初等几何研究试题答案(1)(李长明版)汇总
初等几何研究试题答案(李长明版)
初等几何研究试题答案(I)、线段与角的相等1. O O、O Q相交于A B, O O的弦BC交O Q于E, O 02的弦BD交O0于F,求证:(1)若2 DBA2 CBA贝卩若DF二CE则 / DBA M CBA.证明:⑴连接AC AE AF、AD在O 0 中,由/ CBA W DBA得AC=AF在O O 中,由/ CBA W DBA得AE=AD由A C、B、E四点共圆得/仁/2由A D B、E四点共圆得/ 3二/4所以△ ACE^A AFD••• DF=CE(2) 由(1)得/ 仁/ 2, / 3=2 4v DF=CE• △ACE^A AFD••• AD=AE在O Q 中,由AD=AE^得/ DBA M CBA2. 在厶ABC中,AC=BC,Z ACB=90,D是AC上的一点,AE丄BD的延长线于E,又AE=1BD,2求证:BD平分/ ABC.证明:延长AE,BC交于点F7 AED "BCA =90 ADE "BDC•CBD =/CAF又7 ACF BCA = 90 AC 二BC•ACF 三BCD . AF = BD1 1又、:AE BD . AE AF2 2又ABEE _ BE■ BE平分ABF即BD平分.ABC3. 已知在凸五边形ABCDE中, / BAE=3 ,BC=CD=DE M/ BCD玄CDE=180-求证:/ BAC 2 CAD h DAE.证明:过点B 作BDL BC,交圆周于点D,连结CD ©D•••/ DBC=90, • CD 是直径,则/CAD=90证明:连接BD,得△ CBD 是等腰三角形且底角是/ CDB=[18(0-(180o — 2 - )] -2=.:丄 BDE=(180° — 2G )-O (=180O — 3«••• A B 、D E 共圆同理A C D E 共圆• h BAC h CAD h DAE4. 设H 为锐角△ ABC 的垂心,若AH 等于外接圆的半径由题,可得AH L BC, BH丄AC••• BD// AH, AD// BH二四边形ADBH是□••• AH=BD又;AH等于外接圆的半径(R)• BD=R M CD=2R•••在Rt △ BCD中,CD=2BD即/ BCD=30• / BDC=60又;/ BAC K BDC BAC M BDC=605. 在厶ABC中, / C=90,BE是/B的平分线,CD是斜边上的高,过BE CD之交点0且平行于AB的直线分别交AC BC于F、G,求证AF=CE.证明:如图;/ 1 = 2 3, / 仁/2. 2二/ 3, • GB = GO,;2 5=2 4=2 6, • CO =CE,;FG// AB,「. AF/CF二B$CG二G0CG,又;△ FCO^COG/. CO7CF=G/CG=A/CF,• CO=AF;CO=CE,\ AF=CE.6. 在厶ABC中,先作角A B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点 D E,若DE// BA,求证:△ ABC等腰.证:如图所示设AG ED的交点为Fv AD是/ A的平分线•••/仁/2T DE// AB 仁/ 3v CE// AD :丄 3二/ 5, / 4二/ 2•/仁/2二/3=Z 4=2 5则厶FAD ffi^ FCE是等腰三角形•A F=DF,EF=CF•A C=DE同理可证BC=DE•A C=BC• △ ABC是等腰三角形7. 三条中线把△ ABC分成6个三角形,若这六个三角形的内切圆中有4个相等.求证:△ ABC是正三角形.AB D C证明:•/△ AOF △ AOE △ COD △ COE △ BOF △ BOD面积都相等--S A OFE=S A OEC即: 11111 1BF X 叶一FOX 叶BO X r= CEX 叶一OE< 叶一OC X r 2 2 2 2 2 21 12 (BF+FO+BO X r= - (CE+OE+OC X r••• BF+FO+BO二CCE+OE+OC••• CE+OE+OC-OG-OI二CE+OE+OC-OL-OJ• 2DH+2BH=2FK+2CK• 2BF=2CE又F、E分别为AB AC之中点••• AB=AC同理:AB=BC故厶ABC是正三角形.8. 平行四边形被对角线分成四个三角形中,若有三个的内切圆相等证明:该四边形为菱形.C证明:又•••△ AOBA BOC、△ CODA DOA四个三角形的面积相等1 1OD DC OC r OB BC OC r2 2CD OC OD 二BC OB OCOD OC DC - OE - OG = OB OC BC - Ol - OG二2DF +2CF =2BH +2CH二2DC =2BC=DC =BC•四边形为菱形9. 凸四边形被对角线分成4个三角形,皆有相等的内切圆,求证:该四边形是菱形证明:连结O i 、O 2,分别作O i 、O 2到AC 的垂线,垂足分别为P 、M•••在厶ABC 中 ,BO 是。
初等几何研究答案
《初等几何研究》作业一、填空题1、对直线a 上任意两点A 、B ,把B 以及a 上与B 在A 同侧的点的集合称作 射线(或半直线),; ,并记作 AB 。
2、在绝对几何中,外角定理的内容是: 三角形的外角大于任一不相邻的内角 。
3、第四组公理由 两 条公理组成,它们的名称分别是 度量公理(或阿基米德公理)和康托儿公理 。
4、欧氏平行公理是:对任意直线a 及其外一点A ,在a 和A 决定的平面上,至多有一条过A 与a 不相交的直线 。
5、罗氏几何公理系统与欧氏几何公理系统的共同之处是 前4组公理(或绝对几何) ,不同之处是 平行公理 。
6、几何证明的基本方法,从推理形式上分为 演绎 法与归纳法;从思维方向上分为 综合 法与分析法;从命题结构上分为 直接 证法与间接证法,其中间接证法包括 反证 法与 同一 法。
7、过反演中心的圆,其反演图形是 不过 (过或不过)反演中心的 直线 。
8、锐角三角形的所有内接三角形中,周长最短的是 垂足三角形。
9、锡瓦定理:设⊿ABC 的三边(所在直线)BC 、CA 、AB 上分别有点X 、Y 、Z ,则AX 、BY 、CZ 三线共点(包括平行)的充要条件是1=⋅⋅ZBAZYA CY XC BX 。
10、解作图问题的常用方法有: 交轨法 、三角奠基法、 代数法 、 变换法 等。
