叠,使得折叠前后的图形重合。

(2)翻折变换的基本性质:① 翻折变换不改变图形的大小和形状。

② 翻折变换的轴线是对称轴,图形关于轴线对称。

③ 翻折变换的对应点、对应线段、对应角相等。

(3)翻折变换在实际问题中的应用:举例说明翻折变换在实际问题中的应用,如制作几何模型、展开平面图等。

3. 课堂练习:让学生动手进行一些翻折变换,观察图形的变化,加深对翻折变换的理解。

4. 拓展提高:引导学生思考如何将翻折变换应用于实际生活中,提高学生的实际应用能力。

5. 课堂小结:总结本节课所学内容,强调翻折变换的定义、基本性质及实际应用。

五、课后作业:1. 完成课后练习题,巩固翻折变换的基本性质。

2. 举例说明翻折变换在实际问题中的应用,如制作几何模型、展开平面图等。

六、教学反思:在课后对教学效果进行反思,了解学生在掌握翻折变换方面的困难,针对性地调整教学方法,提高教学效果。

七、教学评价:通过课堂表现、课后作业和拓展应用等方面,评价学生在翻折变换方面的掌握程度。

沪教版数学几何专题-圆锥的翻折(一)

沪教版数学几何专题-圆锥的翻折(一)

沪教版数学几何专题-圆锥的翻折(一)
概述
本文档将介绍沪教版数学几何专题中的圆锥的翻折内容。

圆锥
是一个常见的几何形体,翻折是一种常用的操作方式,通过本文的
研究,将能够掌握圆锥的翻折方法,并应用到实际问题中。

圆锥的基本概念
圆锥是指由一个封闭曲线(直线或非直线)绕其一个定点旋转
一周所形成的几何体。

圆锥有两个重要的部分,即底面和侧面。


面是一个封闭曲线,可以是一个圆或其他类型的曲线。

侧面是由底
面上的所有点与定点连接而成的曲面。

圆锥的翻折方法
圆锥的翻折是将其侧面沿着一条封闭曲线折叠起来,使得圆锥
从原来的形状转变为一个新的形状。

翻折可以通过以下步骤进行:
1. 将圆锥的侧面沿着指定的封闭曲线剪开,得到一条平面曲线。

2. 沿着新得到的平面曲线将圆锥侧面进行折叠。

3. 将折叠后的侧面与原来的底面连接,形成一个新的几何体。

圆锥的翻折应用
圆锥的翻折方法在日常生活和工程实践中有广泛的应用。

以下是一些常见的应用场景:
- 纸杯的制作:将纸片按照圆锥的翻折方法进行折叠,可以制作出纸杯的形状。

- 锥形帽的制作:将布料按照圆锥的翻折方法进行折叠,可以制作出锥形帽的形状。

总结
通过本文的学习,我们了解了沪教版数学几何专题中的圆锥的翻折内容。

圆锥是一个由底面和侧面组成的几何体,翻折是一种将圆锥从原来形状转变为新形状的方法。

圆锥的翻折在实际生活和工程实践中有各种应用场景。

通过掌握圆锥的翻折方法,我们可以应用到解决实际问题中。

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版

七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版答案答案答案答案2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题~~第1题~~(2020扬州.七上期末) 将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF 的度数为( ).A . 40°B . 45°C . 56°D . 37°考点: 正方形的性质;翻折变换(折叠问题);~~第2题~~(2020建邺.七上期末) 下列图形经过折叠不能围成棱柱的是( ) A . B . C . D .考点: 翻折变换(折叠问题);~~第3题~~(2020扬州.七上期末) 一张长方形纸片的长为m ,宽为n (m >3n )如图1,先在其两端分别折出两个正方形(ABEF 、C DGH )后展开(如图2),再分别将长方形ABHG 、CDFE 对折,折痕分别为MN 、PQ (如图3),则长方形MNQP 的面积为( )A . nB . n (m ﹣n )C . n (m ﹣2n )D .考点: 翻折变换(折叠问题);~~第4题~~(2019天台.七上期末) 把一张长方形纸片按如图所示折叠2次,若∠1=50°,则∠2的度数为( )A .B .C .D .考点: 平行线的性质;翻折变换(折叠问题);~~第5题~~(2019黄岩.七上期末) 一张长为a ,宽为b 的长方形纸片(a >3b ),分成两个正方形和一个长方形三部分(如图①).现将左边两部分图形对折,使EF 与GH 重合,折痕为AB (如图②),再将右边两部分图形对折,使MN 与PQ 重合,折痕为C D (如图③),则图④中长方形ABCD 的周长为( )2答案答案答案答案A . 4b B . 2(a ﹣b ) C . 2a D . a+b考点: 列式表示数量关系;矩形的性质;正方形的性质;翻折变换(折叠问题);~~第6题~~(2019长春.七上期末) 如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C′处,BC′交AD 于E ,∠DBC =22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )A . 6个B . 5个C . 4个D . 3个考点: 矩形的性质;翻折变换(折叠问题);~~第7题~~(2019大庆.七上期末) 如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有( )①DF 平分∠BDE ;②△BFD 是等腰三角形;;③△CED 的周长等于BC 的长.A . 0个;B . 1个;C . 2个;D . 3个.考点: 等腰直角三角形;翻折变换(折叠问题);~~第8题~~(2019牡丹江.七上期末) 如图所示,将长方形ABCD 的一角沿AE 折叠,若∠BAD′=40°,那么∠EAD′的度数为( )A . 20B . 25°C . 40°D . 50°考点: 翻折变换(折叠问题);~~第9题~~(2019如皋.七上期末) 如图,将长方形纸片进行折叠,ED ,EF 为折痕,A 与A'、B 与B'、C 与C'重合,若∠AED=25°,则∠BEF 的度数为( )A . 75°B . 65°C . 55°D . 50°答案答案考点: 翻折变换(折叠问题);~~第10题~~(2019句容.七上期末) 一张长方形纸片的长为m ,宽为n (m >3n )如图1,先在其两端分别折出两个正方形(ABEF 、C DGH )后展开(如图2),再分别将长方形ABHG 、CDFE 对折,折痕分别为MN 、PQ (如图3),则长方形MNQP 的面积为( )A . nB . n (m ﹣n )C . n (m ﹣2n )D .考点: 列式表示数量关系;翻折变换(折叠问题);2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题答案1.答案:D2.答案:B3.答案:A4.答案:B5.答案:A6.答案:B7.答案:C8.答案:B9.答案:B10.答案:A 2。

沪教版数学几何专题-圆环的翻折(一)

沪教版数学几何专题-圆环的翻折(一)

沪教版数学几何专题-圆环的翻折(一)
简介
本文档旨在介绍沪教版数学教材中的几何专题——圆环的翻折(一)。

圆环的翻折是几何学中重要的概念之一,通过理论和实际问题的应用,帮助学生加深对圆环性质的理解。

内容
1. 圆环的定义:圆环是由两个同心圆和它们之间的曲线组成的图形。

2. 圆环的性质:
- 内圆和外圆的半径分别为r和R,其中R>r。

- 圆环的面积:S = π(R^2 - r^2)
- 圆环的周长:C = 2π(R + r)
- 圆环的宽度:w = R - r
- 圆环的直径:d = 2(R - r)
3. 圆环的翻折方法及步骤:
- 将圆环按照宽度切割成若干条带状。

