理论分布与抽样分布
理论分布和抽样分布的概念
抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。
样本分布:样本中所有个体关于某个变量大的取值所形成的分布。
抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。
即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。
样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。
那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。
由样本平均数x 所构成的总体称为样本平均数的抽样总体。
它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。
统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μ σ2x = σ2 /n由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2)分布。
但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。
于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。
样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx ex f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。
相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。
2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。
理论分布和抽样分布
所构成,其中事件A包含有m个基本事件,
则事件A的概率为m/n,即
P(A)=m/n
这样定义的概率称为古典概率。
13
2.1 概率的统计学意义
例如,在有两个孩子的家庭中,孩子性别
的组成有四种类型。即:男男、男女、女
男、女女。它们是四个基本事件,而且是
互不相容且等可能的,那么两个男孩的事
件A1为四个基本事件(n)中的一个(m) , A1的概率
27
第二章 理论分布和抽样分布
将Y的一切可能y1值 y2 , ,…,以及取得这些 值的概率p( y1) 、p( y2 ) …,排列起来, 就构成了 离散型随机变量的概率分布(probabiit distribution)。
表2-2 离散型随机变量的概率分布表。
Y
y1
y2
…
P(yi) p( y1 ) p( y2 )
本章在介绍概率论中最基本的两个概念——事件、概 率的基础上,重点介绍生物科学研究中常用的几种随 机变量的概率分布:间断性变数总体的理论分布:二 项分布、泊松分布;连续性变数总体的理论分布,即 正态分布; 从这两类理论分布中抽出的样本统计数的
分布,即抽样分布和t分布。
2
2.1 概率的统计学意义
一、事 件 1. 必然现象与随机现象 在自然界与生产实践和科学试验中,人们会观察到各种
这里的0.05或0.01称为小概率标准,生物 试验研究中通常使用这两个小概率标准。
21
2.3 理论分布
事件的概率表示了一次试验某一个结果发 生的可能性大小。若要全面了解试验,则 必须知道试验的全部可能结果及各种可能 结果发生的概率,即必须知道随机试验的 概率分布(probability distribution)。为 了深入研究随机试验 ,我们先引入随机变 量(random variable)的概念。
3-理论分布与抽样分布
68-95-99.7规则