11、数学公理系统的三个基本问题是 相容性、 独立性和 完备 性.33.①答案不惟一.34.①(0,+∞),②,(0,π/2),③连续,④单调递减. 35.①平移,②旋转,③轴对称.36. ①1=⋅⋅ZB AZYA CY XC BX (或-1)37.①写出已知与求作,②分析,③作法,④证明,⑤讨论.12、对于共面的直线a和a外两点A、B,若a与(AB)相交,则称A、B在a的异侧,否则称A、B在a的同侧.13、命题:“过直线外一点,至少有一条直线与已知直线共面但不相交”是外角定理的推论.14、证明直线和圆的连续性时,主要依据了戴德金分割原理.15、罗氏平行公理是:对任意直线a及其外一点A,在a和A决定的平面上,至多有一条过A与a不相交的直线.,16、在罗氏几何中,共面的两条直线有3种关系,它们分别是平行,相交,分散.17、几何证明的通用方法一般有化归法、类比法、构造法、数形结合法、变换法、模型法等.18、等边三角形外接圆周上任一点到三顶点的连线段中,最长线段与另两条线段之和具有相等的关系.19、尺规可作图的充要条件是所求的量可用已知量的有理式或只含平方根的无理式表出.20.由公理可以证明,线段的合同关系具有反身性、对称性、传递性和可加性.21.如果线段与角对应,那么线段的中点与角的角平分线对应.22.命题:“线段小于任意一条连接其两个端点的折线”是外角定理的推论.23.绝对几何包括有四组公理,它们分别是结合公理、顺序公理、合同公理、连续公理. 24.写出一条与欧氏平行公理等价的命题:.25.在罗氏几何中,两条直线为分散线的充要条件是.26、.常用的几何变换有合同变换、相似变换、射影变换、反演变换等27.托勒密定理:四边形ABCD是圆内接四边形,则1=⋅⋅ZBAZYACYXCBX(或-1).28.请写出两条作图公法:过两点可作一条直线(或其部分)。
初等几何试题(李长明版)
初等几何研究试题(李长明版)课程名称 初等几何研究 拟题人 审题人 评分 系(校区)自然科学系 班级 姓名 学号题号 一 二 三 四 得分一、选择题 (5分⨯4=20分)1.如图,在□ABCD 中,对角线AC 和BD 交于O ,在BC 上取点E ,使3CE=BC ,DE 交AC 于F ,则AO :OF :FC=__________.A 3:2:1B 4:3:1C 5:3:2D 2:1:1第1题图 第2题图2.矩形ABCD 中,E ,F 分别是AB 、BC 的中点,DE 、DF 分别交AC 于P 、Q ,则, S PQFBE :S ABCD =___________.A 1:2B 1:3C 1:4D 1:53. 如图,在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,∠A=450,那么, S BCEF :S ABC =______.A 1:1B 2:1C 3:1D 4:1第3题图 第4题图4. 如图,已知正方形ABCD 的边长为2,E 为AD 的中点,P 为CE 的中点,F 为BP 的中点,则S BDF =_______.A.21 B.41 C.81 D.161二、填空题 (5分⨯4=20分)1. 如图,ABCD 是边长为a 的正方形,△PBC 是正三角形,则△PBD 的面积为_____.第1题图第2题图2.如图,正方形ABCD的边长为2,E,F分别是CD,BC的中点,AE,DF相交于点P,则BP的长度为_____.3. 如图,在△ABC中,DE∥BC,S ADE:S CDE=1:3,且S CDE=1则S BCD=_________.第3题图第4题图4. 如图,AB是⊙O的直径,AB=4,BC=3,BD平分∠ABC,AD、BC的延长线交于E,是S BDE:S ABCD=________.三、证明题(10分 5=50分)(画图并证明)1. 在△ABC中,∠C=900,BE是∠B的平分线,CD是斜边上的高,过BE、CD的交点O,且平行AB的直线分别交AC、BC于F、G。
初等几何研究试题答案(6)李长明版
六、关于共线点与共点线1、证明四边形两双对边中点连线的交点与两对角线之中点共线证明:连接EF.FG.GH.HE.HJ.OJ.OI(如图)∵E.H 分别是AB.AD 的中点, F,G 分别是BC.CD 的中点∴EH =12BD FG=12BD ∵EH ∥FG ∴四边形EFGH 是平行四边形 ∴ OH=OF∵H.J 分别是AD.AC 的中点,F.I 分别是BG.BD 的中点 ∴HJ=12CD IF=12CD ∴HJ ∥IF ∴∠JHO=∠FIO∵∠JHO=∠FIO , HJ=FI,HO=FO ∴△JHO ≅△IFO ∴∠HOJ=∠FOI ∴I.O.J 三点共线∴四边形两双对边中点连线的交点,与两对角线之中点共线2. 已知:E ,F 分别在正方形ABCD 的两边BC,CD 上,是∠EAF=45°,但AC 不是∠EAF 的角平分线,自E,F 作AC 的垂线,垂足分别是P,Q 求证:△BPQ 的外心与B ,C 共线A DCFBEP Q证明: ∵FQ ⊥AC∴∠ABE=∠AQF 又∵∠EAF=45° ∴∠BAE=∠QAF ∴△ABE ∽△AQF 可得AQ AB AFAE同理可得,△AEP ∽△AFD 即AD AP=AFAE∴AQ AB =ABAP利用切割线定理之逆定理,因△BPQ 的外心在BC 上,等价于AB,APQ 是切,割线 ∴△BPQ 的外心在BC 上3.在Rt △AB 为斜边,CH 为斜边上 的高,以AC 为半径作☉A ,过B 作☉A 的任一割线交☉A 于D 、E ,交CH 于F(D 在B 、F 之间),又作∠ABG=∠ABD ,G 在☉A 上,G 与D 在AB 异侧。
求证:(1)A 、H 、D 共圆。
(2)E 、H 、G 共线。
(3)FD 、FE 、BD 、BE 四线段成比例证明:如图所示:连结AE 、AD(1)∵BC 2=BH ·BA(摄影定理) BC 2=BD ·BE(割线定理) ∴BD ·BE=BH ·BA∴A 、H 、D 、E 四点共圆 (2)∵∠ABD=∠ABG∴∠GBH=∠DBH(对称性) 又∵A 、H 、D 、E 四点共圆∴∠FEA=∠DHB(对角等于内对角) ∠AHE=∠EDA (同弧所对的角) 又∵AE=AD ∴∠AEF=∠ADF∴∠AEF=∠DHB=∠GHB=∠ADE=∠AHE ∴∠GHB=∠AHE (对顶角) ∴E 、H 、G 三点共线 (3)∵∠ABD=∠ABG∴由对称知:HB 平分∠DHG(∠GHB=∠DHB) 又∵ CH 垂直AB E 、H 、G 三点共线 ∴HC 平分∠DHE∴HC 、HB 是∠DHE 的内外角平分线 ∴FE DF =HE HD =BEBD4.设P是正方形ABCD内的一点,使PA:PB:PC=1:2:3,将BP 绕B 点朝着BC 旋转90BP 至Q.求证:A 、P 、 Q 共线.证明:连接 CQ ,∵PA:PB:PC= 1:2:3设AP=1 则 BP=2 CP=3 ∵BP 绕B 点朝着BC 旋转90° ∴∠PBQ=90°BP=BQ=2 ①∠BPQ=∠BQP=45°∴PQ =√BP 2+BQ 2=2√2 又∵四边形ABCD 是正方形 ∴AB=BC ②∴∠ABC=∠PBQ= 90°即∠ABP+∠PBC=∠CBQ +∠PBC=90°∴∠ABP=∠CBQ ③∴△ABP≌△CBQ(由①②③可得到)∴PA=QC=1又∵PQ2+QC2=(2√2)2+12=32=PC2∴∠PQC=90°,∠BQC=∠PQC+∠BQP=90+45°=135°又∵∠APB=180°-45°=135°∴∠BQC=∠APB=135°即A、P、Q共线(∠APB、∠BQP是邻补角)5. 在∆ABC中,D,E,F分别在AB.BC.CA上,使得DE=BE,EF=CE.求证:∆ADF的外心O 在∠DEF的角平分线上。
初等几何研究习题解集123
初等几何研究习题解集
习题一(12页)
2.利用外角定理证明:
2.证明:同一直线两条直线不可能相交。
证:设a l ⊥,b l ⊥,1290∠=∠=︒若a b C =,对ABC 而言,由外角定理可知12∠<∠,这与12∠=∠相矛盾。
,a b 不能相交。
证毕.