- 将每条带状折叠或卷起。

- 将每条带状再次展开,并依次将它们叠放起来。

4. 圆环的应用:
- 圆环的翻折方法可以用于纸制手工制品的设计,如蜜蜂蛋糕盒、点读笔套等。

- 圆环的性质理解及应用可以推广到更复杂的几何形状的研究中。

总结
通过研究圆环的翻折,学生可以加深对圆环的理解,并将其应用于实际问题中。

希望这篇文档能够帮助学生更好地掌握沪教版数学几何专题中的圆环知识。

1、2020重庆中考数学三角形翻折变换专题一

1、2020重庆中考数学三角形翻折变换专题一

三角形翻折变换专题训练一1、 如图,在△ABC 中,∠B =90°,AB =4,BC =6,点E 为BC 的中点,将△ABE2、 沿AE 折叠,使点B 落在点F 处,连CF ,则CF 的长为( ).13.5A 14B.5 17C.5 18D.5 2.如图,在△ABC 中,AB =BC =12,∠B =90°,以EF 为折痕折叠,使A 与BC上一点D 重合,若BD :DC =2:1,则AE 的长是( ).8A25B.3 26C.3 D.9 3.如图,Rt △ABC 中,∠C =90°,AC =8,BC =12,点D 为BC 边上的中点,将△ACD 沿AD 对折,使点C 落在同一平面内的点C '处,连接BC '',则BC ' 的长为( ).A .325 B.5 CD .3654.如图,在等腰三角形Rt ABC V 中,0=90ABC ∠,1AB AC ==,点D 是AC 上一点,0=30CBD ∠,将BCD V 沿BD 折叠至BC D 'V ,连接AC ',则AC D 'V 的面积为( )ACD 5、已知Rt △ACB 中,点D 为斜边AB 的中点,连接CD ,将△DCB 沿直线DC翻折,使点B 落在点E 的位置,连接DE 、CE 、AE ,DE 交AC 于点F ,若BC =6,AC =8,则AE 的值为( )A .B .C .D . 6、如图,等边三角形ABC 边长为5、D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A . B . C .3 D .2第3题图第1题图第2题图第4题图第5题图第6题图7、如图的三角形纸片中,BC=12cm,∠C=30°,折叠这个三角形,使B落在边AC上,且DF=DC,折痕为EF,那么BF的长为()cm.A.2B.4﹣3 C.6﹣6 D.68、如图,ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为()A.2B.3C.D.9、如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF 的长为()A.B.C.D.10.如图,在△ABC中,AC=BC,∠C=90°,点D在BC上,且CD=2DB,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.B.C.D.11.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,则AE的长度为().4.3A5.3B3.2C6.5D12. 如图,在Rt△ACB中,∠ACB=90°,点D是边AB的中点,连接CD,将△BCD沿直线CD翻折得到△ECD,连接AE,若AC=5,CD=6.5,则线段AE的长为()A.B.9 C.D.13.如图,△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,将△ACD沿CD翻折得到△ECD,连接AE,BE,则线段BE的长等于()A.B.C.D.214、如图,在Rt△ACB中,∠ACB=90°,AC=BC,点D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE,若,AD=2BD,则CF等于()A.B.C.D.15.如图,已知△ABC中,∠CAB=∠B=30°,AB =,点D在BC边上,把△ABC沿AD翻折,使AB与AC重合,得△AED,则BD的长度为()A .B .C .D .16、如图,已知△ABC中,∠BAC=120°,A D为边BC上的中线,将△ACD沿AD翻折得到△AED,BF平行于AC交AE于F,若AC==15,AB=5,则BF的长为()A.12B.6 C,9 D.8B C17、如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为().3 A3.2B.23C或3.22D或三角形翻折变换专题训练一答案解析1、如图,在△ABC 中,∠B =90°,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在点F 处,连CF ,则CF 的长为( ).13.5A 14B.5 17C.5 18D.5解:连接BF ,交AE 于H ,如图所示:∵BC =6,点E 为BC 的中点∴BE =3,又∵AB =4,∴AE ==5,∴BH ==,则BF =2BH =,∵FE =BE =EC ,∴∠BFC =90°,∴CF ==. 2.如图,在△ABC 中,AB =BC =12,∠B =90°,以EF 为折痕折叠,使A 与BC 上一点D 重合,若BD :DC =2:1,则AE 的长是( C ).8A25B.3 26C.3 D.9 解:∵=,AB =BC =12,∴BD =8,设ED =x ,则BE =12﹣x ,在Rt △BDF 中,x 2=(12﹣x )2+82,解得AE =x =.3.如图,Rt △ABC 中,∠C =90°,AC =8,BC =12,点D 为BC 边上的中点,将△ACD 沿AD 对折,使点C 落在同一平面内的点C '处,连接BC '',则BC ' 的长为( D ).A . 325 B.5 CD .365解:如图,连接CC ',将ACD ∆沿AD 对折,使点C 落在同一平面内的点C '处AD CC '∴⊥,CN C N '=,点D 为BC 边上的中点162CD BC ∴==10AD ∴= 1122ACD S AC CD AD CN ∆=⨯⨯=⨯⨯ 4.8CN ∴=185DN ∴= CN C N '=,CD DB = 3625C B DN '∴== 4.如图,在等腰三角形Rt ABC V 中,0=90ABC ∠,1AB AC ==,点D 是AC 上一点,0=30CBD ∠,将BCD V 沿BD 折叠至BC D 'V ,连接AC ',则AC D 'V 的面积为( A )ACD5、已知Rt △ACB 中,点D 为斜边AB 的中点,连接CD ,将△DCB 沿直线DC 翻折,使点B 落在点E 的位置,连接DE 、CE 、AE ,DE 交AC 于点F ,若BC =6,AC =8,则AE 的值为( )A .B .C .D .解:连接BE 交CD 于点G ,∵Rt △ACB 中,AB ==10, ∵点D 为斜边AB 的中点,∴CD =AD =BD =AB =5,设DG x =,在△DBG 中,222BG BD DG =-,在△CBG 中,222BG BC CG =-∴22225=6(5)x x ---∴7=5x ,75DG =∴DM ==4,由折叠得,CD 垂直平分BE ,∴BG EG =∵点D 为斜边AB 的中点,∴AE =2DG =,故选:B . 6、(2019•福州二模)如图,等边三角形ABC 边长为5、D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .B .C .3D .2解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =5,∵沿DE 折叠A 落在BC 边上的点F 上,∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y ,∵BF =2,BC =5,∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC +∠FEC =120°,∠DFB +∠EFC =120°,∴∠DFB =∠FEC ,∵∠C =∠B ,∴△DBF ∽△FCE , ∴,即,解得:x =,即BD =,故选:B7、(2018•九龙坡区校级模拟)如图的三角形纸片中,BC =12cm ,∠C =30°,折叠这个三角形,使B 落在边AC 上,且DF =DC ,折痕为EF ,那么BF 的长为( )cm .A .2B .4﹣3C .6﹣6D .6解:过点D 作DH ⊥BC 于H ,∵折叠这个三角形,使B 落在边AC 上,∴DF =BF ,∵DF =DC ,DH ⊥BC ∴∠C =∠DFC =30°,FH =CH ,∴DH =DF ,FH =DH =DF ,∴CF=DF,∴BC=BF+CF=BF+BF=12cm,∴BF=(6﹣6)cm故选:C.8、(2019•沙坪坝区校级月考)如图,ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为(C)A.2B.3C.D.解:过B′作B′H⊥AD于H,∵∠B′AE=45°,∴△AB′H是等腰直角三角形,∴AH=B′H=AB′,∵将△ABC沿AC边折叠得到△AB′C,∴AB′=AB=6,∠AB′E=∠B=75°,∴∠AEB′=60°,∴AH=B′H=×6=3,∴HE=B′H=,B′E=2,∵ABCD中,AD∥BC,∴∠DAC=∠ACB,∵∠ACB=∠ACB′,∴∠EAC=∠ACE,∴AE=CE,∵∠AB′E=∠B=∠D,∠AEB′=∠CED,∴△AB′E≌△CDE(AAS),∴DE=B′E=2,∴AD=AE+DE=3+3,∵∠AEB′=∠EAC+∠ACE=60°,∴∠ACE=∠CAE=30°∴∠BAC=75°,∴AC=AD=BC,∠ACB=30°,过A作AG⊥BC于G,∴AG=AC=.9、(2019秋•南岸区校级月考)如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=(C)A.B.C.D.解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,10.如图,在△ABC中,AC=BC,∠C=90°,点D在BC上,且CD=2DB,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.B.C.D.解:∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=2,CF=x,则CA=CB=3,∴DF=F A=3﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+4=(3﹣x)2,解得:x=,∴sin∠BED=sin∠CDF===.故选:A.11.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,则AE的长度为(B)4.3A5.3B3.2C6.5D解:作DH⊥AB于H,可得等腰Rt△DBH,由AB=4,可知BC=sin45°×AB=×4=2,于是BD=,BH=DH=×=1,设AE=DE=x,则EH=4﹣1﹣AE=3﹣x,在Rt△DEH中,(3﹣x)2+12=x2,解得:x=,故AE的长度为.12. (2018春•开州区期末)如图,在Rt△ACB中,∠ACB=90°,点D是边AB的中点,连接CD,将△BCD沿直线CD翻折得到△ECD,连接AE,若AC=5,CD=6.5,则线段AE的长为().A.B.9 C.D.解:如图,延长CD交BE于点H,作CF⊥AB于F.∵在Rt△ABC中,∠ACB=90°,点D是边AB的中点,CD=6.5,∴AD=DB=CD=6.5,AB=13.∵AC=5,∴BC==12.∵S△ABC=AC•BC=AB•CF,∴×5×12=×13×CF,解得CF=.∵将△BCD沿直线CD翻折得到△ECD,∴BC=CE,BD=DE,∴CH⊥BE,BH=HE.∵AD=DB=DE,∴△ABE为直角三角形,∠AEB=90°,由折叠可得S△ECD=S△ACD,∴DC•HE=AD•CF,∵DC=AD,∴HE=CF=.∴BE=2EH=.∵∠AEB=90°,∴AE===.13.(2017秋•常熟市期末)如图,△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,将△ACD沿CD翻折得到△ECD,连接AE,BE,则线段BE的长等于()A.B.C.D.2解:如图延长CD交AE于点H,作CF⊥AB,垂足为F.∵在Rt△ABC中,AC=4,BC=3,∴AB=5.∵D为AB的中点,∴AD=BD=DC.∵AC•BC=AB•CF,∴×3×4=×5×CF,解得CF=.由翻折的性质可知AC=CE,AD=DE,∴CH⊥AE,AH=HE.∵DC=DB,BD•CF=DC•HE,∴HE=CF=.∴AE=.∵AD=DE=DB,∴△ABE为直角三角形.∴BE===.故选:A.14.(2019•历城区一模)如图,在Rt △ACB 中,∠ACB =90°,AC =BC ,点D 是AB 上的一个动点(不与点A ,B 重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接DE ,DE 与AC 相交于点F ,连接AE ,若,AD =2BD ,则CF 等于( )A . B . C . D .解:∵∠ACB =90°,由旋转知,CD =CE ,∠DCE =90°=∠ACB ,∴∠BCD =∠ACE ,∴△BCD ≌△ACE ,∴∠CAE =∠CBD =45°=∠CEF ,∵∠ECF =∠ACE ,∴△CEF ∽△CAE , ∴=,∴CE 2=CF •AC ,如图,过点D 作DG ⊥BC 于G ,∵AB =3,∴AC =BC =3, ∵AD =2BD ,∴BD =AB =,∴DG =BG =1,∴CG =BC ﹣BG =3﹣1=2,在Rt △CDG 中,根据勾股定理得,CD ==,∵△BCD ≌△ACE , ∴CE =CD =,∵CE 2=CF •AC ,∴CF ==,故选:B .15、(2018•柘城县三模)如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =6,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当△DEB 是直角三角形时,DF 的长为( D ) .3A 3.2B .23C 或 3.22D 或解:①如图1中,当∠EDB =90°,四边形ACDE 是正方形,此时CD =AC =6,∵BC ==8,∴BD =BC ﹣CD =8﹣6=2,∵tan ∠ABC ==,∴=,∴DF =. ②如图2中,当∠DEB =90°时,AC =AE =6,则BE =4,设CD =DE =x ,在Rt △BDE 中,(8﹣x )2=x 2+42,∴x =3,综上所述,满足条件的DF 的值为3或.16、如图,已知△ABC 中,∠CAB =∠B =30°,AB =,点D 在BC 边上,把△ABC 沿AD 翻折,使AB 与AC 重合,得△AED ,则BD 的长度为( )A .B .C .D .解:作CF⊥AB于点F.∵∠CAB=∠B∴AC=BC,∴BF =AB =,在直角△BCF中,BC ==2,在△CDE中,∠E=∠B=30°,∠ECD=∠CAB+∠B=60°,DE=BD,∴∠CDE=90°,设BD=x,则CD=DE=2﹣x,在直角△CDE中,tan E ===tan30°=,解得:x=3﹣.故选:B.11。

