第11讲 一次函数的图象与性质
人教版数学九年级上册第11节 一次函数的图象和性质-课件
∴|2a+1-(4-a)|=2,解得a=13或a=53. ∴a的值为13或53
10.如图,直线l1:y=x+3与直线l2:y=ax+b相交于点 A(m,4).
(1)求出m的值; y=x+3,
(2)观察图象,请你直接写出关于x,y的方程组 y=ax+b 的 解和关于x的不等式x+3≤ax+b的解集.
(2)如图,直线l1即为所求,直线l1的解析式为y=-2x+2+4 =-2x+6,故答案为:y=-2x+6
(3)如图,直线l2即为所求, ∵直线l绕点A顺时针旋转90°得到l2, 易证∠OBA=∠CAD,
∴tan∠CAD=tan∠OBA=OOAB=12
12.如图,已知直线y=x+3与x轴、y轴交于A,B两点,直线l经过原点, 与线段AB交于点C,把△AOB的面积分为2∶1的两部分,求直线l的解析 式.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/152021/8/152021/8/152021/8/158/15/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月15日星期日2021/8/152021/8/152021/8/15 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/152021/8/152021/8/158/15/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/152021/8/15August 15, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/152021/8/152021/8/152021/8/15
一次函数的图象与性质(学习重点)
一次函数的图象与性质【知识要点】1、函数y=kx+b(k、b为常数,且k≠0)的图象是一条直线;当b>0时,直线y=kx+b是由直线y=kx向上平移b个单位长度得到的;当b <0时,直线y=kx+b是由直线y=kx 向下平移个单位长度得到的.(k为常数,且)过(0,b)和(,0)点的一条直线的取3、、对一次函数的图象和性质的影响:k决定直线从左向右的趋势(及倾斜角的大小——倾斜程度),b决定它与y 轴交点的位置,k、b一起决定直线经过的象限.4、两条直线:和:的位置关系可由其系数确定:(1)与相交;(2),且与平行;*(3)与垂直;【典型例题】1、(1)已知一次函数的图象如图所示,那么的取值范围是()A. B.C. D.(2)如果直线y=ax+b经过第一、二、三象限,那么ab__________0.(3)点是一次函数y=-4x+3图象上的两个点,且,则_______.2、根据函数的图象,求函数的解析式.3、(1)已知直线,与直线平行,且与轴的交点是(0,),则直线解析式为___________________.(2)若直线与平行,且同一横坐标在两条直线上对应的点的纵坐标相差1个单位长度,则直线解析式为________________________.5、在平面直角坐标系xOy中,已知两点,,在y轴上求作一点P,使AP+BP最短,并求出点P的坐标.6、已知一次函数的图象过点,与轴交于点,与轴交于点,且,求点的坐标.7、在平面直角坐标系中,将直线沿轴向上平移2个单位后得到直线l,已知l经过点A(-4, 0).(1)求直线l的解析式;(2)设直线l与轴交于点B,点P在坐标轴上,△ABP与△ABO的面积之间满足, 求P的坐标.一次函数\一、目标认知学习目标:1.理解正比例函数的概念,能正确画出正比例函数y=kx的图象,能依据图象说出正比例函数的主要性质,解决简单的实际问题。
2. 理解一次函数的概念,理解一次函数y=kx+b的图象与正比例函数y=kx的图象之间的关系,能正确画出一次函数y=kx+b的图象。
《 一次函数的图象和性质》课件
因为0≤x≤70 ,所以当 x = 70 时,y的值最小 当x = 70 时,y = -3 x +3920 = -3×70+3920=3710(元)
当甲仓库向A工地运送70吨水泥,则他向B工地运送 30吨水泥;乙仓库不向A工地运送水泥,而只向B工地运送 80吨时,总运费最省
y
y=-2x
y
3 2 1
-2 -1 0 1 2 3 x
-1 -2
3 2 1
-2 -1 0 1 2 3 x
-1 -2
1.图象都经过原点 2. 当k>0时,图象经过第一、三象限,y随x的增大而增大
当k<0时,图象经过第二、四象限,y随x的增大而减小
13
y=2x +y3 y=2x
3 2 1
-2 -1 0 1 2 3 x
一次函数 一条直线
y=kx+b
该直线经过点
(k≠0) (0,b),
且平行于直线
y=kx
y k>0 ox
k<0
性质
1.图象都经过原点
2. 当k>0时,图象经过第
一、三象限,y随x的增大而 增大
当k<0时,图象经过 第二、四象限,y随x的增
大而减小
y k>0
当k>0时,y 随x 的
增大而增大
ox
当k<0时,y 随x 的
3、点A(-3,y1)、点B(2,y2)都在直线y=–4x+3上,
则y1与y2的关系是( )D
A y1 ≤ y2 B y1 = y2 C y1< y2 D y1 >y2
11
4、设下列两个函数当 x = x1时,y = y1; 当x = x 2时,y = y2,用“<”或“>”号填空
中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件
y=-x+2
.