4.证明:圆外切四边形一双对边之和等于另一双对边之和叙述并证明逆定理。
证:设四边形ABCD 外切于o 切点为E,F,G,H
AB+CD=AE+EB+CG+GD
=AH+BF+FC+HD =(AH+HD)+(BF+FC)=AD+BC。
证毕.
逆定理:若四边形一双对边之和等于另一双对边之和,则此四边形必有内切圆; 证:设四边形ABCD 中:AB+CD=BC+AD 我们总可以作圆O 切四边形ABCD 的三边AB,AD,DC,于
E,H,G :
若o 与BC 边不相切,过C 作o 的切线CF(F 为切点).交AB 与N 在四边形ANCD 中,由原定理有,AN+CD= +AD 由已知AB+CD=BC+AD 两式相减AB-AN= BC- BN A,B,N 在同一直线上 ∴BN=BC-NC
这与ABN 中BN>BC-NC 相矛盾,因此N 与B 必重合. 即BC 切o 于F 证毕. 21
l B A C b a
B A
N
A
习题二(18页)
1.证明:两院相交点不能在连心线同一侧;
证:若o与I的交点AB在连心线的同一侧,由于两圆关于轴I对称,那么点A关于I对称点N也是I与o德交点,这样相交圆有三个交点,其交点不能在连心线的同一
侧. 证毕.。
初等几何研究习题2(李长明版)
汕头职业技术学院初等几何研究习题课数学教育(师范类)1. I是△ABC的内心,AI、BI、CI的延长线分别交△ABC的外接圆于D、E、F求证:EF⊥AD。
D AB C EFI 五、关于平行与垂直2. A、B、C、D在圆周上相继的四点,P、Q、R、S分别是弧AB、BC、、CD、DA的中点,求证:PR⊥QS。
ACBP QDRS3. 凸四边形ABCD的每条对角线皆平分它的面积,求证:ABCD是平行四边形。
A BDC4. 已知:△BCX 和△DAY 是□ABCD 外的等边三角形,E 、F 、G 、H 是YA 、AB 、XC 、CD 的中点。
求证:EFGH 是平行四边形。
ABXD C YE F GH5. 在△ABC的各边上向外作正方形BCDE、CAFG、ABHI,其中心依次为O1、O2、O3求证:AO1⊥O2O3。
AO1O2BCO36. 在正方形ABCD 内任取一点E ,连接AE 、BE ,在△ABE 外以AE 、BE 为边作正方形AEMN 和EBFG ,连NC 、AF 。
求证:NC∥AF 。
A BCD E MNFG7. 以□ABCD的对角线AC为一边的两侧各作一个正三角形ACP、ACQ。
求证:BPDQ是□。
ABPDCQ8. 已知:凸五边形的四条边平行于所对的对角线。
求证:第五边也平行于所对的对角线。
CA B DE9.在△ABC中,∠B≠90°,BC边的垂直平分线交AB于D,△ABC的外接圆在A、C两点之切线交于E.求证:DE∥BC.AD EB C10.P 是正方形ABCD 的边CD 上的一点,过D 作AP 的垂线分别交AP 、BC 于Q 、R ,O 是正方形的中心.求证:OP ⊥OR.ABCDOPR12. 给定正方形ABCD ,P 、Q 分别人为AB 、BC 上的点,满足BP=BQ ,自B 作BH ⊥PC 于H ,求证:∠DHQ=900.ABCDO PHQ13. 在△ABC中,AB=AC,O为外心,D为AB的中点,E是△ACD的重心。
初等数学研究(李长明 周焕山编) p494第7题,p497第3题,p498第9题答案
初等数学研究(李长明 周焕山编) p494第7题,p497第3题,p498第9题答案.F AB AB ABCD 7.EF AC AB E E 平分,求证:于作底的平行线交过,为直径之圆于腰切以是垂直二底的腰,另一中,在直角梯形证明: ∠DAB=∠ABC=90°, 圆O 以AB 为直径, ∴AD,BC 均与圆O 相切; 又 圆O 与CD 相切于E, ∴AD=ED;EC=BC;又 AD ∥EF ∥BC,∴FG/BC=AF/AB=DE/DC=AD/DC=EG/EC=EG/BC.∴EG=FG .即.EF AC 平分3.凸四边形ABCD 的每条对角线皆平分它的面积.求证:ABCD 是平行四边形()()对角线互相平分是平行四边形凸四边形同理易证得:对顶角相等又的面积,平分凸四边形于于于于证明:作..,.,90.2121.,,,ABCD DO BO CO AO CFOAEO COF AOE CFO AEO CF AE CF BD AE BD ABCD BD N AC DN M AC BM F BD CF E BD AE ⇒==∴∆≅∆⇒=∠=∠=∠=⇒⋅=⋅∴⊥⊥⊥⊥︒.//.,,,90.9BC DE E C A ABC D AB BC B ABC 求证:两点之切线交于的外接圆在于边的垂直平分线交中,在∆≠∠∆︒()()()BC DE ABC ACE ADE ACE E C D A AEC AOC DBC BDC DBC DCB BDC ABC AOC DCB DBC CD BD BC DM AEC AOC OCE OAE O CE AE CD OC OA //.ADE .ABC ,..,,,.1802180.180,2.2...180.90,.,,∴∠=∠∴∠=∠∠=∠∴∴∠=∠-︒=∠-︒=∠∴∠-∠-︒=∠∠=∠∠=∠∴=∴︒=∠+∠∴︒=∠=∠∴同弧弦切角等于圆周角同弧圆周角相等四点共圆倍同弧圆心角是圆周角的又的垂直平分线是的切线,是圆证明:连结。
初等数学研究答案第一章到第六章
大学数学之初等数学研究,李长明,周焕山版,高等教育出版社 习题一1答:原则:(1)A ⊂B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能施行的某种运算,在B 中总能施行。
(4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。
方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c 组成集合M 。
a=b ,M 11b 1a ∈∴⋅=⋅∴, 假设bc ac M c =∈,即,则M c c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。
(2)若a <b ,则bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 则ac<bc 。
(3)若a>b ,则ac mc bc ac,m)c (b )1(a m b N m =+=+=+∈∃即,,由,使得 则ac>bc 。
3证明:(1)用反证法:若b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。
则a=b 。
(2)用反证法:若b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。
则a <b 。
(3)用反证法:若b a b,a b a =<或者,则由三分性知不大于。
当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。
(整理)初等几何研究作业参考答案
《初等几何研究》作业参考答案一.填空题1.①射线(或半直线),②。
2. ①两,②度量公理(或阿基米德公理)和康托儿公理。
