数值分析2误差

合集下载

数值分析1-3误差定性分析和与避免误差危害

数值分析1-3误差定性分析和与避免误差危害

定性等。误差处理对于确保结构分析的准确性和安全性至关重要。
02 03
流体动力学分析
在流体动力学分析中,数值分析用于求解流体流动和传热问题,如飞机、 汽车的气动性能等。误差处理对于确保流体动力学分析的准确性和可靠 性至关重要。
控制系统设计
在控制系统设计中,数值分析用于求解控制系统的数学模型,如飞机的 自动驾驶系统、工厂的自动化控制系统等。误差处理对于确保控制系统 设计的准确性和稳定性至关重要。
01
02
03
适应性选择
根据问题的性质和精度要 求,选择适合的数值方法 和算法。
对比分析
对不同的算法和数值方法 进行对比分析,选择误差 较小、精度较高的方法。
验证与测试
对所选择的算法和数值方 法进行验证和测试,确保 其在实际应用中的准确性。
增加计算精度和减少舍入误差
高精度计算
采用高精度计算方法,如使用高精度数学库或软件, 以提高计算精度。
数值分析1-3误差定性分析和与避 免误差危害
contents
目录
• 引言 • 误差定性分析 • 避免误差危害的方法 • 实际应用中的误差处理 • 结论
01 引言
误差的来源
测量误差
由于测量工具或方法的限制,导致测量结果与真 实值之间的差异。
近似误差
在数值计算过程中,为了简化计算而采取的近似 方法引入的误差。
可靠性下降
02
误差的存在降低了结果的可靠性,可能导致错误的决策或结论。
稳定性破坏
03
对于某些数值方法,误差的累积可能导致数值不稳定,影响计
算的可靠性。
02 误差定性分析
绝对误差和相对误差
绝对误差
表示测量值与真实值之间的差值,不 依赖于参考点。

1-2数值计算的误差

1-2数值计算的误差
从实际问题中抽象出数学模型 —— 模型误差 /* Modeling Error */
3. 截断误差
当得不到数学模型的精确解时,要用 数值计算方法求它的近似解,由此产生 的误差称为截断误差或方法误差 求近似解 —— 方法误差 (截断误差) /* Truncation Error */
例如:在微积分中sinx可展开成
"Hmm," says the physicist, "You mean that some Scottish sheep are black." "No," says the mathematician, "All we know is that there is at least one sheep in Scotland, and that at least one side of that one sheep is black!"
( x1 x2 ) ( x1 ) ( x2 )
e( x1 ) e( x2 ) er ( x1 x2 ) x1 x2
r ( x1 x2 )
( x1 ) ( x2 )
x1 x2
和的误差(限)等于误差(限)之和
(2)减法运算:
( x x ) ( x x ) 1 2 1 2 e( x1 x2 ) e( x1 ) e ( 差来源的分类 数 二、误差分析的重要性 值 三、绝对误差 计 算 四、相对误差 的 五、有效数字 误 六、数值运算的误差传播 差
1.观测误差
通过测量得到模型中参数的值 —— 观测误差 /* Measurement Error */
注:通常根据测量工具的精度,可以知

数值分析1-误差及有效数字

数值分析1-误差及有效数字

(避免绝对值很大的数为乘数)
x1 1 x1 e e x ex 2 (避免 x2 为很小的数为除数) 1 2 x x x2 2 2
er x1 x2 x1 x2 er x1 er x 2 x1 x2 x1 x2
er x1 x2
这里,主要介绍计算机中浮点数的表示形式及 表示范围(4个参数):
x s p
其中, s =±0.a1a2a3………at 称为尾数∈[-1,1],
s 中的正负号用一位数字区分;
β为基数,如取2、10、8、16; p为阶数,有上限U和下限L, 由计算机存储字节长度决定。
1.4 误差危害的防止 (1)使用数值稳定的计算公式
数值稳定是指计算过程中舍入误差对计算影响不大的算法, 若第n+1步的误差en+1 与第n步的误差en满足
en 1 1 en
,则称该计算公式是绝对稳定的
例:建立积分In=