第1讲 翻折问题专题解析版

第1讲 翻折问题专题解析版

第1讲翻折问题专题解析版【例题1】如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为.【解析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点,∴DE=CD=2在Rt△DEH中,DE=2,∠HDE=60°∴DH=1,HE=,∴AH=AD+DH=5在Rt△AHE中,AE==2∵折叠,∴AN=NE=,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=2,∴BE=2∵CD∥AB,∴∠ABE=∠BEC=90°在Rt△BEF中,EF2=BE2+BF2=12+(AB﹣EF)2.∴EF=,∴sin∠EFG===,故答案为:【例题2】如图,在矩形ABCD中,AB=3,BC=4,点E是边AB上一点,且AE=2EB,点P 是边BC上一点,连接EP,过点P作PQ⊥PE交射线CD于点Q.若点C关于直线PQ 的对称点正好落在边AD上,求BP的值.【解析】过点P作PE⊥AD于点E,∴∠PEC'=90°∵矩形ABCD中,AB=3,BC=4∴∠EAB=∠B=∠C=∠QDC'=90°,CD=AB=3∴四边形CPED 是矩形 ∴DE =PC ,PE =CD =3∵AE =2EB ,∴AE =2,EB =1 设BP =x ,则DE =PC =4﹣x ∵点C 与C '关于直线PQ 对称 ∴△PC 'Q ≌△PCQ∴PC '=PC =4﹣x ,C 'Q =CQ ,∠PC 'Q =∠C =90° ∵PE ⊥PQ∴∠BPE +∠CPQ =90° 又∵∠BEP +∠BPE =90° ∴∠BEP =∠CPQ ∴△BEP ∽△CPQ同理可证:△PEC '∽△C 'DQ ∴,,∴CQ ==x (4﹣x )∴C 'Q =x (4﹣x ),DQ =3﹣x (4﹣x )=x 2﹣4x +3 ∴,∴C 'D =3x ,EC '=∵EC '+C 'D =DE ,∴,解得:x 1=1,x 2=∴BP 的值为1或【例题3】如图,矩形OABC 中,OA =4,AB =3,点D 在边BC 上,且CD =3DB ,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点A ′恰好落在边OC 上,则OE 的长为_________.【解析】连接A ′D ,AD , ∵四边形OABC 是矩形,∴BC =OA =4,OC =AB =3,∠C =∠B =∠O =90°, ∵CD =3DB ,∴CD =3,BD =1, ∴CD =AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A ′恰好落在边OC 上, ∴A ′D =AD ,A ′E =AE , 在Rt △A ′CD 与Rt △DBA 中,,∴Rt △A ′CD ≌Rt △DBA (HL ), ∴A ′C =BD =1, ∴A ′O =2,∵A ′O 2+OE 2=A ′E 2,∴22+OE 2=(4﹣OE )2, ∴OE =,【例题4】如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF的长为.【解析】连接BF ,∵BC =6,点E 为BC 的中点, ∴BE =3, 又∵AB =4, ∴AE ==5,∴BH =,则BF =,∵FE =BE =EC ,∴∠BFC =90°, 根据勾股定理得,CF ===.【例题5】如图,将边长为6的正方形纸片ABCD 对折,使AB 与DC 重合,折痕为EF ,展平后,再将点B 折到边CD 上,使边AB 经过点E ,折痕为GH ,点B 的对应点为M ,点A 的对应点为N(1)若CM =x ,则CH = (用含x 的代数式表示); (2)求折痕GH 的长.【解析】(1)∵CM =x ,BC =6, ∴设HC =y ,则BH =HM =6﹣y ,法2:亦可过E 作EG ⊥FC ;或者过F 作MN 分别垂直AD 和BC故y2+x2=(6﹣y)2,整理得:y=﹣x2+3,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,∴=,解得:HC=﹣x2+2x,故答案为:﹣x2+3或﹣x2+2x;(2)方法一:∵四边形ABCD为正方形,∴∠B=∠C=∠D=90°,设CM=x,由题意可得:ED=3,DM=6﹣x,∠EMH=∠B=90°,故∠HMC+∠EMD=90°,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,即=,解得:x1=2,x2=6,当x=2时,∴CM=2,∴DM=4,∴在Rt△DEM中,由勾股定理得:EM=5,∴NE=MN﹣EM=6﹣5=1,∵∠NEG=∠DEM,∠N=∠D,∴△NEG∽△DEM,∴=,∴=,解得:NG=,由翻折变换的性质,得AG=NG=,过点G作GP⊥BC,垂足为P,则BP=AG=,GP=AB=6,当x=2时,CH=﹣x2+3=,∴PH=BC﹣HC﹣BP=6﹣﹣=2,在Rt△GPH中,GH===2.当x=6时,则CM=6,点H和点C重合,点G和点A重合,点M在点D处,点N在点A处.MN同样经过点E,折痕GH的长就是AC的长.所以,GH长为6.方法二:有上面方法得出CM=2,连接BM,可得BM⊥GH,则可得∠PGH=∠HBM,在△GPH和△BCM中,∴△GPH≌△BCM(SAS),∴GH=BM,∴GH=BM==2.【例题6】已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图①,当∠BOP=30°时,求点P的坐标;(2)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,求m(用含有t的式子表示);(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果).【解析】(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).精品练习1.如图,在菱形纸片ABCD中,AB=15,tan∠ABC=,将菱形纸片沿折痕FG翻折,使点B落在AD边上的点E处,若CE⊥AD,则cos∠EFG的值为.【解析】如图,过点A作AH⊥BC于点H,连接BE,过点P作PE⊥AB,∵AB=15,tan∠ABC=,∴AH=9,BH=12,∴CH=3,∵四边形ABCD是菱形,∴AB=BC=15,AD∥BC,∵AH⊥BC,∴AH⊥AD,且AH⊥BC,CE⊥AD,∴四边形AHCE是矩形∴EC=9,AE=CH=3,∴BE===3,∵将菱形纸片沿折痕FG翻折,使点B落在AD边上的点E处,∴BF=EF,BE⊥FG,BO=EO=∵AD∥BC,∴∠ABC=∠P AE,∴tan∠ABC=tan∠P AE=,且AE=3,∴AP=,PE=,∵EF2=PE2+PF2,∴EF2=+(15﹣EF+)2,∴EF=,∴FO===∴cos∠EFG==,故答案为:2.如图,在菱形ABCD中,AB=5,tan D=,点E在BC上运动(不与B,C重合),将四边形AECD沿直线AE翻折后,点C落在C′处,点D′落在D处,C′D′与AB交于点F,当C′D'⊥AB时,CE长为.【解析】如图,作AH⊥CD于H,交BC的延长线于G,连接AC′.由题意:AD=AD′,∠D=∠D′,∠AFD′=∠AHD=90°,∴△AFD′≌△AHD(AAS),∴∠F AD′=∠HAD,∵∠EAD′=∠EAD,∴∠EAB=∠EAG,∴=(角平分线的性质定理,可以用面积法证明)∵AB∥CD,AH⊥CD,∴AH⊥AB,∴∠BAG=90°,∵∠B=∠D,∴tan B=tan D==,∴=,∴AG=,∴BG===,∴BE:EG=AB:AG=4:3,∴EG=BG=,在Rt△ADH中,∵tan D==,AD=5,∴AH=3,CH=4,∴CH=1,∵CG∥AD,∴=,∴CG=,∴EC=EG﹣CG=﹣=.故答案为.3.如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【解析】∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:54如图,矩形ABCD中,AB=8,BC=10,点N为边BC的中点,点M为AB边上任意一点,连接MN,把△BMN沿MN折叠,使点B落在点E处,若点E恰在矩形ABCD的对称轴上,则BM的长为5或.【解析】①当E在矩形的对称轴直线PN上时,如图1此时∠MEN=∠B=90°,∠ENB=90°,∴四边形BMEN是矩形.又∵ME=MB,∴四边形BMEN是正方形.∴BM=BN=5.②当E在矩形的对称轴直线FG上时,如图2,过N点作NH⊥FG于H点,则NH=4.根据折叠的对称性可知EN=BN=5,∴在Rt△ENH中,利用勾股定理求得EH=3.∴FE=5﹣3=2.设BM=x,则EM=x,FM=4﹣x,在Rt△FEM中,ME2=FE2+FM2,即x2=4+(4﹣x)2,解得x=,即BM=.故答案为5或.5如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【解析】∵△CDG∽△A'EG,A'E=4∴A'G=2∴B'G=4由勾股定理可知CG'=则CB'=由△CDG∽△CFB'设BF=x∴解得x=故答案为6.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G.