➢ 正态分布有其特定的数据分布规则: ▪ 平均值为, 标准差为σ的正态分布 ▪ 68%的观察资料落在的1σ之内 ▪ 95%的观察资料落在的2σ之内 ▪ 99.7%的观察资料落在的3σ之内
19
20
三、68-95-99.7规则
68.26% 的资料 95.45% 的资料 99.73% 的资料 -3 -2 -1 0 1 2 3 -3s -2s -s +s +2s +3s
体称为样本平均数的抽样总体。其平均数和标准差分
别记为 和 。x
s x
是样s x本平均数抽样总体的标准差,简称标准误 (standard error),它表示平均数抽样误差的大小。统 计学上已证明x总体的两个参数与x 总体的两个参数有 如下关系:
u=(x-μ)/σ
x~N(0,1)
上一张 下一张 主 页 退12出
3.3.3 正态分布的概率计算 1. 标准正态分布的概率计算
设u服从标准正态分布,则u在[u1,u2 )内取 值的概率为:
=Φ(u2)-Φ(u1)
(3-16)
Φ(u1)与Φ(u2)可由附表1查得。
上一张 下一张 主 页 退13出
例如,u=1.75时,由附表1可以查出 Φ(1.75)=0.95994
图3-6 μ相同而σ不同的3个正态分布比较大 8
(6)分布密度曲线与横轴所围成的区间面积为1, 即:
(7) 正态分布的次数多数集中在平均数μ的附 近,离均数越远,其相应次数越少,在3σ以外的 极少,这就是食品工业控制中的3σ 原理的基础。
上一张 下一张 主 页 退 9出
3.3.2 标准正态分布
上一张 下一张 主 页 退16出
(1) P(u<-1.64)=0.05050 (2) P (u≥2.58)=Φ(-2.58)=0.024940 (3) P (|u|≥2.56)
统计学考研复习指导常考分布与抽样理论梳理
统计学考研复习指导常考分布与抽样理论梳理统计学是考研复习中的一门重要科目,而分布与抽样理论是统计学中的基础知识之一。
掌握分布与抽样理论对于考研复习非常重要,因此本文将对常考的分布与抽样理论进行梳理。
以下是各个分布与抽样理论的详细内容。
1. 正态分布正态分布是统计学中最常用的概率分布之一,也被称为高斯分布。
它具有许多特性,例如其形状对称、均值、方差决定了整个分布的特征等。
正态分布在统计学中的应用广泛,例如用于描述实际数据的分布情况、进行假设检验等。
2. t分布t分布是用于小样本情况下的概率分布。
在实际应用中,由于通常无法获得大样本数据,因此需要使用t分布进行统计推断。
t分布与正态分布有一定的关联,其形状与自由度有关。
在考研复习中,需要了解t分布的特性、应用以及与正态分布的关系。
3. 卡方分布卡方分布是用于分析分类数据的概率分布,常用于检验两个变量之间的独立性。
卡方分布的形状与自由度有关,自由度越大,分布越接近正态分布。
在考研复习中,需要掌握卡方分布的性质、应用以及与正态分布的关系。
4. F分布F分布是用于分析方差比较的概率分布,常用于方差分析等统计方法。
F分布的形状与两个自由度参数有关,具有右偏分布且不对称的特点。
在考研复习中,需要了解F分布的特性、应用以及与正态分布、卡方分布的关系。
5. 抽样与抽样分布抽样是指从总体中选取样本的过程,而抽样分布是指统计量在不同样本中的分布情况。
了解抽样与抽样分布非常重要,因为统计推断是建立在样本上的,而不是在总体上。
在考研复习中,需要掌握不同抽样方法的特点、抽样分布的基本概念以及与统计推断的应用。
总结:通过对常考的分布与抽样理论进行梳理,我们可以更好地理解统计学考研复习中的重要内容。
掌握分布与抽样理论,对于进行统计分析、假设检验以及进行统计推断非常重要。
在考研复习过程中,建议系统学习各个分布的特性、应用以及与其他分布的关系,同时理解抽样与抽样分布的基本概念和应用方法。
3 理论分布与抽样分布
【例3.7】 已知u~N(0,1),试求: (1) P(u<-1.64)=?
(2) P (u≥2.58)=?
(3) P (|u|≥2.56)=? (4) P(0.34≤u<1.53) =?