3.①前4组公理(或绝对几何),②平行公理。
4.①平移,②旋转,③轴对称. 5.1=⋅⋅ZBAZYA CY XC BX 。
6.①交轨法,②三角奠基法,③代数法,④变换法。
7.①反身性、②对称性、③传递性、④可加性. 8.外角. 9.答案不惟一.10.①演绎,②综合,③直接,④反证,⑤同一; 11.1=⋅⋅ZBAZYA CY XC BX .(答-1也对) 12. ①过两点可作一条直线(或其部分),②已知圆心和半径可作一圆(或其部分). 13.①不共线的三点A 、B 、C 及(AB)、(BC)、(CA)构成的点的集合。
14.连续. 15.答案不惟一. 16.①不过,②圆.17.1=⋅⋅ZB AZYA CY XC BX (或-1).18.①写出已知与求作,②分析,③作法,④证明,⑤讨论. 19.①相容,②独立,③完备.20.合同变换、相似变换、射影变换、反演变换等21.对任意直线a 及其外一点A ,在a 和A 决定的平面上,至少有两条过A 与a 不相交的直线. 22.①代数,②解析,③三角,④面积,⑤复数,⑥向量. 23.相等。
24.所求的量可用已知量的有理式或只含平方根的无理式表出. 二.问答题1.对于公理系统∑,若有一组具体事物M ,其性质是已知的,在规定∑中每一个基本概念指M 中某一具体事物后,可验证∑中每个公理在M 中都成立,则称M 为公理系统∑的一个模型;2.①若AB ≡B A '',则d(AB)=d(B A '');②当C BA ˆ时,有d(AB)+d(BC)=d(AC). 3.命题“三角形的内角和不大于两个直角” 与欧氏平行公理不等价。
4.结合,介于,合同;结合——即有公共点,介于——即在…之间,合同——相等或完全相等. 5.长度、角度、相等、全等、运动、移置、叠合、重合等.6.由第五公设引出了该公理独立性的问题,对该问题的研究导致了非欧几何等结果的产生. 7.通常用“在……上”、“属于”、“通过”等语句来表述。
初等几何研究试题答案(2)李长明版
初等几何研究试题答案(II )二、关于和、差、倍、分线段(角)1、 等腰ABC 中,0100,A B ∠=∠的平分线交AC 于D ,证明:BD+AD=BC 。
D 'BCA4321证:在BC 上取点D ,,使BD ,=BD,连结DD ,0100A ∠=且BD 平分∠ABC00120,40C ∴∠=∠=又BD=BD ,,0380∴∠=,23C ∠+∠=∠0240∴∠=即2C ∠=∠ ,,CD DD ∴=又03180A ∠+∠=∴点A 、D 、D ,、B 四点共圆且14∠=∠∴DD,=ADBC=BD,+CD ,=BD+AD已知,ABCD 是矩形,BC=3AB,P 、Q 位于BC 上,且BP=PQ=QC, 求证:∠DBC +∠DPC=∠DQC解:作矩形BCEF 与矩形ABCD 相等,在EF 上选取点O 使得FO=2EO.连结BO 、DO 。
由图可知,由BO=DO ,且有△BF O ≌△OED,∵∠FBO+∠BOF=90º ∠BOF=∠DOE ∴∠BOF+∠DOE=90º ∴∠BOD=90º △BOD 为等腰直角三角形 有∠DBO=45º ∴∠DBP+∠QBO=45º ∵∠DPC=∠QBO ∴∠DBP+∠DPC=45º ∵△DQC 为等腰直角三角形∴有∠DQC=45º 因此,有∠DBP+∠DPC=∠DQCP QAB CF EO P D3、圆内接四边形ABCD 的对角线AC 、BD 交于X ,由X 向AB 、BC 、CD 和DA 作垂线,垂足分别为A ´、B ´、C ´和D ´. 求证:A ´B ´+C ´D ´=B ´C ´+D ´A ´证明:(方法一)∵X 、A ´、A 、D ´四点共圆(对角和180°) ∴∠XA ´D ´=∠XAD ´又∵∠XAD ´=∠XBC(圆周角)同理∠XA ´B ´=∠XBC,即∠XA ´D ´=∠XA ´B ´ 同理可得∠XB ´A ´=∠XB ´C ´,∠XC ´B ´=∠XC ´D ´, ∠XD ´C ´=∠XD ´A ´∴X 是四边形A ´B ´C ´D ´的内心。
初等数学研究答案_李长明_周焕山编_习题二1至20题
习题二1.2.3.解:()()()则有设.2112444222234b ax x m x m p qx px x ++=+++-+-2223422342)4(44)1()1(2444b abx x a b ax x m x m p qx px x +++++=+++++- ⎪⎪⎩⎪⎪⎨⎧=+=++==∴222)1(2)1(24444-bm ab m p a b q a p ⎪⎩⎪⎨⎧--=+=-=∴1412n m b a q a p4.证明:(1)因个互异的根的是方程501,,,,15432=-x λλλλ 又()())()1(1112345x F x x x x x x x -=++++-=- 所以的根,依据因式定理,(是方程0)F ,,,432=x λλλλ()()())1.....(..........)()F(432λλλλ----=x x x x x(2)设)2.......().........()()(()()(G 5255x S x F x R x x xQ x F x =++=) ()()而)知,由(,0)()G (1432====λλλλG G G⎪⎪⎩⎪⎪⎨⎧=++=++=++=++0)1(R )1()1(0)1()1()1(0)1()1()1(0)1()1()1(342422λλλλλλλλQ p R Q p R Q p R Q p 因为由以上方程组易得:,01)(234=++++=λλλλλT0)1(R ,0)1(,0)1(P ===Q故由因式定理可知,x-1是P(x),Q(x)和R(x)的因式,又根据(2),x-1也是F(x),S(x)的因式,但x-1不是F(x)的因式,所以x-1是S(x)的因式 5.即(,推出由题设,3),2-0c b a 333222abc c b a ca bc ab c b a =++++=++=++)(21(-222c b a ca bc ab ++=++) )(31333c b a abc ++=))(222333c b a c b a ++++因此()c a c a c b c b b a b a c b a ++++++++=()()(222222555 )()()(222222555b c a a c b c b a c b a -+-+-+++= )(555ac bc ab abc c b a +++++=2.3222333555c b a c b a c b a +++++++=)).(65222333555c b a c b a c b a ++++=++∴(2.35222333555c b a c b a c b a ++++=++∴6.解:由试除法知,当k=2时,有一次因式,为了探求二次因式,可用待定系数法,求得当k=1时,)2)(1()(22-+-=x x x x f))(-22234q px x n mx x a akx kx x ++++=-+-(设nq x np mq x n mp q x m p x ++++++++=)()()(234⎪⎪⎩⎪⎪⎨⎧-==+-=++-=+)4.......