若OE=4,则O到折痕EF的距离为2.【解析】过点G作O′G⊥OB,作AO′⊥O′G于O′,如图,连结OO′交EF于H,则四边形AOGO′为矩形,∴O′G=AO=6,∵沿EF折叠后所得得圆弧恰好与半径OB相切于点G,∴与所在圆的半径相等,∴点O′为所在圆的圆心,∴点O与点O′关于EF对称,∴OO′⊥EF,OH=HO′,设OH=x,则OO′=2x,∵∠EOH=∠O′OA,∴Rt△OEH∽Rt△OO′A,∴=,即=,解得x=2,即O到折痕EF的距离为2.故答案为2.7.如图,矩形ABCD中,AD=4,O是BC边上的点,以OC为半径作⊙O交AB于点E,BE=AE,把四边形AECD沿着CE所在的直线对折(线段AD对应A′D′),当⊙O与A′D′相切时,线段AB的长是.【解析】设⊙O与A′D′相切于点F,连接OF,OE,则OF⊥A′D′,∵OC=OE,∴∠OCE=∠OEC,∵四边形ABCD是矩形,∴∠A=∠B=A′=90°,由折叠的性质得:∠AEC=∠A′EC,∴∠B+∠BCE=∠A′EO+∠OEC,∴∠OEA′=∠B=90°,∵OE=OF,∴四边形A′FOE是正方形,∴A′E=AE=OE=OC,∵BE=AE,设BE=3x,AE=5x,∴OE=OC=5x,∵BC=AD=4,∴OB=4﹣5x,在R t BOE中,OE2=BE2+OB2,∴(5x)2=(3x)2+(4﹣5x)2,解得:x=,x=4(舍去),∴AB=8x=.故答案为:.8.如图,矩形ABCD中,AB=2BC,E是AB上一点,O是CD上一点,以OC为半径作⊙O,将△ADE折叠至△A′DE,点A′在⊙O上,延长EA′交BC延长线于F,且恰好过点O,过点D作⊙O的切线交BC延长线于点G.若FG=1,则AD=2,⊙O半径=.【解析】作OH⊥DG于H,如图,设DA=x,则AB=2x,∵△ADE折叠至△A′DE,∴DA′=DA=x,∠DA′E=∠A=90°,∴DA′与⊙O相切,在△ODA′和△OCF中∴△DOA′≌△FOC.∴DA′=CF=x,∵DG是⊙O的切线,OH⊥DG,∴H点为切点,∴DH=DA′=x,GH=GC=CF+GF=x+1,在Rt△DCG中,∵DC2+CG2=DG2,∴(2x)2+(x+1)2=(x+x+1)2,解得x1=0(舍去),x2=2,∴AD=2,设⊙O的半径为r,则OC=OA′=r,OD=2x﹣r=4﹣r,在Rt△DOA′中,∵DA′2+OA′2=DO2,∴22+r2=(4﹣r)2,解得r=,即⊙O的半径为.故答案为2,.9.如图1,在△ABC中,AC=6,BC=8,AB=10,分别以△ABC的三边AB,BC,AC为边在三角形外部作正方形ABDE,BCIJ,AFGC.如图2,作正方形ABDE关于直线AB对称的正方形ABD′E′,AE′交CG于点M,D′E′交IC于点N点D′在边IJ上.则四边形CME′N 的面积是24.【解析】∵正方形ABDE关于直线AB对称的正方形ABD′E′,∴AE′=AB=10,∠E′AB=90°,∠AE′N=90°,∵AC=6,BC=8,AB=10,∴AC2+BC2=AB2,∴△ACB为直角三角形,∴AC2=BC•MC,∴MC==,∵∠MAC=∠NAE′,∴Rt△ACM∽Rt△AE′N,∴=,即=,∴E′N=,∴四边形CME′N的面积=S△AE′N﹣S△ACM=×10×﹣×6×=24.故答案为24.10.如图,菱形ABCD中,∠A=60°,将纸片折叠,点A,D分别落在A′,D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为.【解析】设BC与D′F交于点K.CF=a,D′K=b,∵四边形ABCD是菱形,∠A=60°,∴∠C=60°,∠D′=∠D=120°,∵KF⊥CD,∴∠KFC=90°,∴∠FKC=∠BKD′=30°,∴∠KBD′=180°﹣∠D′﹣∠BKD′=30°,∴BD′=b,BK=b,KC=2a,KF=a,∵BC=CD=D′F+CF,∴b+2a=b+a+a,∴(﹣1)a=(﹣1)b,∴a=b,∴==,故答案为.11.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=﹣1.【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为:﹣1.12.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,当线段AF=AC时,BE的长为.【解析】连接AD,作EG⊥BD于G,如图所示:则EG∥AC,∴△BEG∽△BAC,∴==,设BE=x,∵∠ACB=90°,AC=3,BC=4,∴AB==5,∴==,解得:EG=x,BG=x,∵点D是边BC的中点,∴CD=BD=2,∴DG=2﹣x,由折叠的性质得:DF=BD=CD,∠EDF=∠EDB,在△ACD和△AFD中,,∴△ACD≌△AFD(SSS),∴∠ADC=∠ADF,∴∠ADF+∠EDF=×1880°=90°,即∠ADE=90°,∴AD2+DE2=AE2,∵AD2=AC2+CD2=32+22=13,DE2=DG2+EG2=(2﹣x)2+(x)2,∴13+(2﹣x)2+(x)2=(5﹣x)2,解得:x=,即BE=;故答案为:.13.在正方形ABCD中,(1)如图1,若点E,F分别在边BC,CD上,AE,BF交于点O,且∠AOF=90°.求证:AE=BF.(2)如图2,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G.若DC=5,CM=2,求EF的长.【解析】(1)如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∵∠AOF=90°,∴∠BAE+∠OBA=90°,又∵∠FBC+∠OBA=90°,∴∠BAE=∠CBF,在△ABE和△BCF中∵,∴△ABE≌△BCF(ASA).∴AE=BF.(2)由折叠的性质得EF⊥AM,过点F作FH⊥AD于H,交AM于O,则∠ADM=∠FHE=90°,∴∠HAO+∠AOH=90°、∠HAO+∠AMD=90°,∴∠POF=∠AOH=∠AMD,又∵EF⊥AM,∴∠POF+∠OFP=90°、∠HFE+∠FEH=90°,∴∠POF=∠FEH,∴∠FEH=∠AMD,∵四边形ABCD是正方形,∴AD=CD=FH=5,在△ADM和△FHE中,∵,∴△ADM≌△FHE(AAS),∴EF=AM===.14.如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,∠BFC=90°,求的值.【解析】如图,延长EF交CB于M,连接CM,∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∵将△ADE沿直线DE对折得到△DEF,∴∠DFE=∠DFM=90°,在Rt△DFM与Rt△DCM中,,∴Rt△DFM≌Rt△DCM,∴MF=MC,∴∠MFC=∠MCF,∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,∴∠MFB=∠MBF,∴MB=MC,设MF=MC=BM=a,AE=EF=x,∵BE2+BM2=EM2,即(2a﹣x)2+a2=(x+a)2,解得:x=a,∴AE=a,∴==3.15.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.【解析】(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠F AE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.16.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为23°.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD 上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;【验一验】如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.【解析】(1)如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=46°,由翻折不变性可知,∠DBE=∠EBC=∠DBC=23°,故答案为23.(2)【画一画】,如图2中,【算一算】如图3中,∵AG=,AD=9,∴GD=9﹣=,∵四边形ABCD是矩形,∴AD∥BC,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,CF==,∴BF=BC﹣CF=,由翻折不变性可知,FB=FB′=,∴DB′=DF﹣FB′=﹣=3.【验一验】如图4中,小明的判断不正确.理由:连接ID,在Rt△CDK中,∵DK=3,CD=4,∴CK==5,∵AD∥BC,∴∠DKC=∠ICK,由折叠可知,∠A′B′I=∠B=90°,∴∠IB′C=90°=∠D,∴△CDK∽△IB′C,∴==,即==,设CB′=3k,IB′=4k,IC=5k,由折叠可知,IB=IB′=4k,∴BC=BI+IC=4k+5k=9,∴k=1,∴IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC==,连接ID,在Rt△ICD中,tan∠DIC==,∴tan∠B′IC≠tan∠DIC,∴B′I所在的直线不经过点D.。