(1) P(u<-1.64)=0.05050
(2) P (u≥2.58)=Φ(-2.58)=0.024940
加减不同倍数σ区间的概率)是经常用到的。
P(μ-σ≤x<μ+σ)= 0.6826
P(μ-2σ≤x<μ+2σ) = 0.9545 P (μ-3σ≤x<μ+3σ) = 0.9973
P (μ-1.96σ≤x<μ+1.96σ) = 0.95
P (μ-2.58σ≤x<μ+2.58σ)= 0.99
在数理统计分析中,不仅注意随机变量x落在平均数加减不 同倍数标准差区间(μ-kσ , μ+kσ)之内的概率,更关心的是x落在 此区间之外的概率。
二项分布---二项分布的定义及其特点
二项分布的应用条件: (1)各观察单位 只具有相互对立 的一种结果,如合格或不 合格, 生存或死亡等等,非此即彼; (2)已知发生某一结果 (如死亡) 的概率为p,其对立结果 的概率则为1-P=q,实际中要求p 是从大量观察中获得的比较 稳定的数值; (3)n次观察结果互相独立,即每个观察单位的观察结果不
P (-2.58≤u<2.58)=0.99
标准正态分布的三个常用概率如图示
u变量在上述区间以外取值的概率分别为: P(|u|≥1)=2Φ(-1)=1- P(-1≤u<1) =1-0.6826=0.3174 P(|u|≥2)=2Φ(-2) =1- P(-2≤u<2) =1-0.9545=0.0455 P(|u|≥3)=1-0.9973=0.0027 P(|u|≥1.96)=1-0.95=0.05 P(|u|≥2.58)=1-0.99=0.01
生物统计理论分布和抽样分布
第四章理论分布和抽样分布一、基本概念1.必然事件:在同一组条件的实现下必然要发生的一类事件。
如人总是要死的,水在标准大气压下加热到100℃必然化为蒸汽。
P(A)=1。
2.不可能事件:在同一组条件的实现下必然不发生的一类事件。
如水在标准大气压下温度低于0℃不可能呈气态。
P(A)=0。
3.随机事件(偶然事件):在同一组条件的实现下可能发生,也可能不发生的一类事件。
如种子可能发芽,也可能不发芽;硬币抛上落下可能正面朝上,也可能反面朝上。
P(A)∈[0,1]。
4.频率a:假定在相似条件下重复进行同一类试验调查,事件A发生的次数a与总试验次数n的比称之。
如抛硬币,10次有7次朝上,a=7/10。
5.概率P:当试验总次数n逐渐增大时,事件A的频率愈来愈稳定地接近定值P,则事件A地概率为P。
6.小概率的实际不可能性原理:凡概率很小的事件(农业上一般指P<0.05的事件),在二、计算事件概率的法则1.和事件:C=A+B A:身高在1.65以下;B:身高在1.65~1.75之间;C:身高在1.75以下。
2.积事件:C=A×B A:身高在1.65以下;B:男同学;C:身高在1.65以下的男同学。
3. 互斥事件:A·B=V (V表示空集) A:小麦种子发芽;B:小麦种子不发芽。
4.对立事件:如果A+B是必然事件,即A+B=U(U为全集);而A·B=V,即A与B 是互斥事件,则称B为A的对立事件,B=A(补集),如上例发芽与不发芽。
5.完全事件:如A·B=V且A+B=U,则称A与B为完全事件系,如小麦发芽与不发芽就构成完全事件系。
6.对立事件的概率:A()1(A)=-P P7.互斥事件的概率加法:()(A)()P=+=+如身高小于1.60m的概率为(A)P A B P P B0.15;身高小于1.70m且大于等于1.60m的概率为()P B=0.62;则身高小于1.70m的概率()(A)()+=+=0.77P A B P P B8.独立事件的概率乘法:()(A)()P A B P P B=。
第二章 理论分布与抽样分布(二)
照正态分布计算的相应理论分布分位数的差(称为分位数的残差)作为纵坐标,把样本表现为直角坐
标系的散点,所描绘的图形。如果资料服从正态分布,残差散点基本在Y=0上下均匀分布。(分位数
的残差图)。