图 11-1
2021/12/9
第十一页,共三十二页。
y= x
,图②
课前双基巩固
5. [八上 P164 探索改编] 已知一次函数 y=2x+4.
图 11-2
(1)在如图 11-2 所示的平面直角坐标系中,画出函数的图像;
(2)图像与 x 轴的交点 A 的坐标是 (-2,0) ,与 y 轴的交点 B 的坐标是 (0,4)
与 x 轴交点坐标
令 y=0,求出对应的 x 值
两直线的
与 y 轴交点坐标
令 x=0,求出对应的 y 值
交点坐标
与其他函数图
像的交点坐标
一条直线与坐标轴围
成的三角形的面积
2021/12/9
解由两个函数表达式组成的二元一次方程组,方程组的解即两函数
图像的交点坐标
1
2
直线 y=kx+b(k≠0)与 x 轴的交点为 - ,0 ,与 y 轴的交点为(0,b),三角形面积为 S△= - ×|b|(用
a2+a2=
直线 y=2x+1 向右、向上平移 3 个单位后的解析式是 y=2x-2.
2021/12/9
第二十二页,共三十二页。
2
3 2 ,解得 a=3.
高频考向探究
[方法模型] 直线 y=kx+b(k≠0)在平移过程中 k 值不变.平移的规律是:若上下平移,则直接在常数 b 后加上或减
去平移的单位长度数;若向左(或向右)平移 m 个单位长度,则直线 y=kx+b(k≠0)变为 y=k(x±m)+b,其口诀是上加
【精品课件学习】2020(删减3页)教版中考数学复习解题指导:第11讲 一次函数的图象与性质_1-5
精品课件
1
第11讲┃ 考点聚焦
考点聚焦
考点1 一次函数与正比例函数的概念
一次函数
一般地,如果y=k x+b (k、b是常数, k≠0),那么y叫做x的一次函数
特别地,当b=0时,一次函数y=k x 正比例函数 +b变为y=k x (k为常数,k≠0),这
时y叫做x的正比例函数
一次函数 y=kx+b 的图象可由正比例函数
图象关系 y=kx 的图象平移得到,b>0,向上平移 b
个单位;b<0,向下平移b个单位
因为一次函数的图象是一条直线,由两点确
图象确定 定一条直线可知画一次函数图象时,只要取
精两品课个件点即可
3
第11讲┃ 考点聚焦 (2)正比例函数与一次函数的性质
一、三象限 二、四象限
极光体育 https:///
瞎子生气地叫道:“如果不是香的,难道还是臭的吗?”
这时,大家简直笑出了眼泪。”
劲头生长
“您告诉我吧!到底出了什么事?”牧羊人说,“说不定我可以帮帮您的忙。,又经历了无数个春夏秋冬,那棵松树不再哀叹命运的不公,而是抓紧足下的土地,承受着狂风严霜,鼓足
精品课件
2
第11讲┃ 考点聚焦
考点2 一次函数的图象和性质 (1)正比例函数与一次函数的图象
正比例函 正比例函数 y=kx(k≠0)的图象是经过点
数的图象
(0,0)和点(1,k)的一条直线
一次函数 的图象
一次函数 y=kx+b(k≠0)的图象是经过点 (0,b)和-bk,0的_一__条_直__线__
精品课件
4
第11讲┃ 考点聚焦
一、二、三象限
一、三、四象限
中考数学复习讲义课件 第3单元 第11讲 一次函数
第11讲 一次函数
1 知识梳理素养形成 2 考法聚焦素养提升
知识梳理素养 形成
考法聚焦素养 提升
一次函数的图象与性质(10 年 6 考) 例 1 已知关于 x 的一次函数 y=(2m+1)x+m-1. (1)若该函数的值 y 随自变量 x 的增大而增大,则 m 的取值范围为
(3)每月制作 A 类微课多少个时,该团队月利润 w 最大,最大利润是多少元?
解:由(2)知,w=50a+16500. ∵50>0,∴w 随 a 的增大而增大. ∴当 a=9 时,w 有最大值,w 最大=50×9+16500=16950(元).
答:每月制作 A 类微课 9 个时,该团队月利润 w 最大,最大利润是 16950 元.
7.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣 构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度, 可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽 略不计)加长或缩短,设双层部分的长度为 xcm,单层部分的长度为 ycm. 经测量,得到表中数据. 双层部分长度 x/cm 2 8 14 20 单层部分长度 y/cm 148 136 124 112
品种 A B 原来的运费 45 25 现在的运费 30 20
(1)求每次运输的农产品中 A,B 产品各有多少件; [解答] 解:设每次运输的农产品中 A 产品有 x 件,B 产品有 y 件.根据题 意,得 4350xx++2250yy==11220000,-300.解得yx==3100., 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件.