1
0
xn dx x5
(n=0,1.........,20)
递推关系式,并分析误差传播影响。
解: I +5I
n
n-1=
x 5x 0 x 5 dx
1 n n -1

1
0
x n-1dx
x n
n
1

0
1 n
I 0=
1 0 x 5dx
1
ln x 5
1 0
=ln6-ln5
1 In -5In -1 n ∴递推式: I 0 ln6 - ln5
2
x1 x 2
2
e x1 e x 2

数值分析误差

数值分析误差

I k −1
11 ( k = n, n − 1,…,2,1) = − Ik 5k
(1 − 3)
依式( 依式(1-3)计算
* 0
的近似值。 I n −1 , I n − 2 ,…, I 1 , I o 的近似值。
* 14
1 1 1 分别取 I = 0.18232155, I = + ≈ 0.01222222 2 6 × 15 5 × 15 按算法1、算法 2的计算结果见下屏表 1 − 1:
逆向递推公式在数学上完全等价,却导致两种完全不同的 逆向递推公式在数学上完全等价, 算法。对于实数序列的递推由于初始误差的存在,可以一 算法。对于实数序列的递推由于初始误差的存在,
种方向的递推会使误差扩大, 种方向的递推会使误差扩大,而另一方向的递推会使得误 差逐步减小。在设计(选用) 差逐步减小。在设计(选用)算法时要用使初始误差不增 长的算法。 长的算法。
1 3 1 5 作近似计算, 取 S = x − x + x ,作近似计算,则 3! 5! 为其截断误差。 为其截断误差。
R = sin x − S
条 件 问 题
计算方法中有一类问题称为条件问题, 公式) 条件问题是一个算法 (公式)由于初始 数据或者中间某些数据微小摄动对计算结 果产生影响的敏感性的问题。舍入误差、 果产生影响的敏感性的问题。舍入误差、 观测误差都属初始数据的摄动。研究坏条 观测误差都属初始数据的摄动。 件问题的计算方法是十分重要的课题, 件问题的计算方法是十分重要的课题,有 的时候,一些问题的条件并不坏, 的时候,一些问题的条件并不坏,但由于 算法不恰当, 算法不恰当,初始数据的微小摄动或舍入 误差在计算过程中不断被放大,而可能导 误差在计算过程中不断被放大, 致计算结果的精度大大降低, 致计算结果的精度大大降低,甚至使计算 失去意义。