Detrended Normal P-P Plot of 血清总胆固醇
.08
Detrended Normal Q-Q Plot of 血清总胆固醇
34
4. 探索分析
➢结果分析
35
4. 探索分析
➢结果分析
M估计值
36
4. 探索分析
➢结果分析
分别利用Kolmogorov-Smimov检验和Shapiro-Wilk检验两种方法来确 定变量是否服从正态分布。其中,Statistic表示检验统计量的值,df 代表自由度,Sig.表示显著性水平。一般来说,Sig.>0.05则代表接受 零假设,即接受变量服从正态分布的假设。本例中,两个变量的两 种方法的Sig.值均大于0.05,因此两个变量均服从正态分布。
7
2 频数分析
频数分析过程的操作界面
(4)Statistics按钮 单击该按钮会弹出新的对话框,该对话框主要用于确定将要在输出结果 中出现的统计量,选中统计量前的复选框表示输出该统计量。 (5)Charts按钮 用于确定将输出的图形类型和图形取值。 (6)Format按钮 定义输出频数表的格式
8
2 频数分析
4
1.基本描述性统计量的定义及计算
描述离散趋势的统计量 ✓ 样本方差(Variance) ✓ 样本标准差(Std. deviation) ✓ 极差(Range) ✓ 均值标准误差(Standard Error of Mean) 描述总体分布形态的统计量 ✓ 偏度(Skewness) ✓ 峰度(Kurtosis)
理论分布与抽样分布
统计学证明,服从二项分布B(n,p)旳随
机变量之平均数μ、原则差σ与参数n、p有
如下关系:(即次数平均数、原则差)
当试验成果以事件A发生次数k表达时
μ=np
σ2= npq
(3-7)
σ= npq
当试验成果以事件A发生旳频率k/n或
百分数表达时(即样本平均数、原则差)
p p ( pq) / n
xpx qnx
n
x0
c c c
0 6
0.850
0.156
1 6
0.851
0.155
2 6
0.852
0.154
c c
3 6
0.853
0.153
4 6
0.854
0.152
0.22350
二项分布旳应用条件有3点:
(1) 一对互斥事件 (2) (p+q=1),P是稳定值。 (3) n次成果相互独立
1.1.4二项分布旳平均数与原则差
由图2-6做100听罐头净重资料旳频率分 布直方图 ,能够设想 ,假如样本取得越来 越大(n→+∞),组分得越来越细(i→0),某一 范围内旳频率将趋近于一种稳定值 ── 概率。 这时 , 频率分布直方图各个直方上端中点 旳联线 ── 频率分布折线将逐渐趋向于正态 分布曲线。
上一张 下一张 主 页 退 出
(1)随机单位时间和单位空间旳稀有事件; (2)在n→∞,p→0, 且 n p =λ(较小常数)情 况下 ,二项分布 趋于泊松分布; (3)每次试验成果相互独立。 对于在单位时 间、单位面积或单位容积内,所观察旳事物 因为某些原因分布不随机时,不是泊松分布。 (Such as contagion, Bacteria Group in milk)
理论分布与抽样分布
在回归分析中的应用
建立回归模型
根据自变量和因变量的关系,建立合 适的回归模型,如线性回归、非线性 回归等。
估计模型参数
利用样本数据对回归模型的参数进行 估计,得到回归方程的系数和截距。
检验模型显著性
通过计算F值或t值等统计量,对回归 模型的显著性进行检验,判断自变量 对因变量是否有显著影响。
预测和控制
理论分布与抽样分布
目 录
• 引言 • 理论分布概述 • 抽样分布概述 • 理论分布与抽样分布的关系 • 理论分布与抽样分布在实践中的应用 • 总结与展望
01
引言
目的和背景
阐述理论分布与抽样分布的概念及其关系 分析在统计学中理论分布与抽样分布的重要性 探讨如何利用理论分布与抽样分布进行统计推断
汇报范围
在方差分析中的应用
方差齐性检验
在进行方差分析前,需要对各组的方差 进行齐性检验,以确定是否满足方差分