10.(2021·乐山)如图,已知直线 l1:y=-2x+4 与坐标轴分别交于 A,B 两 点,那么过原点 O 且将△AOB 的面积平分的直线 l2 的解析式为( D )
一次函数的图像与性质ppt1 人教版
A.一、二、三象限 B.二、三、四象限
C.一、三、四象限 D.一、二、四象限 2(2009宁夏)5.一次函数y=3x-2的图象不经过( )
B
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3(2009年株洲市)一次函数y=2x+1的图象不经过( )
A.第一象限 B.第二象限C.第三象限D.第四象限
b>0 b<0
向上平移|b|个单位长度 向下平移|b|个单位长度
课堂检测:
1、把直线y=x+1向下平移3个单位长度,得到直线( ) A、y=x+4 B、y=x-3 C、y=x-2 D、y=x+3
2、函数y=(m-1)x&当m
时,y随x的增大而减小;
3、已知直线y=kx+b的图象如图所示,则( ) A、k<0,b<0 B、 k>0,b<0 C、k<0,b>0 D、 k>0,b>0
课后作业
1、在一次函数y=-3x+6的图象中 :
(1)可看作由一次函数y=-3x的图象向 平移 个单位长度得到;
(2)随着x的增大,y将
(填“增大”或“减小”);
(3)它的图象从左到右
(填“上升”或“下降”);
(4)图象经过第
象限;
(5)图象与x轴的交点是
;与y轴的交点是
;
(6)当x=
时,y=2,当x=1时,y=
下 平移 2 单 上 平移 3 单
课堂练习
4、对于函数y=5x+6,y的值随x的值减小 而__减__少__。
5、函数y=2x-1经过 一、三、四象限
6、函数y=2x - 4与y轴的交点为( 0,-4 ),与 x轴交于( 2,0 ) 7.已知点(-4,y1),(2,y2)都在直线 y= 2x+1上,则y1与
第11讲 一次函数的图象与性质(讲练)(解析版)
2021年中考数学一轮复习讲练测专题11一次函数的图像与性质1、知道一次函数与正比例函数的意义.2、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.3、会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况).1.(2020·北京中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【答案】B【分析】hcm注水时间为t分钟,根据题意写出h与t的函数关系式,从而可得答案.设水面高度为,【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.2.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .2【答案】A【分析】由直线y =kx +2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k 值.【详解】解:∵直线y =kx +2过点(﹣1,4),∴4=﹣k +2,∴k =﹣2.故选:A .【点睛】本题考查的是一次函数图像上点的坐标特点,以及利用待定系数法求解一次函数的解析式,掌握一次函数图像上的点满足函数解析式是解题的关键.3.(2020·安徽中考真题)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4 【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.(2020·江苏泰州市·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( )A .5B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【详解】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.(2020·浙江嘉兴市·中考真题)一次函数21y x =--的图象大致是( )A .B .C .D .【答案】D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式21y x =--,∵k 0<,∴直线斜向下,∵0b <,∴直线经过y 轴负半轴,图象经过二、三、四象限.故选:D .【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状. 6.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【点睛】本题考查的是一次函数的图像与性质,不等式的基本性质,掌握一次函数y kx b =+中的,k b 对函数图像的影响是解题的关键 .7.(2020·四川凉山彝族自治州·中考真题)已知一次函数y =(2m +1)x +m -3的图像不经过第二象限,则m 的取值范围( )A .m>-12B .m<3C .-12<m<3D .-12<m≤3 【答案】D【分析】一次函数的图象不经过第二象限,即可能经过第一,三,四象限,或第一,三象限,所以要分两种情况.【详解】当函数图象经过第一,三,四象限时,21030m m ⎧⎨-⎩+><,解得:-12<m <3. 当函数图象经过第一,三象限时,21030m m +>=⎧⎨-⎩,解得m =3. ∴-12<m≤3. 故选D.【点睛】一次函数的图象所在的象限由k ,b 的符号确定:①当k >0,b >0时,函数y =kx +b 的图象经过第一,二,三象限;②当k >0,b <0时,函数y =kx +b 的图象经过第一,三,四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一,二,四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二,三,四象限.注意当b =0的特殊情况.8.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x(单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A【分析】 根据题目中的函数解析式,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.【详解】解:设y 与x 的函数关系式为y =kx+b ,6910.5b k b =⎧⎨+=⎩, 解得,k 0.5b 6=⎧⎨=⎩, 即y 与x 的函数关系式是y =0.5x+6,当y =7.5时,7.5=0.5x+6,得x =3,即a 的值为3,故选:A .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.(2019·浙江杭州市·中考真题)某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式_____.【答案】1y x =-+或21y x =-+或1y x =-等.【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.【详解】符合题意的函数解析式可以是1y x =-+或21y x =-+或1y x =-等,(本题答案不唯一) 故答案为如1y x =-+或21y x =-+或1y x =-等.【点睛】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义. 10.(2020·贵州黔东南苗族侗族自治州·中考真题)把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_____.【答案】y =2x +3【分析】直接利用一次函数的平移规律进而得出答案.【详解】解:把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1,再向上平移2个单位长度,得到y =2x +3.故答案为:y =2x +3.【点睛】本题考查了一次函数的平移,熟练掌握是解题的关键.11.(2020·天津中考真题)将直线2y x =-向上平移1个单位长度,平移后直线的解析式为________.