(....................23.....................2)2.(....................)1...(..........1nq k np mq k n mp q m p )(则有: 由(4),有⎩⎨⎧=-=⎩⎨⎧-==⎩⎨⎧=-=⎩⎨⎧==1212,212-1q n q n q n q n ,)5.....(....................22-),321k p m q n =+⎩⎨⎧-==有代入(把 ⎪⎪⎩⎪⎪⎨⎧===-==⎪⎩⎪⎨⎧-=-+-=21011K )6(........................................)1(3232)1(151q n p m k p k m 故当)得:)(由( 不合)不满足,故代入(⎩⎨⎧-==212q n………………….7.解:(1)原式=2222444y x y x y x y x -++++)( =[][]222244)(.)(y x xy y x xy y x y x +++-+++ ()()[]()[]xy y x xy y x y x y x ++-++-+=222222.()[]()[]()[]()xy y x xy y x xy y x xy y x +++++-+++=2222222.()()[]xy y x xy y x xy y x +++-+++=22222()()xy y x y xy x ++⋅++=22222 ()2222y xy x ++=(2)原式=()[]()11212++++x x x x ()[]211++=x x=()221++x x(3)此多项式是对称多项式。
初等几何研究期末试题及答案
初等几何研究期末试题及答案第一题:已知四边形ABCD中,AB = 6cm,BC = 8cm,∠ABC = 90°,角ADC的度数为60°。
求四边形ABCD的面积。
解析:由题意可知,四边形ABCD为一个平行四边形,且∠ABC = 90°,∠ADC = 60°。
首先,我们可以使用正弦定理求得∠BAC的度数。
根据正弦定理可以得到:sin∠BAC/AB = sin∠ABC/ACsin∠BAC/6 = sin90°/ACsin∠BAC/6 = 1/ACAC = 6/sin∠BAC接下来,我们可以使用余弦定理求得AC的长度。
根据余弦定理可以得到:AC² = AB² + BC² - 2AB·BC·cos∠ABCAC² = 6² + 8² - 2·6·8·cos90°AC² = 100AC = √100AC = 10再次,我们可以使用正弦定理求得AD的长度。
根据正弦定理可以得到:sin∠ADC/AC = sin∠CAD/ADsin60°/10 = sin∠CAD/AD√3/10 = sin∠CAD/ADAD = 10sin∠CAD/√3最后,我们可以计算四边形ABCD的面积。
四边形ABCD可以分成两个三角形,即△ABC和△ACD。
面积公式为:四边形ABCD的面积 = △ABC的面积 + △ACD的面积= (1/2)·AB·AC + (1/2)·AC·AD= (1/2)·6·10 + (1/2)·10·10sin∠CAD/√3= 30 + 50sin∠CAD/√3综上所述,四边形ABCD的面积为30 + 50sin∠CAD/√3。
第二题:已知直角三角形ABC,其中∠B = 90°,AB = 5cm,AC = 12cm。
初等几何研究试卷1
第 1 页 (共 2 页)1一、填空题(本大题共6题,每空3分,共24分)1、已知G 为ABC ∆的重心,并且,,AB c AC b BC a ===,则AG = .2、若xy 和xz 平行于同一直线,则x y z 、、三点的位置关系是 .3、若将ABC ∆绕点A 按逆时针旋转90︒,B 点变到E 点,C 点变到F 点,成为AEF ∆,则BC EF 、的大小关系为 ,BC 与EF 的夹角为 .4、已知AB 是O 的直径,AX 是切线,50AXB ∠=︒,BX 交O 于点C ,则B OC ∠= .5、在ABC ∆中,90,15,1ACB ABC BC ∠=︒∠=︒=,则AC 的长为 .6、设正方形ABCD 内接于O ,P 为AD 弧上一点,PA =,4PC =,则PB = ,PD = .二、计算题(本大题共2题,每小题8分,共16分)1、一点到平面上两点的连线长是51和30,这两线在平面上的射影比为5:2,求这点到平面的距离.2、如图,在ABC ∆中,M 是BC 边的中点,12,16,AB AC E F ==、分别在AC AB 、上,直线EF 和AM 相交于点G ,若2AE AF =,求:EG GF 的值.三、证明题(本大题共5题,第1、2小题每题8分,第3、4小题每题10分,第5小题12分,共48分)1、已知正方形ABCD 中,45,EBF E F ∠=︒、分别在AD 和CD 上,求证:EF AE FC =+.(8分)2、从平行四边形ABCD 的对角线BD 上一点P 作两组对边的垂线,交AB BC CD DA 、、、于E F G H 、、、,证明://EF GH .(8分)FD页 (共 2 页)3、证明:三角形中大边上的中线较小.(10分)4、已知ABC ∆内接于O D ,是BC 延长线上一点,DA 切O 于点A ADB ∠,的平分线分别交AB AC 、于E F 、,求证:(1)AE AF =;(2)2AE BE CF =⋅.(10分)5、在正ABC ∆的AB AC 、上各有一动点D E 、,且BD AE =,求证:BE CD 、的交点P 的轨迹是以BC 为弦,内接角为120︒的一段圆弧∑.(12分)四、作图题(本大题共1题,12分)1、已知ABC ∆,过BC 边上一定点P 作一直线,把三角形分成两个等积形.DB CP。
初等数学研究答案习题五5至18 李长明 周焕山编
习题五5、证明下列不等式。
(1)2210(,);x y xy x y x y R +---+≥∈ 证明:221x y xy x y +---+ 222212x y x y x y +=+---+2211122x y x y =+--+221(1)(1)02x y =-+-≥(2)32110990()10x x x x R +-++>∈证明:321109910x x x -++299110()101010x x x =-++22999110[()()]20201010x x =--++29297110()204010x x x =-++0>6、设n ∈N ,求证:135211(2)(2)(2)(2)!n nnn nn -----≥证明:①当n=1时,112,11!-≥即n=1时不等式成立。
②假设n=k 时不等式成立,即135211(2)(2)(2)(2)!k kkkkk -----≥则当n=k+1时,有1352121(2)(2)(2)(2)(2)11111k k k k k k k -+-----+++++ 1352121(2)(2)(2)(2)(2)k k kkkkk-+>-----1211(2)!1(1)!k k k k +≥-=++即当n=k+1时,不等式也成立。
由①、②知,对任意自然数n 不等式成立。