第27课时图形变换(翻折类专题一)

第27课时图形变换(翻折类专题一)

第27课时图形变换(翻折类专题一)【课标要求】折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。

折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。

折叠的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等。

折叠图形中有相似三角形,常用勾股定理。

折叠剪切问题是考察学生的动手操作问题,学生应充分理解操作要求方可解答出此类问题。

【知识要点】1. 如果一个图形沿一条直线对折,对折后的两部分能,那么这个图形就是,这条直线就是它的 .2. 如果一个图形沿一条直线折叠,如果它能与另一个图形,那么这两个图形成,这条直线就是,折叠后重合的对应点就是 .3. 如果两个图形关于对称,那么对称轴是任何一对对应点所连线段的 .4. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为______,它是由移动的和所决定.5. 平移的特征是:经过平移后的图形与原图形的对应线段,对应,图形的与都没有发生变化,即平移前后的两个图形;且对应点所连的线段.【典型例题】【例1】12.(本题满分5分)如图,在梯形纸片ABCD中,AD∥BC,AD>CD。

将纸片沿过点D的直线折叠,使点C落在AD上的点C′处,折痕DE交BC于点E。

连结C′E。

求证:四边形CDC′E是菱形。

【例2】如图,把矩形ABCD沿EF折叠,使点B落在边AD上的点B’处,点A落在A’处,若AE =a ,AB =b ,BF =c ,请写出a ,b ,c 之间的一个等量关系__________________.【课堂检测】 1.如图,把矩形ABCD 沿EF 对折,若∠1=50°,则∠AEF 等于 。

2.如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC △沿着DE 折叠压平,A 与'A 重合,若=70A ︒∠,则1+2∠∠=( )A. 140︒B. 130︒C. 110︒D. 70︒3.如图4,将矩形纸片ABCD (AD DC >)的一角沿着过点D 的直线折叠,使点A 落在BC 边上,落点为E ,折痕交AB 边交于点F .若1BE =,2EC =,则EC:DE=__________;若::BE EC m n =,则:AF FB =_________(用含有m 、n 的代数式表示)4.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为______.5.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在D ′、C ′的位置,并利用量角器量得∠EFB =65°,则∠AED ′等于-------度.6.如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,按图中所示方法将△BCD 沿BD折叠,使点C 落在边AB 上的点C ′处,则折痕BD 的长为__________.7.矩形纸片ABCD 中,AB =5,AD =4,将纸片折叠,使点B 落在边CD 上的B ’处,折痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为________.8.小明尝试着将矩形纸片ABCD (如图①,AD >CD )沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE(如图②);再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG (如图③).如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 长与宽的比值为 ▲ .9.如图3,矩形纸片ABCD ,BC=2,∠ABD=30°.将该纸片沿对角线BD 翻折,点A落在点E 处,EB 交DC 于点F ,则点F 到直线DB 的距离为 .10.把如图所示的矩形纸片ABCD 折叠,B 、C 两点恰好落在AD 边上的点P 处,已知∠MPN=900,PM=6cm ,PN=8cm ,那么矩形纸片ABCD 的面积为___________cm 211.在边长为2的菱形ABCD 中,∠B=45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折得△AB’E ,求△AB’E 与四边形AECD 重叠(阴影)部分的面积.【课后作业】1.(1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.2.如图,矩形纸片ABCD 中,8AB =,将纸片折叠,使顶点B 落在边AD 的E 点上,折痕的一端G 点在边BC 上,10BG =.(1)当折痕的另一端F 在AB 边上时,如图(1),求EFG △的面积;(2)当折痕的另一端F 在AD 边上时,如图(2),证明四边形BGEF 为菱形,并求出折痕GF 的长.3.(本题8分)如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点 M 处,点C 落在点N 处,MN 与CD 交于点P , 连接EP .(1)如图②,若M 为AD 边的中点,①,△AEM 的周长=_____cm ;②求证:EP=AE+DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.4.(10分)取一张矩形的纸进行折叠,具体操作过程如下:第一步:先把矩形ABCD 对折,折痕为MN ,如图 2-6-19(1)所示; 第二步:再把B 点叠在折痕线MN 上,折痕为AE ,点B 在MN 上的对应点B ′,得 Rt △AB ′E ,如图2-6-19(2)所示;第三步:沿EB ′线折叠得折痕EF ,如图2-6-19⑶所示;利用展开图 2-6-19(4)所示探究:(l )△AEF 是什么三角形?证明你的结论.(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.A B FE (B ) D C G 图(1) 图(2)G C D F A B E (B ) H (A )。