【答案】21y x =-+【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:∵直线的平移规律是“上加下减”,∴将直线2y x =-向上平移1个单位长度所得到的的直线的解析式为:21y x =-+; 故答案为:21y x =-+.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键. 12.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.【答案】m <n【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.【详解】解:∵直线2y x b =+中,k=2>0,∴此函数y 随着x 的增大而增大, ∵12-<2, ∴m <n .故答案为:m <n .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键. 13.(2020·四川成都市·中考真题)一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为_________. 【答案】12m >【分析】根据一次函数的性质得2m-1>0,然后解不等式即可.【详解】解:因为一次函数(21)2y m x =-+的值随x 值的增大而增大,所以2m-1>0. 解得12m >. 故答案为:12m >. 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.14.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限.【答案】三【分析】根据一次函数的性质,即可得到答案.【详解】解:在一次函数2y x b =-+中,∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限;故答案为:三【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.15.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).【答案】<【分析】由k =2>0,可得出y 随x 的增大而增大,结合1<3,即可得出x 1<x 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大.又∵1<3,∴x 1<x 2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小”.16.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.【答案】122y x =+ 【分析】 根据原一次函数与x,y 轴的交点坐标,并求出旋转后这两点对应的坐标,再由待定系数法求解一次方程的表达式即可.【详解】∵一次函数的解析式为24y x =-+,∴设与x 轴、y 轴的交点坐标为()2,0A 、()0,4B ,∵一次函数24y x =-+的图象绕原点O 逆时针旋转90,∴旋转后得到的图象与原图象垂直,旋转后的点为()10,2A 、()1-4,0B , 令y ax b =+,代入点得12a =,2b =, ∴旋转后一次函数解析式为122y x =+. 故答案为122y x =+. 【点睛】本题主要考查了一次函数图像与几何变换,正确把握互相垂直的两直线的位置关系是解题的关键.17.(2020·湖南中考真题)已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x (m ≠0)的图象只有一个交点,求交点坐标.【答案】(1)一次函数的解析式为y =2x +12;(2)(﹣3,6).【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y =kx +b 中可得关于k 、b 的方程组,再解方程组可得k 、b 的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式可得2x 2+12x ﹣m =0,再根据题意得到△=0时,两函数图像只有一个交点,解方程即可得到结论.【详解】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得31828k b k b +=⎧⎨-+=⎩, 解得212k b =⎧⎨=⎩,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(m ≠0)的图象只有一个交点,∴212y x my x =+⎧⎪⎨=⎪⎩只有一组解, 即2x 2+12x ﹣m =0有两个相等的实数根, ∴△=122﹣4×2×(﹣m )=0, ∴m =-18.把m =-18代入求得该方程的解为:x =-3, 把x =-3代入y =2x +12得:y =6, 即所求的交点坐标为(-3,6). 【点睛】本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.18.(2020·北京中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围. 【答案】(1)1y x =+;(2)2m ≥ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2), ∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥. 【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.考点一一次函数图像与系数的关系例1.(2020·明光市明湖学校八年级月考)若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A. B. C. D.【答案】D【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:∵一次函数y=kx+b过一、二、四象限,∴则函数值y随x的增大而减小,图象与y轴的正半轴相交∴k<0,b>0,∴一次函数y=bx+k的图象y随x的增大而增大,与y轴负半轴相交,∴一次函数y=bx+k的图象经过一三四象限.故选:D.【点睛】本题考查了一次函数的性质.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.【变式训练】=+的图象如图所示,则下列结论正确的1.(2020·湖南益阳市·中考真题)一次函数y kx b是()A .0k <B .1b =-C .y 随x 的增大而减小D .当2x >时,0kx b +<【答案】B 【分析】根据一次函数的图象与性质判断即可. 【详解】由图象知,k ﹥0,且y 随x 的增大而增大,故A 、C 选项错误; 图象与y 轴负半轴的交点坐标为(0,-1),所以b=﹣1,B 选项正确; 当x ﹥2时,图象位于x 轴的上方,则有y ﹥0即+kx b ﹥0,D 选项错误, 故选:B . 【点睛】本题考查一次函数的图象与性质,利用数形结合法熟练掌握一次函数的图象与性质是解答本题的关键.2.(2020·江苏镇江市·中考真题)一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,它的图象不经过的象限是( ) A .第一 B .第二C .第三D .第四【答案】D 【分析】根据一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,可以得到k >0,与y 轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题. 【详解】解:∵一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大, ∴k >0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限, 故选:D . 