7、设,,,,a b c d R +∈求证: (1)≥+证明:假设0≥+>成立,则有22≥+即:()().a c b d ab cd ++≥++也即:2.ab ad cb cd ab cd +++≥++0ad cb ∴+≥>22()ad cb ∴+≥22()2()()()4ad ad cb cb ab cd ∴++≥⋅ 22()2()()()0ad ad cb cb ∴-+≥ 2()0ad cb ∴-≥但2()0ad cb -≥是成立的,并且上面每一步都可逆,因而不等式得证。
初等几何研究试题答案李长明版
七、关于共圆点与共点圆1、两圆相切,自其公切线上任一点作两直线,一线割圆于A、B,另一线割圆于C、D,求证:A、B、C、D共圆。
证明:设共切点为T由切割线定理得:PT2=PA·PBPT2=PC·PD∴PA·PB=PC·PD∴A、B、C、D共圆。
2. 四圆依次外切,求证四切点共圆。
证明:设O1,O2,O3,O4顺次外切于ABCD.则∠ABC=12(∠AO2B+∠BO3C)∠CDA=12(∠CO1D+∠DO1A)再注意到四边形O1O2O3O4顺次ABCD,即知四边形ABCD对角互补∵O1,O2,O3,O4顺次外切于ABCD∴则∠ABC=12(∠AO2B+∠BO3C)∠CDA=12(∠CO1D+∠DO1A)∵四边形O1O2O3O4顺次ABCD ∴四边形ABCD对角互补3.设P、M分别在正方形ABCD的边DC、BC上,PM与⊙A(半径为AB)相切,线段PA、MA 分别交对角线BD于Q、N. 求证:五边形PQNMC内接于圆。
证明:连结MQ、AT∴∠1=∠1′,∠2=∠2′∴∠1′+∠2′=45°∴α=45°+∠2 β=∠MAP+∠2=45°+∠2∴α=β∴A、B、M、Q共圆∴∠ABM+∠MQA=180°且∠ABM=90°∴∠MQA=90°∴M、C、P、Q共圆同理P、N、M、C共圆∴M、C、P、Q、N五点共圆。
4. 设O为△ABC内一点,AA’,BB’,CC’均以O为中点。
求证:△BCA’, △CAB’, △ABC’与△A’B’C’的外接圆共点证:连接B’M,CM, A’M,设△BCA’外接圆与△A’B’C’外接圆的另一交点M(≠A’),如图,则由BCMA’,A’MB’C’内接于圆可知∠B’MC=∠1+∠2=∠3+∠4由对称性知BC∥B’C’,过A‘作BC的平行线,则有∠3+∠4=∠5+∠6=∠BA’C’再由对称性知∠BA’C’=∠B’AC∴∠B’MC=∠B’AC∴M在△CAB’的外接圆上同理,M在△ABC’的外接圆上故△BCA’, △CAB’, △ABC’与△A’B’C’的外接圆共点。
初等几何研究综合测试题(一)
《初等几何研究》综合测试题(一)适用专业:数学教育专业 考试时间:120分钟一、 选择题(本题共8小题,每小题3分,共24分)1.在 ABC 中,AB=AC ,高BF 、CE 交于高AD 上一点O ,图中全等三角形的对数是_____。
A.4;B.5;C.6;D.7.2.已知:如图, ABC 中,∠BAC=90°,AD ⊥BC 于D, 若AB=2,BC=3,则DC 的长度是________。
A.83; B.23; C.43; D.53。
3.下面4个图形中,不是轴对称图形的是_________。
A.有两个内角相等的三角形;B.有一个内角是45°的直角三角形;C.有一个内角是30°的直角三角形;D.有一个内角是30°,一个内角是120°的三角形。
4.下列条件中,不能判别四边形是平行四边形的是_________。
A.一组对边平行,另一组对边相等;B.两组对边分别平行;C.对角线互相平分;D.一组对边平行且相等。
5.若一个四边形既是轴对称图形,又是中心对称图形,则这个四边形是_________。
A.直角梯形;B.等腰梯形;C.平行四边形;D.矩形。
6.下列语句正确的是________。
A.圆可以看作是到圆心的距离等于半径的点的集合。
B.圆的内部可以看作是到定点的距离小于定长的点的集合。
C.圆的一部分叫做弧。
D.能够互相重合的弧叫做等弧。
7.在平移过程中,对应线段A.互相平行且相等;B.互相垂直且相等;C.互相平行(或在同一条直线上)且相等;D.以上都不对。
8.下列关于平移的说法中正确的是___________。
A.以原图形中的一点为端点,且经过它的对应点的射线的方向是平移的方向;B.平移后的两个图形中两个顶点连成的线段长是平移的距离;C.原图形中两个顶点连成的线段长是平移的距离;D.以对应点中的一点为端点的射线是平移的方向。
二、 判断题:(本题共5小题,每小题2分,共10分)1.如图1,直线a ,b ,c 在同一平面内,a//b ,a 与c 相交于P ,则b 与c 也一定相交。
初等数学研究答案1
初等数学研究答案1大学数学之初等数学研究,李长明,周焕山版,高等教育出版社习题一1答:原则:(1)A ?B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能施行的某种运算,在B 中总能施行。
(4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。
方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c 组成集合M 。
Θa=b ,M 11b 1a ∈∴?=?∴,假设bc ac M c =∈,即,则M c c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。
(2)若a,由,使得则ac<="">(3)若a>b ,则ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈?即,,由,使得则ac>bc 。
3证明:(1)用反证法:若b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc.当a(2)用反证法:若b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc.当a=b 时,由乘法单调性知ac=bc.这与ac(3)用反证法:若b a b,a b a =<或者,则由三分性知不大于。
当abc 矛盾。
则a>b 。
4. 解:(1)4313='=+541323='='+=+652333='='+=+ (2)313=?631323=+?=?93232333=+?='?=? 5证明:当n=1时,的倍数。