析的前提条件。
计算统计量
利用样本数据计算各组均值、总均值、 组间方差和组内方差等统计量。
建立模型
根据研究问题和数据特点,建立方差 分析模型,包括因素、水平、交互作 用等。
进行F检验
根据方差分析模型,计算F值,并利 用F分布进行假设检验,判断因素对 结果是否有显著影响。
抽样分布的形状和特性与总体分布密切相 关。
依赖于样本量
统计量的分布
随着样本量的增加,抽样分布的形状逐渐 趋近于正态分布。
抽样分布描述的是统计量(而非单个样本 值)的分布情况。
抽样分布的形成原理
中心极限定理
当从均值为μ、方差为σ^2的总体中随机抽取容量为n的样本时,随着n的增大,样本均值的抽样分布逐渐趋近于 均值为μ、方差为σ^2/n的正态分布。
理论分布和抽样分布
THANKS FOR WATCHING
感谢您的观看
确定拒绝域
根据显著性水平和检验统计量 的分布,确定拒绝原假设的区 域。
作出决策
将计算得到的检验统计量值与 拒绝域进行比较,决定是否拒 绝原假设。
抽样分布在假设检验中的意义和作用
提供理论基础
确定拒绝域
通过抽样分布可以确定检验统计量的分布和拒绝域 ,从而进行假设检验的决策。
抽样分布理论为假设检验提供了理论基础, 使得我们能够从样本数据中推断总体参数。
05 抽样分布在参数估计中的 应用
点估计方法介绍
矩估计法
利用样本矩来估计总体矩,从而得到参数的估计 值。
最大似然估计法
根据样本数据,选择使得似然函数达到最大值的 参数值作为估计值。
最小二乘法
通过最小化误差的平方和来得到参数的估计值。
区间估计方法介绍
置信区间法
利用样本数据构造一个置信区间,该区 间以一定的概率包含总体参数的真值。
进行假设检验
在参数假设检验中,需要利用抽样分布来确定检验统计量的分布及其临界值。
06 抽样分布在假设检验中的 应用
假设检验的基本思想和步骤
选择检验统计量
根据假设选择合适的检验统计 量,如$t$统计量、$F$统计量 等。
计算检验统计量的值
根据样本数据计算检验统计量 的值。
建立假设
根据研究问题提出原假设 ($H_0$)和备择假设 ($H_1$)。
报告范围
01 理论分布的定义、性质及其常见的类型。
02 抽样分布的概念、性质及其与样本量的关系 。
03
理论分布和抽样分布在假设检验、置信区间 估计等统计推断方法中的应用。
04
通过实例和案例分析,展示理论分布和抽样 分布在实践中的具体应用。
第二章理论分布与抽样分布
P(A) lnim an
式中P代表概率,P(A)代表事件A的概率。 P(A)的取集范围为:0≤ P(A) ≤1。
随机事件的概率表现了事件的客观统计规律性,它反映了事件在一次试 验中发生可能性的大小,概率大表示事件发生的可能性大,概率小表示事 件发生的可能性小。
立。 例如,事件A为“花的颜色为黄色”,事件B为“产量高”,如果花的颜色
与产量无关,则事件A和B相互独立。
第二章理论分布与抽样分布 12
2.1 事件、概率和随机变量-概率的计算法则
互斥事件的加法
假定两互斥事件A和B的概率分别为P(A)和P(B),则 P(A+B)=P(A)+P(B)
例如:某一批水样中,Cd的含量≤0.03mg/L的概率
第二章理论分布与抽样分布 8
2.1 事件、概率和随机变量-事件间的关系
互斥事件 如果事件A和B不能同时发生,即A和B是不可能事件,则
称事件A和B互斥。例如饮用水中Cd污染<0.003mg/L和 =0.003mg不可能同时发生,为互斥事件。
第二章理论分布与抽样分布 9
2.1 事件、概率和随机变量-事件间的关系
第二章 理论分布与抽样分布
第二章理论分布与抽样分布 1
2.1 事件、概率和随机变量
(1)事件和事件发生的概率 (2)事件间的关系 (3) 计算事件概率的法则 (4)随机变量
第二章理论分布与抽样分布 2
2.1 事件、概率和随机变量
事件(event):在自然界中一种事物,常存在几种 可能出现的情况,每一种可能出现的情况称为 事件。