沪教版数学几何专题-角度的翻折(一)

沪教版数学几何专题-角度的翻折(一)

沪教版数学几何专题-角度的翻折(一)概述本文档介绍了沪教版数学教材中关于角度的翻折的内容。

角度的翻折是数学几何中的重要概念,通过折叠纸片来理解角度的翻折和性质。

角度的定义在数学几何中,角度是两条射线或线段所夹的空间部分。

我们常用角度符号来表示角度大小,如∠ABC表示由线段AB和线段BC所夹的角。

角度的翻折角度的翻折是指将一个角度折叠到平坦的平面上,使得两条射线或线段重合在一起。

通过角度的翻折,我们可以观察到以下性质:- 折叠角度前后,角度的大小保持不变。

- 折叠角度前后,角度的两条边重合在一起。

- 折叠角度前后,角的内部和外部部分位置发生了变化。

角度的翻折法则在进行角度的翻折时,我们需要遵循以下法则:1. 线段必须按照顺序连接,从而形成一个封闭的图形。

2. 每个角度的两个边必须重合在一起,且角的顶点位于重合处。

3. 翻折后的图形必须完整、无重叠。

角度的翻折实例下面是一个角度的翻折实例,以帮助读者更好地理解角度的翻折过程。

假设有一个角∠ABC,其中AB和BC是两条线段,B为顶点。

现在我们将角∠ABC折叠到平面上,使得线段AB和BC重合在一起,形成一条线段AD。

此时,我们可以观察到角度的翻折过程以及性质的变化。

结论角度的翻折是数学几何中的重要概念,它可以通过折叠纸片来帮助我们理解角度的性质和变化。

在进行角度的翻折时,我们需要遵循一定的法则,并且要注意观察角度的大小、边的重合以及内部和外部位置的变化。

通过研究角度的翻折,我们可以更好地理解数学几何中的角度概念。

2021届高考数学一轮复习第八章立体几何与空间向量补上一课立体几何中的翻折轨迹及最值范围问题含解析

2021届高考数学一轮复习第八章立体几何与空间向量补上一课立体几何中的翻折轨迹及最值范围问题含解析

立体几何中的翻折、轨迹及最值(范围)问题知识拓展1.翻折问题是立体几何的一类典型问题,是考查实践能力与创新能力的好素材.解答翻折问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化。

解题时我们要依据这些变化的与未变化的量来分析问题和解决问题.而表面展开问题是折叠问题的逆向思维、逆向过程,一般地,涉及多面体表面的距离问题不妨将它展开成平面图形试一试。

2.在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题。

对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.3.立体几何中的体积最值问题一般是指有关距离的最值、角的最值(上节)或(面积)体积的最值的问题。

其一般方法有:(1)几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;(2)代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.题型突破题型一立体几何中的翻折问题【例1】(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC =60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②。

(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B-CG-A的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD,CG确定一个平面,从而A,C,G,D四点共面。

由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC⊂平面BCGE,所以AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE。

沪教版数学几何专题-正方体的翻折(一)

沪教版数学几何专题-正方体的翻折(一)

沪教版数学几何专题-正方体的翻折(一)
简介
本文档将介绍沪教版数学几何专题中的正方体翻折问题。

我们
将探讨正方体的翻折方法及相关性质,并给出一些实际应用的例子。

正方体的基本性质
正方体是一种具有六个相等的正方形面的立体。

它具有以下基
本性质:
- 所有面都是正方形,边长相等。

- 任意两面之间的夹角都是直角。

- 对角线相交于立体的中心点。

正方体的翻折方法
正方体的翻折是指在给定的条件下,将正方体的某些面折叠起
来使得它变形为另一种立体形状。

翻折可以有多种方法,其中常见
的包括以下几种:
1. 将正方体沿着一个面的边缘折叠成折叠立方体。

2. 将正方体的一条对角线上的三个顶点折叠到另一条对角线上
的三个顶点上,形成一个四面体。

3. 将正方体的两个相对面同时折叠,形成一个八面体。

正方体翻折的实际应用
正方体的翻折在现实生活中有许多应用,下面是两个例子:
1. 盒子的折叠:正方体的翻折方法可以应用到盒子的制作中。

通过对正方体不同面的折叠,可以制作出各种形状和大小的盒子。

2. 立体画:将正方体按照一定的方式翻折后,可以形成各种有
趣的立体画,为绘画带来更多的变化和惊喜。

结论
正方体的翻折是一项有趣而有用的几何问题。

通过研究正方体
的翻折方法和相关性质,我们可以更好地理解几何学中的立体形状,并将其应用于实际生活中的各个领域。

以上是沪教版数学几何专题-正方体的翻折(一)的文档内容。


望能对您有所帮助!。

三角形的翻折1--浙教版

三角形的翻折1--浙教版
∵AB=A1B, ∠ABC= ∠A1BC, BC=BC ∴⊿ABC ≌⊿ A1BC
2、已知,在矩形ABCD中,AB=3,AD=5,F是CD上的点,将矩形ABCD沿BF折 叠,使所示,求∠EBF的度数。
∵∠ABC=900,∠ABE=600 ∴∠EBC= 300, ∴∠EBF=∠CBF=150 (2)若点E恰好落在AD边上,如图乙所示,求CF的长 设CF=X 4 则CF=EF=X,BE=BC=5 0 X 3-X ∵ ∠A=∠D=90 , 3 ∴AE2=BE 2-AB2=52-32=16,AE=4 5 ∴DE=1 X ∵EF2=DE2+DF2 ∴X2=12+(3-X)2 解得X=5/3 即CF长为5/3 (3)若点F与点D重合,试画出矩形ABCD沿BF折叠时的图形。设AD与BE交点为G, 求GD的长 3 解: ∵∠A=∠E,AB=DF, 设GD=X,则AG=EG=5-X 5-X 1 5-X X

2∠A=∠1+ ∠2
证:设∠ADE=, ∠AED= ∵∠ADE= ∠A1DE=,∠AED= ∠A1ED= ∴∠1+2α =1800, ∠2+2β =1800

∠A + α + =1800
化简得 即2∠A=∠1+ ∠2
4、如图,菱形ABCD中,ADC=600,AD=2,E是AD的中点,P是对角线BD上的一个动点。
∴∠AGB=∠EGD
∵GD2=EG2+ED2
∴⊿AGB ≌⊿ EGC ∴ X2=(5-X)2+32 ∴AG=EG 解得X=3.4 即GD=3.4
3、如图,D、E分别是⊿ABC的边AB、AC上的点,把⊿ADE 沿DE翻折,当点A落在四 边形DBCE内部变为A1时,试探求∠A与∠1+ ∠2之间的数量关系,并证明你的结论。