是9181n 154n=-+ 假设当n=k 时的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等几何研究试题答案(I)一、线段与角的相等1. ⊙O1、⊙O2相交于A、B,⊙O1的弦BC交⊙O2于E,⊙O2的弦BD交⊙O1于F,求证: (1)若∠DBA=∠CBA,则DF=CE;(2) 若DF=CE,则∠DBA=∠CBA.证明:(1)连接AC、AE、AF、AD在⊙O1中,由∠CBA=∠DBA得AC=AF在⊙O2中,由∠CBA=∠DBA得AE=AD由A、C、B、E四点共圆得∠1=∠2由A、D、B、E四点共圆得∠3=∠4所以△ACE≌△AFD∴DF=CE(2)由(1)得∠1=∠2,∠3=∠4∵DF=CE∴△ACE≌△AFD∴AD=AE在⊙O 2中,由AD=AE 可得∠DBA=∠CBA2. 在△ABC 中,AC=BC,∠ACB=90O ,D 是AC 上的一点,AE ⊥BD 的延长线于E,又AE=12BD, 求证:BD 平分∠ABC.证明:延长AE,BC 交于点FAED BCA 90 ADE BDC CBD CAFACF BCA 90 AC BC ACF BCD AF BD11AE BD AE AF 22ABEE BE BE ABF BD ABC∠=∠=︒∠=∠∴∠=∠∠=∠=︒=∴∆≅∆∴==∴=⊥∴∠∠又又又平分即平分3. 已知在凸五边形ABCDE 中,∠BAE=3α,BC=CD=DE,且∠BCD=∠CDE=180º-2α,求证:∠BAC=∠CAD=∠DAE.证明:连接BD,得ΔCBD是等腰三角形且底角是∠CDB=[180º-(180º-2α)]÷2=α.∴∠BDE=(180°-2α)-α=180º-3α∴A、B、D、E共圆同理A、C、D、E共圆∴∠BAC=∠CAD=∠DAE4. 设H为锐角△ABC的垂心,若AH等于外接圆的半径. 求证:∠BAC=60º证明:过点B作BD⊥BC,交圆周于点D,连结CD、ADC∵∠DBC=90º, ∴CD是直径,则∠CAD=90º由题,可得AH⊥BC, BH⊥AC∴BD∥AH, AD∥BH ∴四边形ADBH是□∴AH=BD又∵AH等于外接圆的半径(R) ∴BD=R,而CD=2R∴在Rt△BCD中,CD=2BD,即∠BCD=30º∴∠BDC=60º又∵∠BAC=∠BDC ∴∠BAC=∠BDC=60º5. 在△ABC中,∠C=90o,BE是∠B的平分线,CD是斜边上的高,过BE、CD之交点O且平行于AB的直线分别交AC、BC于F、G,求证AF=CE.证明:如图∵∠1=∠3,∠1=∠2.∴∠2=∠3,∴GB = GO,∵∠5=∠4=∠6,∴CO =CE,∵ FG∥AB,∴AF/CF=BG/CG=GO/CG,又∵△FCO∽△COG,∴CO/CF=GO/CG=AF/CF,∴CO=AF,∵CO=CE,∴AF=CE.6. 在△ABC中,先作角A、B的平分线,再从点C作上二角的平分线值平行线,并连结它们的交点D、E,若DE∥BA,求证:△ABC等腰.证:如图所示设AC、ED的交点为F∵AD是∠A的平分线∴∠1=∠2∵DE∥AB ∴∠1=∠3∵CE∥AD ∴∠3=∠5, ∠4=∠2∴∠1=∠2=∠3=∠4=∠5则△FAD和△FCE是等腰三角形∴AF=DF,EF=CF∴AC=DE同理可证BC=DE∴AC=BC∴△ABC是等腰三角形7. 三条中线把△ABC 分成6个三角形,若这六个三角形的内切圆中有4个相等.求证:△ABC 是正三角形.DBC证明:∵△AOF 、△AOE 、△COD 、△COE 、△BOF 、△BOD 面积都相等∴S △OFB =S △OEC即:21BF ×r+21FO ×r+21BO ×r=21CE ×r+21OE ×r+21OC ×r 21 (BF+FO+BO)×r=21(CE+OE+OC)×r ∴BF+FO+BO=CCE+OE+OC∴CE+OE+OC-OG-OI=CE+OE+OC-OL-OJ ∴2DH+2BH=2FK+2CK ∴2BF=2CE又F 、E 分别为AB 、AC 之中点 ∴AB=AC 同理:AB=BC故△ABC 是正三角形.8. 平行四边形被对角线分成四个三角形中,若有三个的内切圆相等 证明:该四边形为菱形.BDC证明:又∵△AO B 、△BOC 、△COD 、△DOA 四个三角形的面积相等()()1122OD DC OC r OB BC OC r ∴++⨯=++⨯ CD OC OD BC OB OC ∴++=++ OD OC DC OE OG OB OC BC OI OG ++--=++-- 2222DF CF BH CH ⇒+=+22DC BC DC BC ⇒=⇒=∴四边形为菱形9. 凸四边形被对角线分成4个三角形,皆有相等的内切圆,求证:该四边形是菱形.证明:连结O1 、O2,分别作O1 、O2到AC的垂线,垂足分别为P 、M ∵在△ABC中,BO是☉O1 、☉O2的公切线∴BO⊥O1 O2又∵☉O1 、☉O2半径相同,且都与AC相切∴O1 O2‖AC∴BO⊥AC BD⊥AC∵两个相等的内切圆☉O1 、☉O3在对顶三角形△AOB与△COD中∴周长C△AOB=C△COD∴AO+BO+AB=CO+DO+CD又∵OP=OQ=OM=ON∴(AO+BO+AB)-(OP+OQ)=(CO+DO+CD)-(OM+ON)∴2AB=2CD∴AB=CD同理AD=BC∴四边形ABCD是平行四边形又∵AC⊥BD∴四边形ABCD是菱形10. 在锐角△ABC中,BD,CE是两高,并自B作BF⊥DE于F,自C 作CG⊥DE于G,证明:EF=DG.证明:设O,M分别是BC,FG的中点,所以OM∥BF,因为BF⊥FG, 所以OM⊥FG,又因为∠BEC=∠BDC=90所以BCDE四点在以BC为直径的圆上,因为OM⊥DE,所以OM平分ED,所以FM-EM=MG-MD即EF=DG.11. △ABC中,M是BC的中点,I是内心,BC与内切圆相切与K.求证:直线IM 平分线段AK.I OML KHG FEDCB A证明:作出∠A 的旁切圆O,设它与BC 边和AB,BC 的延长线分别切于D,E,F,(如图)连接AD 交内接圆于L,则因内接圆和旁切圆以A 为中点成位似,则:IL ⊥BC,即K,I,L 共线于是原题借中位线可如下转化MI 平分AK, ∴M 平分DK ∴BD=KC后者利用圆I 与圆O 两条外公切线相等 ∴EG=FH∴BD+BK=CD+CK则反推过去,得到IM 平分线段AK.12.在△ABC中,M是BC的中点,I是内心,A H⊥BC于H,AH交MI 于E,求证:AE与内切圆半径相等.B证明:如图所示作△ABC的内切圆,∴切点分别交于BC于点K、AB于点F、AC于点G,连接KL与AC∴KL是直径,又∵M为BC的中点,I为内心,则A L∥MI又∵A H⊥BC∴A H∥LK又∵点E点I分别都在AH、LK上∴A E∥LI∴四边形AEIL为平行四边形∴A E=LI命题得证.13. 在矩形ABCD中,M是AD的中点,N是BC的中点,在CD的延长线取P点,记Q为PM与AC的交点,求证:∠QNM=∠MNP证明:利用矩形的中心设O是矩形ABCD的中心,则O也是MN的中点,延长QN交OC的延长线于R,如图,则O 又是PR的中点,故NC平分∠PNR.,而NM⊥NG.∴NM平分∠PNQ14. 给定以O为顶点的角,以及与此角两边相切于A、B的圆周,过A 作OB的平行线交圆于C,连结OC交圆于E,直线AE交OB于K,求证:OK=KB.证明:如图所示,过C 作圆的切线交OB 延长线于D. ∵OD,OA,CD 都是圆的切线,且A C ∥CD ∴四边形ACDO 是等腰梯形,∠DOA=∠D ∵∠BOC=∠ACO,∠ACO=∠OAK ∴∠BOC=∠OAK ∵∠DOA=∠D ∴△AOK ~△ODC ∵21=OD CD ∴21=AO KO ∵OA=OB ∴OB=OA=2KO,即OK=KB15. 在等腰直角∆ABC 的两直角边CA,CB 上取点D 、E 使CD=CE,从C 、D 引AE 得垂线,并延长它们分别交AB 于K 、L,求证:KL=KB.EDC B证明:延长AC至E'使CE'=CE,再连BE'交AE的延长线于H.