对立事件
事件A和B不可能同时发生,但必发生其一,即A+B为必然事件
2 第2章 理论分布与抽样分布
当n→+∞、i→0时,频率分布折线的
极限是一条稳定的函数曲线。 对于样本是
取自连续型随机变量的情况 ,这条函数曲 线将是光滑的。 这条曲线排除了抽样和测 量的误差 , 完 全 反映了数据 资料的变动 规律。 这条曲线叫概率分布密度曲线,相 应的函数叫 概率分布密度函数 ,简称分布 密度。
2.2 离散型随机变量的概率分布
要了解离散型随机变量x的统计规律,就必 须 知 道它的一切可能值xi及取每种可能值的概 率pi。 如果我们将离散型随机变量x的一切可能取 值xi ( i=1, 2 , … ),及其对应的概率pi,记作 P(x=xi)=pi i=1,2,…
(3—3)
则称 (3—3)式为离散型随机变量x的概 率分布或分布。常用 分 布 列 (distribution series)来表示:
即 P(A)=p≈m/n (n充分大)(3-1)
上一张 下一张 主 页 退 出
1.2.2 概率的性质
(1)对于任何事件A,有0≤P(A)≤1;
(2)必然事件的概率为1,即P(Ω)=1;
(3)不可能事件的概率为0,即P(ф)=0。
2 概率分布
事件的概率表示了一次试验某一个结果 发生的可能性大小。若要全面了解试验,则 必须知道试验的全部可能结果及各种可能结 果发生的概率,即必须知道随机试验的概率 分布(probability distribution)。为了 深入研究随机试验 ,我 们 先引入随机变量 (random variable)的概念。
连续型随机变量概率分布的性质: 1、分布密度函数总是大于或等于0,即 f(x)≥0; 2、当随机变量x取某一特定值时,其概 率等于0;即
连续型随机变量某一点的概率为0。
3理论分布与抽样分布
件,记作A1A2…An= Ai i1
(三) 互斥事件
事件A和B不可能同时发生,即AB为不可能事件,记作 A·B=V,称事件A和B互斥或互不相容。
例如,有一袋种子,按种皮分黄色和白色。若记A为“取 到黄色”,B为“取到白色”,显然A和B不可能同时发生, 即一粒种子不可能既为黄色又为白色,说明事件A和B互斥。
由若干个基本事件组合而成的事件称为 复合事件 (compound event)。如 “取得一个编号是 2的倍 数”是一个复合事件,它由 “ 取得一个编号是2 ”、 “ 是4”、“是6、“是8”、“是10”5个基本事件组 合而成。
(2)必然事件 我们把在一定条件下必然会发生的事件称为 必然事件(certain event),用Ω表示。 例如,在严格按妊娠期母猪饲养管理的要求 饲养的条件下,妊娠正常的母猪经114天左右产 仔,就是一个必然事件。
(一) 和事件
事件A和B至少有一个发生而构成的新事件称为事件A和
B的和事件,记为A+B,读作“或A发生,或B发生”。
例如,有一批种子,包含有能发芽的和不能发芽的。
若A为“取到能发芽种子”,B为“取到不能发芽种子”,
则A+B为“或者取到能发芽种子或者取到不能发芽种子”。
事件间的和事件可以推广到多个事件:事件A1、
= 0.0695
C 10 30
即在30头奶牛中有8头曾有流产史,从这群 奶牛随机抽出 10 头奶牛其中有2头曾有流产史 的概率为6.95%。
(三)概率的性质
1、对于任何事件A,有0≤P(A)≤1;
2、必然事件的概率为1,即P(Ω)=1; 3、不可能事件的概率为0,即P(ф)=0。
三、小概率事件实际不可能性原理
P(A)=m/n
3 理论分布与抽样分布
1.3.3 正态分布的概率计算
标准正态分布的计算: 已知X ~N(0,1),求X在实数区间(a,b)上 的概率P(a<x<b)?
Ф(b)-Φ(a)
这个积分比一般正态分布要简单,在实际工作中应 用广泛。为了使用方便,前人编制了标准正态分布 函数的数值表。见附表。
(1)附表1可解决:已知a和b,求P(a<x<b)?