第2章特殊三角形翻折问题练习(1 ) 浙教版数学八年级上册

第2章特殊三角形翻折问题练习(1 )  浙教版数学八年级上册

浙教版数学八年级上期第2章特殊三角形翻折问题练习1一、选择题1.如图所示,有一块直角三角形纸片,∠C=90°,AC=4 cm,BC=3 cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为( )A.1cmB. 1.5cmC. 2cmD. 3cm2.如图:在Rt△ABC中,∠C=90°,直线BD交AC于D,把直角三角形沿着直线BD翻折,使点C落在斜边AB上,如果△ABD是等腰三角形,那么∠A等于()A.60°B. 45°C. 30°D. 22.5°3.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,现将△ABC沿BD进行翻折,使点A刚好落在BC上,则CD长是()A.2B. 2.4C. 2.5D. 34.如图,△ABC中,∠C=90°,AC=3,AB=5,点D是边BC上一点,若沿将△ACD翻折,点C刚好落在边上点E处,则BD等于()A. 2B. 52C. 3D. 103两条折痕与斜边AB分别交于点E、F,则线段CF的长为()A. √3B. 37√21 C. 37√7 D. 67√216.如图,在Rt△ABC中,∠B=90°,AB=4,BC=3,延长BC至E,使得CE=BC,将△ABC沿AC翻折,使点B落点D处,连接DE,则DE的长为()A.95B. 125C. 165D. 185二、填空题7.如图,在△ABC中,∠A=135°,AB=3√2,AC=4,D是AC上一点,且CD=3,E是BC边上的一个动点,连接DE,将△CDE沿DE所在的直线翻折,得到△FDE,则点B与点F之间的距离最小值为______ .8.如图,Rt△ABC中,∠ACB=90°,AB=2AC,BC=3,点E是AB上的点,将△ACE沿CE翻折,得到△A'CE,过点B作BF∥AC交∠BAC的平分线于点F,连接A′F,则A′F长度的最小值为______.折痕与斜边AB分别交于点E、F,则线段CE的长等于______,线段B'F的长等于______.10.如图,在Rt△ABC中,∠A=90°,AB=4√3,AC=4,点D是AB的中点,点E是边BC上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交边BC于点F,若△CB′F为直角三角形,则CB′的长为______ .11.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的锐角A翻折,使得点A落在BC边的中点D处,折痕交AC边于点E,交AB边于点F,则DE的值为________.12.如图,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=√5,则BC的长是______ .13.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(1)如图1,当AE⊥BC时,求证:DE∥AC.(2)若∠C=2∠B,∠BAD=x°(0<x<60).①如图2,当DE⊥BC时,求x的值.②若∠DFE=∠FDE,求x的值.14.如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.15.已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;AC;①若AG平分∠CAD,求证:AH=12②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,试猜想AG与EF的数量关系,不需证明.16.在△ABC中,∠A=40°.(1)如图①,∠ABC、∠ACB的平分线相交于点D,则∠BDC的大小为______度.(2)如图②,∠ACE为△ABC的外角.若∠ABC的平分线与∠ACE的平分线交于点F,求∠BFC的度数.(3)在(2)的条件下,如图③,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC 的平分线与∠GCB的平分线交于点M,则∠BMC的大小为______度.17.如图△ABC中,∠BAC=90°,AB=15,AC=20,AH⊥CB于点H,(1)求线段AH的长度;(2)点D是BC的中点,将△ABD沿AD翻折得到△AED,连接BE、CE,BE交AD于F,求线段CE的长度.18.【问题探究】小敏在学习了Rt△ABC的性质定理后,继续进行研究.(1)(i)她发现图①中,如果∠A=30°,BC与AB存在特殊的数量关系是______;(ii)她将△ABC沿AC所在的直线翻折得△AHC,如图②,此时她证明了BC和AB的关系;请根据小敏证明的思路,补全探究的证明过程;猜想:如果∠A=30°,BC与AB存在特殊的数量关系是______;证明:△ABC沿AC所在的直线翻折得△AHC,(2)如图③,点E、F分别在四边形ABCD的边BC、CD上,且∠B=∠D=90°,连接AE、AF、EF,将△ABE、△ADF折叠,折叠后的图形恰好能拼成与△AEF完全重合的三角形,连接AC,若∠EAF=30°,AB2=27,则△CEF的周长为______.。

八年级上册数学翻折问题(一)

八年级上册数学翻折问题(一)

八年级上册数学翻折问题(一)八年级上册数学翻折问题简介该问题是八年级上册数学课程中的一个重要问题,是培养学生逻辑思维和解决问题能力的有效方式。

相关问题及解释说明以下是与该问题相关的一些具体问题及其解释说明:1.什么是翻折问题?–解释:翻折问题是指给定一张平面图形,通过折叠或翻折来得到新的图形或特定属性。

2.翻折问题有哪些应用?–解释:翻折问题在日常生活中有许多应用,如折叠纸飞机、纸盒等;在几何学中,其应用包括判定图形的对称性、相似性等。

3.如何解决一个翻折问题?–解释:解决一个翻折问题需要先理解给定的图形、折叠方式和要求的结果,然后通过逻辑推理和实践操作来找到解决方案。

4.有哪些常见的翻折问题?–解释:常见的翻折问题包括:给定一个正方形纸张,如何将其折叠成一个三角形;给定一个长方形纸张,如何将其折叠成一个心形等。

5.翻折问题与几何学有何关联?–解释:翻折问题与几何学密切相关,通过翻折可以展现图形的对称性、相似性,帮助学生理解几何形状的抽象概念。

6.翻折问题对学生的培养有何益处?–解释:翻折问题能够培养学生的逻辑思维和解决问题的能力,同时也可以增强学生对几何形状的认识和理解。

7.有哪些解决翻折问题的方法?–解释:解决翻折问题的方法有很多,可以采用试错法、逆向思维、构造法等,具体方法取决于问题的要求和复杂程度。

8.如何培养学生解决翻折问题的能力?–解释:培养学生解决翻折问题的能力需要多进行练习和实践,同时引导学生合理利用几何知识和思维方法,通过提出问题、讨论、解决问题等方式进行培养。

9.翻折问题在数学教学中的重要性?–解释:翻折问题可以帮助学生将抽象的数学概念转化为具体的操作和实践,增强学生对数学的兴趣和理解,提高数学教学的有效性。

10.如何将翻折问题与其他数学知识联系起来?–解释:将翻折问题与其他数学知识联系起来可以通过引入几何形状的属性、相关定理和公式等方式,以及与代数、数学模型等内容的结合。

通过解决八年级上册数学翻折问题,学生能够培养自己的逻辑思维和解决问题的能力,并且加深对数学知识的理解和运用。

数学:《图形变换(1)—翻折问题》六安皋城中学 邓祥

数学:《图形变换(1)—翻折问题》六安皋城中学 邓祥

基本图形
A
D
E
B
FC
如图,在矩形 ABCD 中, E 是边CD 上一点,将 ADE沿
AE折叠成 AF。E 据此,我们可以得到哪些结论?
☞透过现象看本质:
A
A
D
折 E叠
实质
轴 对 称F
D
B
FC
E
轴对称性质:
1.图形的全等性:折叠前后对应图形全等,对应边、角相等.
如图:由折叠可知:AFE ≌ ADE
好落在双曲线y k (k 0),则k的值为 3
解:过C作CD xx轴于点D
由已知得OA AC 2,
2 1 30即CAO 60
ACD 30
C(1, 3)
22 3
1
AD 1 AC 1,CD 3 点C在双曲线上 1 1
2
OD OA AD 1
k 3
例5、如图,直线y 2x 10与x轴、y轴分别交于A, B两点,
5 3 65
二、翻折前有平行线
例3、如图,把矩形ABCD翻折,点B恰好落在AD边B'处,
若AE 3, AEF 120,则折痕EF的长是
分析:要求EF ?
3
1
33 26
?5
4
分析B' EF的形状
2 5 60
等边B' EF
3 60
只需:求B' E ?
二、翻折前有平行线
例3、如图,把矩形ABCD翻折,点B恰好落在AD边B'处,
若AE 3, AEF 120,则折痕EF的长是 6
解:由已知可知:AE A' E 3,
3
1
33 26
?5
4
1 A' EF 120, 4 5

【高考数学专题】立体几何中的翻折问题与最值问题 专题 高三一轮复习备考

【高考数学专题】立体几何中的翻折问题与最值问题  专题  高三一轮复习备考

立体几何中的翻折问题与最值问题一知识点导学1.解决折叠问题注意什么?折叠问题是立体几何的一个重要内容,是空间几何问题与平面几何问题相互转化的集中体现,处理这类问题的关键就是抓住折叠前后图形的特征关系。

解答折叠问题在于画好折叠前后的平面图形和立体图形,并弄清折叠前后哪些量和位置关系发生了变化,哪些量和位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。

2立体几何常见的最值问题有哪些?如何解决?空间图形最值问题有线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.3如何解决涉及几何体切接问题最值计算?求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;4解决折叠问题的步骤有哪些?二.考点典例考点一:面积、体积最值问题空间几何体的侧面积、表面积、截面面积、体积等最值问题,往往是几何体中有关几何元素如顶点、侧棱、侧面、截面等在运动变化过程中,达到某个特殊位置时所具有的度量性质。