【点睛】本题考查了一次函数的性质及一次函数的图象.解答本题的关键是明确题意,利用一次函数的性质解答.考点二 一次函数的性质例2. (2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y <【答案】D 【分析】根据一次函数的图像与性质即可求解. 【详解】A.图象经过点()1,3,正确;B.图象与x 轴交于点()2,0-,正确C.图象经过第一、二、三象限,故错误;D.当2x >时,y >4,故错误; 故选D . 【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质特点. 【变式训练】1.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】B 【分析】根据一次函数的图象分析增减性即可. 【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小. 故选B . 【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.2.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限. 【答案】三 【分析】根据一次函数的性质,即可得到答案. 【详解】解:在一次函数2y x b =-+中, ∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限; 故答案为:三 【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.考点三 求一次函数的解析式例3(2020·湖南郴州市·中考真题)小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y=3x+37. 【分析】利用待定系数法即可求出该函数表达式.【详解】解:设该函数表达式为y=kx+b ,根据题意得:40243k b k b +⎧⎨+⎩==, 解得337k b ⎧⎨⎩==,∴该函数表达式为y=3x+37. 故答案为:y=3x+37. 【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键. 【变式训练】1.(2020·江西中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB 向右上方平移,得到Rt O A B '''△,且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A B ''的表达式为( ) A .y x = B .1y x =+C .12y x =+D .2y x =+【答案】B 【分析】先求出A 、B 两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解. 【详解】解:当y=0时,2230x x --=,解得x 1=-1,x 2=3, 当x=0时,y=-3, ∴A (0,-3),B (3,0), 对称轴为直线12bx a=-=, 经过平移,A '落在抛物线的对称轴上,点B '落在抛物线上, ∴三角形Rt OAB 向右平移1个单位,即B′的横坐标为3+1=4, 当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形Rt OAB 向上平移5个单位, 此时A′(0+1,-3+5),∴A′(1,2), 设直线A B ''的表达式为y=kx+b , 代入A′(1,2),B′(4,5),可得254k bk b =+⎧⎨=+⎩ 解得:11k b =⎧⎨=⎩,故直线A B ''的表达式为1y x =+, 故选:B . 【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质.2.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.【答案】y =-2x 【分析】首先将点P 的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解. 【详解】∵点P 到x 轴的距离为2, ∴点P 的纵坐标为2,∵点P 在一次函数y =-x +1上, ∴2=-x +1,解得x =-1, ∴点P 的坐标为(-1,2). 设正比例函数解析式为y =kx ,把P (-1,2)代入得2=-k ,解得k =-2, ∴正比例函数解析式为y =-2x , 故答案为:y =-2x . 【点睛】本题考查了用待定系数法求正比例函数解析式,及两函数交点问题的处理能力,熟练的进行点与线之间的转化计算是解题的关键.考点四 一次函数式图像的平移变换例4. (2020·山东日照市·中考真题)将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A 【分析】直接利用一次函数“上加下减”的平移规律即可得出答案. 【详解】解:∵将函数y =2x 的图象向上平移3个单位, ∴所得图象的函数表达式为:y =2x +3. 故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键. 【变式训练】1.(2020·四川内江市·中考真题)将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .25y x =-- B .23y x =--C .21y x =-+D .23y x =-+【答案】C【分析】向上平移时,k的值不变,只有b发生变化.【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1.∴新直线的解析式为y=-2x+1.故选:C.【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k和b的值发生变化.2.(2020·四川广安市·中考真题)一次函数y=2x+b的图象过点(0,2),将函数y=2x+b 的图象向上平移5个单位长度,所得函数的解析式为________.【答案】y=2x+7【分析】将点(0,2)代入一次函数解析式中,即可求出原一次函数解析式,然后根据平移方式即可求出结论.【详解】解:将点(0,2)代入y=2x+b中,得2=b∴原一次函数解析式为y=2x+2将函数y=2x+2的图象向上平移5个单位长度,所得函数的解析式为y=2x+2+5=2x+7 故答案为:y=2x+7.【点睛】此题考查的是求一次函数解析式和图象的平移,掌握利用待定系数法求一次函数解析式和一次函数的平移规律是解题关键.。
2013届中考数学考前热点冲刺《第11讲 一次函数的图象与性质》课件 新人教版
教材母题
人教版八上 P120T8
一个函数的图象是经过原点的直线 , 并且这条直线过第 四象限及点 (2,-3a)与点(a,-6),求这个函数的解析式.
第11讲┃ 回归教材
解:根据题目条件,可设这个函数的解析式为
2k=-3a, ak=-6, a=2, 解得 k=-3, a=-2, 或 k=3.
一、二、三象限 ________________
y随x增 大而增大
________________ 一、三、四象限
y=kx+ b(k≠0)
一、二、四象限 _______________
y随x增 大而减小
二、三、四象限 _______________
第11讲┃ 考点聚焦 考点3 两条直线的位置关系
直线l1:y=k1x+b1和l2: y=k2x+b2的位置关系
第11讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限 k>0 y=kx (k≠0)
一、三象限 _______
函数性质 y随x增 大而增大 y随x增 大而减小
k<0
二、四象限 _______
第11讲┃ 考点聚焦
k>0 b>0 k>0 b<0 k<0 b>0 k<0 b<0
第11讲┃ 回归教材
中考变式
[2012· 聊城] A(1,0), 与 y 轴交于点 B(0,-2). (1)求直线 AB 的关系式; (2)若直线 AB 上的点 C 在第一象限,且 S△ BOC=2,求点 C 的坐标.