从波松分布的实例中,分布参数λ往往是未知的,
只能从所观察的随机样本中计算出相应的样本平均
数作为 λ 的 估计值,将其代替计算公式中的λ,计
算出 k = 0,1,2,… 时的各项概率。
上一张 下一张 主 页
退 出
例,为监测饮用水的污染情况, 现检验某社区每 毫升饮用水中细菌数 , 共得400个记录如下:
量x ,其可能取值为某范围内的任何数值 ,且x 在其取值范围内的任一区间中取值时,其概率是 确定的,则称x为 连续 型 随 机 变 量 ( continuous random variable)。
不能列出试验结果和取此结果的概率, 只能给出一定范围和在此范围内取值 上一张 的概率。
下一张 主 页
退 出
1.2.1 泊松分布的定义
当随机变量x(x=k)所有可能取值是非负整数,且 其概率分布为:
λ e P( x k ) k!
k λ
其中,λ是一个大于0的常数;k=1,2,…,n,…; e是自然对数的底数;则称随机变量x为服从参数为λ 的泊松分布。
记为: x~P(λ)。
1.2.2 泊松分布的重要特征
上一张 下一张 主 页 退 出
离 散 型 随 机 ห้องสมุดไป่ตู้ 量:如果表示试验结果的
变量x,其可能取值为可列个 ,且 以各种确定 的概率取这些不同的值 , 则 称 x 为 离 散 型 随 机 变 量 ( discrete random variable);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若记体重概率分布密度函
数为f(x),则x取值于区间
[a,b)的概率为图中阴影
部分的面积,即
b
P(a≤x<b)=
f (x)dx a
上式为连续型随机变量 x
在 区间[a,b)上取值概率
的表达式。可见,连续型
随机变量的概率由概率分
布密度函数确定。
理论分布与抽样分布
1.3连续型随机变量的概率分布
连续型随机变量概率分布的性质:
理论分布与抽样分布
1.3连续型随机变量的概率分布
126头基础母羊的体重的次数分布表
组别
组中值 次数(f)
图中纵坐标取频率与组距
36.0
37.5
1
的比值 。可以设想 ,如
39.0
40.5
1
果样本取得越来越大
42.0
43.5
6
(n→+∞),组分得越来越
45.0
46.5
18
细(i→0),某一范围内的
理论分布与抽样分布
2.1贝努力试验及其概率公式
在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件 A 恰好发生k (0≤k≤n) 次的概率 Байду номын сангаасn(k) 。
先取n=4,k=2来讨论。在4次试验中,事件A发 生2次的方式有以下 C 42种:
A1A2 A3A4
A1 A2 A3 A4
1、分布密度函数总是大于或等于0,即 f(x)≥0;
2、当随机变量x取某一特定值时,其概率等于0;即
c
P(xc) f(x)dx0
(c为任意实数)
c
3、 在一次试验中 随机变量 x 之取值必在[-∞, +∞]
范围内,为一必然事件。所以
P ( x ) f(x)dx 1
上式表示分布密度曲线理论下分布、与抽横样分轴布 上的全部面积为1。
第三章 理论分布与抽样分布
1、概率分布 4、正态分布
2、二项分布 5、抽样分布
3、泊松分布
理论分布与抽样分布
1 概率分布
事件的概率表示了一次试验某一个结果发生的可能性
大小。若要全面了解试验,则必须知道试验的全部可
能结果及各种可能结果发生的概率,即必须知道随机
试验的概率分布(probability distribution)。为了深入研
结果是“0头治愈”、“1头治愈”、“2头治愈”、“…”、
“100头治愈”。若用 x 表示治愈头数,则x 的取值为0、
1、2、…、100。
理论分布与抽样分布
1.1 随机变量