∵∆ABC是等腰直角三角形∴AC=BC ,∠ACB=∠BCE'=90°又∵CE=CE' ∴∆BCE'≌∆ACE∴∠CAE=∠CBE'∵∠AEC=∠BEH ∴∆BHE∽∆ACE∴∠BHE=∠ACB=90°∵DL∥CK∥E'B及DC=CE'∴KL=LB.16. 点M在四边形ABCD内,使得ABMD为平行四边形,试证:若∠CBM=∠CDM,则∠ACD=∠BCM.证:作AN∥BC且AN=BC,连接DN、NC∵ABMD为平行四边形,AN∥BC且AN=BC∴ABCN、DMCN为平行四边形,AD=BM∴DN=CM、AN=BC∴△ADN≌△BMC∴∠1=∠3,∠2=∠4,∠6=∠7∵∠1=∠2∴∠3=∠4∴A、C、N、D共圆(视角相等)∴∠5=∠7(同弧AD)∴∠5=∠6即∠ACD=∠BCM1∠BDC,求证:△ABC是等17.已知∠ABC=∠ACD=60°,且∠ADB=90°-2腰的.证明:延长CD使得BD=DE,并连结AE1∠BDC∵∠ADB=90°-2∴2∠ADB+∠BDC=180°又∠BDC+∠ADB+∠ADE=180°∴∠ADB=∠ADE又∵BD=DE,AD=AD∴△ADB≌△ADE∴∠ABD=∠AED=60°,AB=AE又∵∠ACD=60°∴△ACE为正三角形∴AC=AE∴AB=AC∴△ABC为等腰三角形18.⊙O1、⊙O2半径皆为r,⊙O1平行四边形`过的二顶A、B,⊙O 2过顶点B、C,M是⊙O1、⊙O2的另一交点,求证△AMD的外接圆半径也是r.证明: 设O为MB的终点连接CO并延长⊙O1于E则由对称知O为CE的中点∵O平分MBO平分CE∴MEBC是平行四边形∴∴ME∥BC∥AD∴MEAD亦是平行四边形∴△MAE≌△AMD∴△AMD的外接圆半径也为r19. 在凸五边形ABCDE中,有∠ABC=∠ADE,∠AEC=∠ADB,求证:∠BAC=∠DAE.证明:连接BD,CE,设它们相交于F,如图,∵∠AEC=∠ADB.∴A,E,D,F四点共圆.∴∠DAE=∠DFE.又∠ABC=∠ADE=∠AFE.∴A,B,C,F四点共圆.∴∠BAC=∠BFC.又∠DFE=∠BFC.∴∠BAC=∠DAE.20. 在锐角△ABC中,过各顶点作其外接圆的切线,A、C处的两切线分别交B处的切线于M、N,设BD是△ABC的高(D为垂足),求证:BD 平分∠MDN.证明:如上图,m、n分别表示过M、N的切线长,再自M作MM’⊥AC 于M’, 作NN’⊥AC于N’,则有∵∠N=∠B=∠NCN’∴△MAM’∽△NCN’∴AM’/’CN’=AM/CN=m/n又∵MM’∥BD∥NN’∴M’D/DN’=MB/BN=m/n由等比性质知m/n=(M’D-AM’)/(DN’-CN’)=AD/DC∴△ADM∽△CDN∴DM/DN=m/n即DM/m=DN/n∴BD平分∠MDN21.已知:AD、BE、CF是△ABC的三条高.求证:DA、EB、FC是△DEF 的三条角平分线.证明:连结DF、FE、DE∵C F⊥AB AD⊥BC∴B、D、H、F共圆∴∠1=∠3∵AD⊥BC BE⊥AC∴B、D、E、A共圆∴∠2=∠3∴∠2=∠1∴AD平分∠EDF同理,CF平分∠EFDBE平分∠FED即证:DA、EB、FC是△DEF的三条角平分线22.已知AD是△ABC的高,P是AD上任意一点,连结BP-CP,延长交AC 、AB 于E 、F,证DA 平分∠EDF.证:过E 、F 两点分别作EH 、FG ,使EH ⊥BC,FG ⊥BC,且交CF 、BE 于I 、J∵EH ⊥BC,AD ⊥BC,FG ⊥BC ∴EH ∥AD ∥FG∴EI EH =AP AD =FJ FG ∴FJ EIFG EH =又∵GDHDPJ EP = ∴△EIP ∽△JFP ∴PJEP FJ EI = ∴△EHD ∽FGD∴∠DFJ =∠DEI ∴∠FDB=∠EDC 即∠ADF=∠ADE 即DA 平分∠EDF23.圆内三条弦PP 1、QQ 1、RR 1、两两相交,PP 1与QQ 1交于B,QQ 1与RR 1交于C,RR 1与PP 1交于A,已知:AP=BQ=CR,AR 1=BP 1=CQ 1,求BCADEFIJP证:ABC是正三角形.解:设AP=BQ=CR=m,AR1=BP1=CQ1,则由相交弦定理得{m(c+n)=n(b+m)m(a+n)=n(c+m)m(b+n)=n(a+m)即ma=ncmb=namc=nb三式相加得m=n所以a=b=c即△ABC是正三角形24.H为 ABC的垂心,D、E、F分别为BC、CA、AB的中点,一个以H为心的圆交DE于P、Q,交EF于R、S,交FD于T、V.求证:CP=CQ=AR=AS=BT=BU证明:连结AS 、AR 、RH由相交弦定理知:AH ·HA`=BH ·HB`=CH ·HC` AS 2=AR 2=AK 2+KR 2设O H 的半径为r, 在∆KRH 中,KR 2=r 2-HK 2∴AS 2=r 2+(AK+KH )·(AK-HK )=r 2+AH ·(AK-HK)在∆ABC 中,F 、E 为AB 、AC 的中点,且AA ⊥`BC ∴AK=KA`∴AS 2=AR 2=r 2+AH ·HA`同理:BT 2=BU 2=r 2+BH ·HB` CP 2=CQ 2=r 2+CH ·HC`BCHDE FRS T QK C`A `B ` A25、在锐角三角形ABC中,AD、BE、CF是各边上的高,P、Q分别在线段DF、EF上,且∠PAQ与∠DAC同向相等.求证:AP平分∠FPQC证明:作出△APQ的外接圆,延长PF交圆于R,分别连结RA、RQ 由图可知,AQPR内接于圆1∠DFE∴∠PRQ=∠PAQ=∠DAC=2由外角定理得,∠PRQ+∠FQR=∠DFE∴FC∥RQ∴AF⊥RQ FR=FQ∴AF垂直平分RQ∴∠ARQ=∠AQR又AQPR内接于圆∴∠APQ=∠ARQ ∠APR=∠AQR∴∠APQ=∠APR∴AP平分∠FPQ00090)2()1(,45,30,15.26=∠==∠=∠=∠=∠=∠=∠∆∆BAC ABAC CQP BRP CPQ BPR ARQ AQR PQR C B A PQR 求证:之外,且在、、是任意三角形,0 0901530~~ )2(~~45~~~30604515601..=∠∴∠+∠+∠+∠=∠=∠=∠=∠=∠∴∆∆∆∆=∴===⇒∆∆=∴∆∆∴∠=∠∠+∠=∠+∠⇒=∠=∠=⇒∆∆∆∆∆≅∆∴=∠=∠∴=∠∠=∠∴∆≅∆∴=-=∠=∠=∴∠=∠∆BACARQBARAQRCAQBACARQAQRBARCAQABRSPRCQAPQSACABSRSQARAQARABSRPSABRSPRAQACQSPSCQAPQSCQAPQSCQPAQPAQSAQPCQPAQSQPCQQSAQCQPAQSCQPBRPARSAQSASRASQQSRASRASQARSAQSARSARQARAQARQAQRPSASQRSPQR又同理,即又)(如图所示,连结,的另一侧作正为一边在证明:以27.已知:凹四边形ABCD中,︒=∠=∠=∠45DBA.求证:AC=BD.证明: 如图,延长DC 交AB 于点E,延长BC 交AD 于点F. ∵︒=∠=∠45D A,DE AE =∴且︒=∠90AED又︒=∠45B︒=∠∴45ECB DBAC DEB S AEC S EB EC =∴∆≅∆∴=∴。