图 11-4
第11讲┃ 回归教材
b =a k+b, 1 1 b2=a2k+b,
中考总复习数学11- 第一部分 第11讲一次函数的图象和性质(精练册)
11.(2022·江苏泰州)一次函数y=ax+2的图象经过点(1,0).当y>0时,x的取值
范围是 x<1
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
第11讲
一次函数的图象和性质
挑战高分
基础全练
中考创新练
12.(2022·辽宁盘锦)点A(x1,y1),B(x2,y2)在一次函数y=(a-2)x+1的图象上,当
x1>x2时,y1<y2,则a的取值范围是
a<2
.
13.(2022·江苏扬州)如图,函数y=kx+b(k<0)的图
象经过点P,则关于x的不等式kx+b>3的解集
为
x<-1 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
第11讲
一次函数的图象和性质
挑战高分
基础全练
中考创新练
14.(2022·陕西)如图,是一个“函数求值机”的示意图,其中y是x的函数.下
所在象限为( B )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
9.(2022·湖南永州)已知一次函数y=x+1的图象经过点(m,2),则m=
1
2
3
4
5
6
7
8
9
10
11
1
12
.
13
14
第11讲
一次函数的图像和性质-省公开课获奖课件市赛课比赛一等奖课件
移 2 单位得到。
(3)直线y=x+2可由直线y=x-1向
移 3 单位得到。
下平 上平
2、正百分比函数旳一般形式为y=:kx,(k≠0)
当x=0时,y= 0 当x=1时,y= k 所以,它旳图象必经过点(0,0)(1,k )
3、一次函数旳一般形式为:y=kx+b(k≠0)
_(_43__,_0_)__,
与y轴旳交点坐标是___(_0_,_4_)_.
3、下列各点,不在一次函数Y=2X+1图象上旳
是
( D)
A(1,3)B(-1,-1)C(0.5,2)D(0,2)
随堂练习
1.若正百分比函数y=kx(k≠0)经过点(-1,2), 则该正百分比函数旳解析式为y=_y_=_-2_x_______.
中,正确旳有_1___个
y
2.如图,已知一次函数y=kx+b旳 o 图像,当x<1时,y旳取值范围是 _y_<_-2_
-4
y 2=x+a
x 3 y 1=kx+b
x 2
3.一种函数图像过点(-1,2),且y随x增大而降低, 则这个函数旳解析式是___ y=-x+1
1、直线y=2x+1与y=3x-1旳交点P旳坐标为(_2_,_5_),点P到x轴旳距 离为____5___,点P到y轴旳距离为___2___。
列表:
y=2x+ ... -3 -1 1 3 5 …
1
y
描点:(-2,-3)(-1,-1)
7 6
(0, 1) (1,3) 5
4
(2,5)
3
2
连线:
1
-3 -2 -1 0 1 -1
第11节 一次函数的图象和性质
,与 y 轴的截距为﹣ ,
由于该直线不通过第一象限,所以得到:
即
,
由①得到 a 与 b 同号;由②得到 b 与 c 同号.所以 a,b,c 同号. 故选 D
4.设 b>a,将一次函数 y=bx+a 与 y=ax+b 的图象画在同一平面直角坐标系内,则 有一组 a,b 的取值,使得下列 4 个图中的一个为正确的是( )
典例分析:
例 3:(1)直线 y=kx+b 通过第一、三、四象限,则有( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
解:若直线 y=kx+b 通过第一、三、四象限, 则必有 k>0,b<0, 故选:B.
(2)若 ac<0,bc<0,则直线 ax+by+c=0 的图形只能是( )
A.
B.
C.
D.
解:由题意知,函数的解析式即 y=﹣ x﹣ ,∵ac<0,bc<0,∴a•b>0,
∴﹣ <0,﹣ >0,故直线的斜率小于 0,在 y 轴上的截距大于 0,
故选 C.
练习:
1.若 a+b=0,则直线 y=ax+b 的图象可能是( )
A.
B.
C.
解:根据题意,得;
当 x=1 时,y=a+b=0,
(4)直线 y=kx+b(k≠0)与 x 轴的交点为(-kb,0),与 y 轴的交点为(0,b).
典例分析:
例 1:已知函数 y=(2m﹣1)x+1﹣3m,当 m 为何值时.