数值分析误差限的计算公式

数值分析误差限的计算公式

数值分析误差限的计算公式1、误差x∗为 x 一个近似值绝对误差:e∗=x∗−x相对误差:e∗r=e∗x=x∗−xx,由于真值 x 总是不知道的,通常取e∗r=e∗x∗=x∗−xx∗误差限:|x∗−x|≤ε∗相对误差限:ε∗r=ε∗|x∗|ε(f(x∗))≈|f′(x∗)|ε(x∗)2、插值法记ωn+1(x)=(x−x0)(x−x1)⋯(x−xn)Lagrange 插值多项式系数:lk(xk)=(x−x0)⋯(x−xk−1)(x−xk+1)⋯(x−xn)(xk−x0)⋯(xk−xk−1)(x −xk+1)⋯(x−xn)Lagrange 插值多项式:Ln(x)=∑k=0nlk(x)yk=∑k=0nykωn+1(x)ω′n+1(xk)(x−xk) 余项:记 Mn+1=maxa≤x≤b|fn+1(x)|R(x)=fn+1(ξ)ωn+1(x)(n+1)!≤Mn+1(n+1)!|ωn+1(x)|均差与 NewTon 插值多项式一阶均差:f[x0,xk]=f(xk)−f(x0)xk−x0k 阶均差:f[x0,x1,⋯,xk]=f[x0,⋯,xk−2,xk]−f[x0,⋯,xk−2,xk−1]xk−xk−1f[x0,x1,⋯,xn]=f(n)(ξ)n!(x0,x1,⋯,xn,ξ∈[a,b])f[x0,x1,⋯,xk]=∑j=0kf(xj)ω′k+1(xj)NewTon 插值多项式:Pn(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+⋯+f[x0,x1,⋯,xn](x−x0)(x−x1)⋯(x−xn−1)余项:R(x)=f[x0,x1,⋯,xn]ωn+1(x)Hermite 插值Taylor 多项式:Pn(x)=f(x0)+f′(x0)(x−x0)+⋯+f(n)(x0)n!(x−x0)n余项:R(x)=f(n+1)(ξ)(n+1)!(x−x0)n+1若已知 f(x0),f′(x1),f(x1),f(x2):P(x)=f(x0)+f[x0,x1](x−x0)+f[x0,x1,x2](x−x0)(x−x1)+A(x−x0)(x−x1)(x−x2)其中 A 由 P′(x1)=f′(x1) 可得余项:R(x)=14!f(4)(ξ)(x−x0)(x−x1)2(x−x2)两点三次 Hermite 插值多项式:H3(x)=αk(x)yk+αk+1(x)yk+1+βk(x)mk+βk+1(x)mk+1其中 mk=f′(xk),mk+1=f′(xk+1)⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧αk(x)=(1+2x−xkxk+1−xk)(x−xk+1xk−xk+1)2αk+1(x)=(1+2x−xk+1xk−xk+1)(x−xkxk+1−xk)2⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧⎧βk(x)=(x−xk)(x−xk+1xk−xk+1)2βk+1(x)=(x−xk+1)(x−xkxk+1−xk)2余项:R(x)=f(4)(ξ)4!(x−xk)2(x−xk+1)2分段低次插值h=b−an对每个小区间使用对应插值公式求 Ih(x)余项对分段线性插值函数:maxa≤x≤b|f(x)−Ih(x)|≤M28h2对分段三次埃尔米特插值:maxa≤x≤b|f(x)−Ih(x)|≤M4384h43、数值积分代数精度定义:如果某个求积公式对于次数不超过 m 的多项式均能够准确成立,但对于 m+1 次多项式就不准确成立,则称该公式具有 m 次代数精度梯形公式公式与中矩形公式梯形公式:∫baf(x)dx≈b−a2f(a)+b−a2f(b)余项:R[f]=−(b−a)312f′′(η)(η∈(a,b))矩形公式:∫baf(x)dx≈(b−a)f(a+b2)余项:R[f]=(b−a)324f′′(η)(η∈(a,b))Newton-Cotes 公式将积分区间 [a,b] 分成 n 等分Simpson 公式(n=2):∫baf(x)dx≈b−a6f(a)+b−a6f(b)+2(b−a)3f(a+b2)余项:R[f]=−(b−a)5180∗24f(4)(η)(η∈(a,b))Cotes 公式(n=4):C=b−a90[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]余项:R[f]=−2(b−a)7945∗46f(6)(η)(η∈(a,b))复合求积公式积分区间 [a,b] 分成 n 等分,步长 h=b−an复合梯形公式:Tn=h2[f(a)+2∑k=0n−1f(xk)+f(b)]余项:Rn(f)=−b−a12h2f′′(η)复合 Simpson 求积公式:Sn=h6[f(a)+2∑k=0n−1f(xk)+4∑k=1n−2f(x(k+1)/2)+f(b)] 其中 x(k+1)/2=xk+h2Rn(f)=−b−a180(h2)4f(4)(η)龙贝格求积算法T(0)0=h2[f(a)+f(b)]求梯形值 T0(b−a2k),利用递推公式求 T(k)0,递推公式:T2n=12Tn+h2∑k=0n−1f(xk+12)求加速值:T(k)m=4m4m−1Tk+1m−1−14m−1T(k)m−1k=1,2,⋯高斯-勒让德求积公式积分区间为 [−1,1]∫1−1f(x)dx≈∑k=0nAkf(xk)余项:n=1 时,R1[f]=1135f(4)(η)4、解线性方程组的直接方法列主元高斯消去法在每次消元时,选取列主元在最前面,列主元为该列最大值矩阵三角分解法如果 n 阶矩阵 A 的各阶顺序主子式 Dk(k=1,2,⋯,n−1) 均不为零,则必有单位下三角矩阵 L 和上三角矩阵 U,使得 A=LU,并且 L 和 U 是唯一的。