因此,在解决此类问题时,要注意分析这些几何元素运动变化与所求量的联系,建立两者之间的数量关系。

实例演练1(2021•湖南模拟)如图所示,圆形纸片的圆心为O,半径为6cm,该纸片上的等边三角形ABC的中心为O,D,E,F为圆O上的点,DBC∆分别是∆,FAB∆,ECA以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D ,E ,F 重合,得到三棱锥.则当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是( )A .(0,36)πB .(0,C .(0,45-D .(0,解:设三棱锥的底面边长为a ,则0a <<连接OD ,交BC 于点G ,则6OD =,OG ,6DG =,∴2,侧面积为213(6)92S a a =⨯⨯=,∴三棱锥的表面积9S a =,0a <<9(0S a ∴=∈,,∴当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是(0,.故选:D .实例演练2(2021•宜宾模拟)已知三棱锥A BCD -的各个顶点都在球O 的表面上,AD ⊥平面BCD ,BD CD ⊥,3BD =,CD =E 是线段CD 上一点,且3CD CE =.若球O 的表面积为40π,则过点E 作球O 的截面,所得截面圆面积的最小值为( )A .4πB .6πC .8πD .10π解:依题意,AD ,BD ,CD 两两互相垂直,取BC 中点M ,连接MD ,由对称性可知,球心O 在M 点正上方,且OM ⊥平面BCD ,OA OB OC OD R ====,3BD =,CD =6BC ∴=,则3BM CM DM ===,设球O 的半径为R ,则2440R ππ=,解得R由22222222()OM BM R OB AD OM DM R OA⎧+==⎨-+==⎩,解得12OM AD =⎧⎨=⎩,OM ⊥平面BCD ,OM ME ∴⊥,又13CE CD =cos CD BCD BC ∠==,∴在CEM ∆中,由余弦定理有2222cos 3ME CE MC CE MC BCD =+-⋅⋅∠=,故ME =,在OME ∆中,2OE =,要使过E 作圆O 的截面面积最小,则此时截面与OE垂直,设此时截面圆半径为r ,则r ==∴26min S r ππ==.故选:B .实例演练3.(2021•河南模拟)现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD ∆为等边三角形,线段BC 的中点为E ,若1PE =,则所需球体原材料的最小体积为( )A B .283π C .9π D 解:所需原材料体积最小的球体即为四棱锥P ABCD -的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,PAD ∆为边长为2的等边三角形,PF ∴,又1PE =,2EF =,60PEF ∴∠=︒1PE EB EC ===,E ∴是PBC ∆的外心,过E 作面PBC 的垂线与过G 与面ABCD 的垂线交于O ,则O 为四棱锥P ABCD -外接球的球心.906030OEG OEP FEP ∠=∠-∠=︒-︒=︒,又1GE =,∴在直角三角形OGE 中求出OG =,又直角OAG ∆中,AG ,OA ∴=,即球半径R =,得343V R π==球.由于此时四棱锥P ABCD -在球心同侧,不是最小球,可让四棱锥下移到面ABCD 过球心时,即球半径12R AC =时,原材料最省,此时343V π=⨯=球.故选:A .实例演练4(20211,O 为底面圆心,OA ,OB 为底面半径,且23AOB π∠=,M 是母线PA 的中点.则在此圆锥侧面上,从M 到B 的路径中,最短路径的长度为( )A B 1 C D 1解:由题意,在底面半径为1O 是底面圆心,P 为圆锥顶点,圆锥的侧面展开图是半圆,如图,A ,B 是底面圆周上的两点,23AOB π∠=,所以在展开图中,3APB π∠=2=,M 为母线PA 的中点,所以1PM =,所以从B 到M 的最短路径的长是BM A .考点2:角的最值问题立体几何中的角有异面直线所成角、线面角和二面角的平面角三种。

欧拉公式——翻折专题

欧拉公式——翻折专题

欧拉公式——翻折专题简介欧拉公式是数学中的一个重要定理,描述了三个基本数学常数之间的关系。

它被广泛应用于各个领域,包括物理学、工程学和计算机科学等。

本文将介绍欧拉公式的基本概念和应用,并探讨翻折专题下的相关内容。

欧拉公式的定义欧拉公式可以用下面的等式表示:$$e^{ix} = \cos(x) + i\sin(x)$$其中,$e$ 是自然对数的底数,$i$ 是虚数单位,$x$ 是任意实数。

这个等式将三个基本数学常数 $e$、$\pi$ 和 $i$ 相关联。

欧拉公式的意义欧拉公式将指数函数、三角函数和虚数单位联系在一起,提供了一种统一的表达方式。

它在复数分析、信号处理、电路理论等领域中具有重要的应用。

欧拉公式也为解决许多数学问题提供了简化的方法。

翻折专题翻折专题是在欧拉公式的基础上进行研究的一个重要专题。

主要探讨的是欧拉公式中的指数函数在不同情况下的翻折现象。

这一专题对于理解欧拉公式的性质和应用具有重要意义。

在翻折专题中,研究者通过变化指数函数中的参数,观察其在复平面上的变化规律。

研究结果显示,当参数取不同的值时,指数函数的图像会发生翻折现象,从而产生不同的图形。

翻折专题不仅扩展了欧拉公式的应用领域,还揭示了欧拉公式中隐藏的数学美和深层次的性质。

它为数学研究者提供了更多探索的方向,并促进了数学理论的发展。

总结欧拉公式是数学中一项重要的定理,描述了三个基本数学常数之间的关系。

它为各个领域的研究提供了统一的表达方式,并简化了许多数学问题的解决方法。

翻折专题是在欧拉公式基础上展开的研究,探讨了指数函数的翻折现象,扩展了欧拉公式的应用领域。

这一专题揭示了欧拉公式中的数学美和深层次的性质,为数学研究者提供了更多探索的方向。

以上是对欧拉公式和翻折专题的简要介绍,希望能对读者对此有所了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

翻折专题
解决翻折题型的策略
一:利用翻折的性质:
①翻折前后两个图形全等。

对应边相等,对应角相等
②对应点连线被对称轴垂直平分
二:结合相关图形的性质(三角形,四边形等)三:运用勾股定理或者三角形相似建立方程。

1.矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C 重合,折叠后在其一面着色(如图),则着色部分的面
积是多少?
2. 如图,在矩形ABCD中,E是AD的中点,将△ABE沿直线
BD翻折得到△GBE,延长BG交CD于点F,若AB=6,BC=8,
求FD。

3 如图,平行四边形ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线的点E处,若AB=3,∠B=60°,求△ADE的周长。

4.如图,在菱形ABCD中,∠B=60°,点E在CD上,将△ADE沿着AE翻折得到△AD′E,且AD′恰好经过BC中点P,求∠D′EC 的度数。

5如图,在矩形ABCD中,AD=2,将∠A向内翻折,点A落在BC上为A′,折痕为DE。

若∠B沿EA′向内翻折,点B恰好落在DE上为B′,求AB 的长
6,如图,正方形ABCD边长为8,E是AB边上一点,连接DE,将△DAE沿DE所在的直线折叠,使A点的对应点A’落在正方形的边AD或CD的垂直平分线上,求AE的长。

7.如图,AC是矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的M点处,将边CD沿CF折叠,使点D落在AC上的点N处。

(1)求证:四边形AECF是平行四边形.
(2)当∠BAE=°时,四边形AECF是菱形。

8、将一个矩形纸片OABC放置在平面直角坐标系xOy内,点A(6,0),点C(0,4),点O(0,0).点P是线段BC上的动点,将△OCP沿OP翻折得到△OC′P.
(Ⅰ)如图①,当点C′落在线段AP上时,求点P的坐标;
(Ⅱ)如图②,当点P为线段BC中点时,求线段BC′的长度.
9、如图,在△ABC中,∠C=90°,BC=8,AB=10,点D,E分别是AC,BA上的点,将△ABC沿DE折叠,使得点A落在BC上的A1处.
(1)设CD=x,A1D的长可用含x的代数式表示为;
(2)若点A1是BC的中点,求CD的长;
,判断四边形ADA1E的形状,并说明理由
(3)若CD=9
4。

相关文档
最新文档