【例3.4】 孵化一枚种蛋可能结果只有两种,即“孵 出小鸡”与“未孵出小鸡”。 若用变量 x 表示试验的两 种结果,则可令x=0表示“未孵出小鸡”,x=1表示“孵 出小鸡”。
A1A2 A3 A4
A1A2A3A4
A A A A A A A A 1 理2论分布3与抽4样分布
12 34
2.1贝努力试验及其概率公式
其中Ak(k=1,2,3,4)表示事件A在第k次试验发生;
如果表示试验结果的变量 x ,其可能取值为某范围内
的任何数值 ,且 x 在其取值范围内的任一区间中取 值时,其概率是确定的,则称 x 为 连续型随机变量 (continuous random variable)。
理论分布与抽样分布
1.2离散型随机变量的概率分布
要了解离散型随机变量 x 的统计规律,就必须知道它 的一切可能值xi及取每种可能值的概率pi。
究随机试验 ,我 们 先引入随机变量(random variable)
的概念。
理论分布与抽样分布
1.1 随机变量
作一次试验,其结果有多种可能。每一种可能结果都 可用一个数来表示,把这些数作为变量 x 的取值范围, 则试验结果可用变量 x 来表示。
【例3.3】 对100头病畜用某种药物进行治疗,其可能
48.0
49.5
51.0
52.5
26 27
频率将趋近于一个稳定值
54.0
55.5
26
─概率。这时,频率分布
57.0
58.5
12
直方图各个直方上端中点
60.0
61.5
7
的联线 ─频率分布折线将
63.0
64.5
合计
2
逐渐趋向于一条曲线。
126
理论分布与抽样分布
1.3连续型随机变量的概率分布
x1 x2 … xn …. p1 p2 … pn …
显然,离散型随机变量的概率分布具有以下 两个基本性质:
1. pi≥0 2. Σpi=1
理论分布与抽样分布
1.3连续型随机变量的概率分布
连续型随机变量 (如体长、体重、蛋重)的概 率分布不能用分布列来表示,因为其可能取 的值是不可数的。我们改用随机变量 x 在某 个区间内取值的概率 P(a≤x<b) 来表示。下面 通过频率分布密度曲线予以说明。
2 二项分布
2.1 贝努利试验及其概率公式
将某随机试验重复进行n次,若各次试验结果
互不影响 , 即每次试验结果出现的概率都不
依赖于其它各次试验的结果,则称这n次试验
是独立的。
理论分布与抽样分布
2.1贝努力试验及其概率公式
对于n次独立的试验,如果每次试验结果出现 且只出现对立事件A与 A 之一,在每次试验中 出现A的概率是常数 p (0<p<1) , 因而出现对 立事件 A 的概率是1-p=q,则称这一串重复的 独立试验为n重贝努利试验,简称贝努利试验 (Bernoulli trials )。
【例3.5】 测定某品种猪初生重,表示测定结果变量 x 所取的值为一个特定范围(a,b),如0.5―1.5kg,x值 可以是这个范围内的任何实数。
理论分布与抽样分布
1.1 随机变量
如果表示试验结果的变量 x,其可能取值至多为可列 个,且以各种确定的概率取这些不同的值,则 称 x 为离散型随机变量 ( discrete random variable);
换句话说,当n→+∞、i→0时,频率分布折 线的极限是一条稳定的函数曲线。 对于样本 是取自连续型随机变量的情况 ,这条函数曲 线将是光滑的。这条曲线排除了抽样和测量 的误差,完全反映了基础母羊体重的变动规 律。这条曲线叫概率分布密度曲线,相应的 函数叫 概率分布密度函数 。
理论分布与抽样分布
1.3连续型随机变量的概率分布
如果我们将离散型随机变量 x 的一切可能取值xi ( i=1, 2 , … ),及其对应的概率pi,记作 P(x=xi)=pi i=1,2,…
则称上式为离散型随机变量 x 的概率分布或分布。常 用分布列 (distribution series)来表示离散型随机变量:
理论分布与抽样分布
1.2离散型随机变量的概率分布