(1)这个函数为正比例函数; (2)这个函数为一次函数; 解:∵函数 y=(2m﹣1)x+1﹣3m, (3)函数值 y 随 x 的增大而减小(;1)当 1﹣3m=0,即 m= 时,这个函数为正比例函数; (4)这个函数图象与直线 y=x+(1 的2)交当点2m在﹣1x≠轴0,上即.m 时,这个函数为一次函数;
第11讲 一次函数的图象和性质
5.(2016·温州)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段 AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周 长为10,则该直线的函数表达式是( C) A.y=x+5 B.y=x+10
C.y=-x+5
D.y=-x+10
D 【例1】 (1)(2016·玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是( ) A.点(0,k)在l上 B.l经过定点(-1,0) C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限 (2)(2016·贵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点 ,则a与b的大小关系是____. a>b 【点评】 一次函数y=kx+b(k,b为常数,k≠0)是一条直线,当k>0时,图象 经过第一、三象限,y随x的增大而增大;当k<0时,图象经过第二、四象限,y随x 的增大而减小;图象与y轴的交点坐标为(0,b).
解:①对于直线 y= 3x+ 3,令 x=0,则 y= 3,令 y=0, 则 x=-1, 故点 A 的坐标为(0, 3), 点 B 的坐标为(-1, 0), 则 AO= 3, AO BO=1,在 Rt△ABO 中,∵tan∠ABO=BO = 3,∴∠ABO=60°; ②在△ABC 中,∵AB=AC,AO⊥BC,∴AO 为 BC 的中垂线, 即 BO=CO,则 C 点的坐标为(1,0),设直线 l 的解析式为 y=kx+b(k, k=- 3, 3=b, b 为常数),则 解得 即函数解析式为 y=- 3x+ 3. 0=k+b, b= 3,
(2)在平面直角坐标系中,已知点 A(27 ,3),B(4,7),直线 y=kx-k(k≠0) ≤k≤3 与线段 AB 有交点,则 k 的取值范围为 3 .
【中考复习方案】2015中考数学总复习 第11课时 一次函数的图象及性质课件(考点聚焦+京考探究+热考京讲)
例 1 对于一次函数 y=-2x+4, 下列结论错误的 是( D ) A.函数值随自变量的增大而减小 B.函数的图象不经过第三象限 C. 函数的图象向下平移 4 个单位长度得 y=-2x 的图象 D.函数的图象与 x 轴的交点坐标是(0,4)
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
[解析] ∵一次函数 y=-2x+4 中 k=-2<0, ∴函数 值 y 随 x 的增大而减小,故 A 正确;∵一次函数 y=-2x +4 中 k=-2<0,b=4>0,∴此函数的图象经过第一、 二、 四象限, 不经过第三象限, 故 B 正确; 由“上加下减” 的原则可知,函数的图象向下平移 4 个单位长度得 y=- 2x 的图象,故 C 正确;∵令 y=0,则 x=2,∴函数的图 象与 x 轴的交点坐标是(2,0),故 D 错误.故选 D.
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
方法点析
一般来说,使用待定系数法求函数解析式有“四部曲”: (1)设——按照所求函数类型,设出解析式,其系数是待定的; (2)列——把题目中提供的坐标代入所设解析式中,列出关于待定系 数的方程或方程组; (3)解——解这个方程或方程组,得到待定系数的值; (4)代——将第(3)步中求出的结果,代入第(1)步所设的解析式中,从 而得到完整的函数解析式. 通常情况下,有几个待定的系数,就要列几个方程,也就需要几个 点的坐标.
考点2 一次函数的图象和性质
第一、三象限
第二、四象限
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
第一、二、三象限
第一、三、四象限
第一、二、四象限
第二、三、四象限
考点聚焦
京考探究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【拓展】 一次函数图象与坐标轴围成的图形面积的计算(如图) (1)S△AOB=12AO·BO=12|yA|·|xB|; (2)S△AOC=12AO·CP=12|yA|·|xC|; (3)S△BOC=12BO·CQ=12|xB|·|yC|.
4.如图,已知直线 y=kx+b 经过点 A(5,0),B(1,4). (1)方程 kx+b=0 的解是 x=5 , 不等式 kx+b<0 的解集是 x>5 ; (2)kx+b>4 的解集是 x<1 ;
3.一次函数与一元一次不等式的关系: (1)从“数”上看:kx+b>0 的解集⇔y=kx+b 中,y>0 时 x 的取 值范围; kx+b<0 的解集⇔y=kx+b 中,y<0 时 x 的取值范围. (2)从“形”上看:kx+b>0 的解集⇔函数 y=kx+b 的图象位于 x 轴上方部分对应的点的横坐标的取值范围; kx+b<0 的解集⇔函数 y=kx+b 的图象位于 x 轴下方部分对应的 点的横坐标的取值范围.
直 线 y = kx + b ―向―上―平―移――m(――m― >―0)―个―单――位―长―度→ 直 线 y = kx+b+m ; 直 线 y = kx + b ―向―下―平―移――m(――m― >―0)―个―单――位―长―度→ 直 线 y = kx+b-m .
简记为“左加右减,上加下减”,左右平移只给 x 加减,上下平 移给整体加减.
1.已知函数 y=(m-1)xm2+3 是关于 x 的一次函数,则 m 的值 为 -1 .