数值分析(01) 数值计算与误差分析

数值分析(01) 数值计算与误差分析

克莱姆算法步骤
1. 2.
D for 2.1. 2.2.
( j1 jn )
t ( 1 ) a1 j1 a 2 j2 a nj n
i 1 n Di
( i1 i n ) t ( 1 ) a i1 1 bi2 j a in n
Di xi D
N=[(n2-1)n!+n]flop
每周有课外练习,两周交一次作业, 一学期完成 3 个综合程序课题设计。 考试评分: 平时作业+程序占总成绩的30%,
期末考试占总成绩的70%,开卷考试。
Matlab_zm@ 密码 123456
数值分析
数值分析
第二节 数值问题与数值算法
求数学问题的数值解称为数值问题.
数值方法:适合在计算机上,按确定顺序依次进行计算 的计算公式,也就是通常所说的数值计算方法。 数值算法:从给定的已知量出发,经过有限次四则运算
有递推公式
注意
计算量 N n flop
Pn ( x) x( x( x( x(an x an1 ) an2 ) a1 ) a0
数值分析

sn an sk xsk 1 ak P n ( x) s0
k n 1,,2,1,0
数值分析
例3 矩阵乘积AB的计算量分析
第一节 数值分析的研究对象和特点
我们把在电子计算机上进行的科学工作称为科学计算。 科学研究的方法: 科学理论,科学实验,科学计算 科学计算的核心内容是以现代化的计算机及数学软件 为工具,以数学模型为基础进行模拟研究。
数值分析
数值分析
第一节 数值分析的研究对象和特点
科学计算的步骤:实际问题→数学模型→数值方法 →程序设计→上机计算→分析结果。 1、建立数学模型(实际问题数学化) 2、设计计算方案(数学问题数值化)

数值分析 误差知识与算法知识

数值分析 误差知识与算法知识
1.2 误差知识与算法知识
一、误差的来源与分类 二、 绝对误差、相对误差与有效数字
三、误差估计的基本方法
四、算法的计算复杂性 五、数值运算中的一些原则
1.2误差知识与算法知识
一、误差的来源与分类 模型误差 (描述误差 ) ( 测量误差) (方法误差 ) ( 计算误差 )
观测误差
截断误差 舍入误差
建模过程中 产生的误差
三、误差估计的基本方法 (一)误差估计的一般运算 一元函数:
e( f (a)) f (a) e(a)
二元函数:
( f (a)) f (a) (a)
f (a, b) f (a, b) e( f (a, b)) e(a) e(b) x y
f (a, b) f (a, b) ( f (a, b)) ( a) (b) x y
Tn an 秦九韶算法 Tk xTk 1 ak , k n 1, n 2,,1,0 p ( x) T 0 n
加法次数: n
n(n 1) 乘法次数: 2
pn ( x) a0 x(a1 x(a2 x(an1 xan ) )
有效数字=可靠数字+存疑数字
(3)有效数字 有效数字的定义: 设a是x的近似值,如果a的误差绝对值不超过x 的第k位小数的半个单位,即
则称近似值a准确到小数点后第k位。 从这个小数点后第k位数字直到最左边非零数 字之间的所有数字都叫有效数字。
1 k x a 10 2
1 1 2 (2.18) 10 (2.1200) 10 4 2 2
例8 设有三个近似数
a=2.31, b=1.93, c=2.24 它们都有三位有效数字,试计算 p a bc, ( p), r ( p), 并问:p的计算结果能有几位有效数字? 教材例4