一次函数的图象与性质 1. 一次函数的图象特征:一次函数 y=kx+b(k≠0)的图象是经过
点(0,④ b )和(⑤ -bk ,0)的一条⑥ 直线 .特别地,正比例函数 y =kx(k≠0)的图象是经过点(0,⑦ 0 )和(1,⑧ k )的一条⑨ 直线 .
3.在平面直角坐标系中,一次函数 y=kx+b 的图象经过点 A(1, 0)和 B(0,2).
(1)该一次函数的解析式为 y=-2x+2 ; (2)若点 C(m,n)在该函数的图象上,且 m-n=4,则点 C 的坐标 为 (2,-2) ;
(3)将该一次函数的图象向下平移 3 个单位长度后得到的图象的解 析式为 y=-2x-1 ;
(4)若直线 y1=k1x+b1 与直线 y2=k2x+b2 平行,则有 k1=k2 且 b1 ≠b2;若直线 y1=k1x+b1 与直线 y2=k2x+b2 垂直,则有 k1·k2=-1.
2.一次函数图象的平移 直 线 y = kx + b ―向―左―平―移――m(――m― >―0)―个―单――位―长―度→ 直 线 y = ⑳ k(x+m)+b ; 直 线 y = kx + b ―向―右―平―移―m―(―m―>―0―)―个―单―位―长―度→ 直 线 y = k(x-m)+b ;
2.一次函数的图象与性质:
一次函数 y=kx+b(k≠0)(当 b=0 时,y=kx 为正比例函数)
与坐标 轴的交点
与 x 轴交于点(⑩ -bk ,0),与 y 轴交于点(0,⑪ b )
k,b 符号 b>0
k>0 b<0
k<0 b=0 b>0 b<0 b=0
大致
图象
经过 ⑫ 一、 ⑬一、三、 ⑭ 一、三 ⑮ 一、 ⑯ 二、 ⑰ 二、四
象限 二、三 四
二、四 三、四
增 减 y 随 x 的增大而 性 ⑱ 增大
y 随 x 的增大而⑲ 减小
【温馨提示】 一次函数的解析式 y=kx+b(k≠0)中,b 决定图象 与 y 轴的交点位置:当 b>0 时,函数图象与 y 轴交点在 x 轴上方;当 b<0 时,函数图象与 y 轴交点在 x 轴下方.
湖北世纪华章文化传播有限公司
数学 第一轮 中考考点系统复习(讲解册)
第三单元 函数 第11讲 一次函数的图象与性质
一次函数的概念 1.一次函数:一般地,如果 y=① kx+b (k,b 是常数,k≠0), 那么 y 叫做 x 的一次函数. 2.正比例函数:特别地,当 b② =0 时,y=kx+b 变为③ y=kx (k 是常数,k≠0),这时 y 叫做 x 的正比例函数.
(3)若直线 y=2x-4 与直线 AB 相交于点 C,则点 C 的坐标 为 (3,2) ;
(4)根据图象,写出关于 x 的不等式 2x-4≥kx+b 的解集是 x≥3 ; (5)根据图象,写出关于 x 的不等式组 0<2x-4<kx+b 的解集 是 2<x<3 .
(4)若将(3)中得到的函数图象再次平移后得到的图象经过点(-2, -2),则平移后的函数解析式为 y=-2x-6 ,试说出其中的一种平 移方式: 向下平移5个单位长度(答案不唯一) .
一次函数与方程(组)、不等式的关系 1.一次函数与一元一次方程的关系:
பைடு நூலகம்
2.一次函数与二元一次方程组的关系: 方程组yy==kk21xx++bb21,的解中的 x,y⇔直线 y=k1x+b1 与 y=k2x+ b2 的交点的横、纵坐标.
(1)设一次函数的解析式为 y=kx+b;
(2)将图象上的两点 A(x1,y1),B(x2,y2)的坐标分别代入函数解析
式中,得到二元一次方程组yy12= =
kx1+b, kx2+b;
(3)解方程组,求出 k,b 的值;
(4)将 k,b 的值代入所设解析式中,得到一次函数解析式.
【温馨提示】 确定一次函数 y=kx+b(k≠0)解析式时的一些隐 含条件:
(1)若已知一次函数 y=kx+b(b≠0)的图象与坐标轴的交点,则交 点坐标为(-bk,0)或(0,b);
(2)若已知一次函数 y=kx+b(b≠0)的图象与坐标轴的交点到原点 的距离为 h,则交点坐标为(±h,0)或(0,±h);
(3)若已知一次函数图象与其他函数的图象有交点,则该交点同时 满足两个函数的解析式;
2.已知一次函数 y=kx+2,则:
(1)若 k<0,则其图象经过的象限是第一、二、四象限 ;
(2)若 k=-1,则图象与坐标轴的交点是 (0,2),(2,0)
,
此时图象与坐标轴围成的三角形面积是 2 ;
(3)若 y 随着 x 的增大而减小,则 k 的取值范围是 k<0 .
一次函数解析式的确定
1.一次函数解析式的确定:待定系数法