数值分析第五版课后习题答案

数值分析第五版课后习题答案

数值分析第五版课后习题答案数值分析是一门应用数学的分支学科,主要研究如何利用数值方法解决实际问题。

在学习这门课程的过程中,课后习题是不可或缺的一部分。

本文将对《数值分析第五版》的课后习题进行一些探讨和解答。

第一章是数值分析的导论,主要介绍了误差分析和计算方法的基本概念。

在课后习题中,有一道题目是关于误差传播的。

假设有一个函数f(x, y) = x^2 + y^2,其中x和y的测量误差分别为Δx和Δy,要求计算f(x, y)的误差。

解答:根据误差传播公式,可以得到f(x, y)的误差为Δf = √[(∂f/∂x)^2 *(Δx)^2 + (∂f/∂y)^2 * (Δy)^2]。

对于本题而言,∂f/∂x = 2x,∂f/∂y = 2y。

代入公式,得到Δf = √[(2x)^2 * (Δx)^2 + (2y)^2 * (Δy)^2] = 2√(x^2 * (Δx)^2+ y^2 * (Δy)^2)。

第二章是插值与多项式逼近的内容。

其中一道习题涉及到拉格朗日插值多项式。

给定n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),要求构造一个n次多项式p(x),使得p(xi) = yi (i = 0, 1, ..., n)。

解答:拉格朗日插值多项式的表达式为p(x) = Σ(yi * Li(x)),其中Li(x) = Π[(x - xj) / (xi - xj)],j ≠ i。

将数据点代入表达式中,即可得到所求的多项式。

第三章是数值微积分的内容,其中一道习题是关于数值积分的。

给定一个函数f(x),要求使用复化梯形公式计算定积分∫[a, b]f(x)dx。

解答:复化梯形公式的表达式为∫[a, b]f(x)dx ≈ h/2 * [f(a) + 2Σf(xi) + f(b)],其中h = (b - a)/n,xi = a + i * h (i = 1, 2, ..., n-1)。

根据给定的函数f(x),代入公式中的各个值,即可得到近似的定积分值。

计算机数学基础(2)--误差分析(02-09)

计算机数学基础(2)--误差分析(02-09)

《计算机数学基础(2)》辅导第9章 数值分析中的误差 (2002级(秋季)用) 中央电大 冯 泰 《计算机数学基础》是中央广播电视大学开放本科教育计算机科学与技术专业教学中重要的核心基础课程,它是学习专业理论不可少的数学工具. 通过本课程的学习,要使学生具有现代数学的观点和方法,初步掌握处理离散结构所必须的描述工具和方法以及计算机上常用数值分析的构造思想和计算方法. 同时,也要培养学生抽象思维和慎密概括的能力,使学生具有良好的开拓专业理论的素质和使用所学知识,分析和解决实际问题的能力.本学期讲授数值分析部分,包括数值分析中的误差、线性方程组的数值解法、函数插值和最小二乘拟合、数值积分与微分、方程求根和常微分方程的数值解法. 通过本课程的学习,使学生熟悉数值计算方法的基本原理,掌握常见数值计算的方法. 依据教学大纲,我们对本学期的教学内容,逐章进行辅导,供师生学习参考.第9章 数值分析中的误差一、重点内容绝对误差-设精确值x *的近似值x , 差e =x -x *称为近似值x 的绝对误差(误差). 绝对误差限―绝对误差限ε是绝对误差e 绝对值的一个上界,即ε≤-=*x x e . 相对误差e r ―绝对误差e 与精确值x *的比值,***-==xx x xe e r .常用xe e r =计算.相对误差限r ε―相对误差e r 绝对值的一个上界,r r e ≥ε,常用xε计算.绝对误差限的估计式:)()()(2121x x x x εεε+=±)()()(122121x x x x x x εεε+≈22122121+=x x x x x x x )()()(εεε相对误差限的估计式:⎪⎪⎭⎫⎝⎛≠-±±≤±21212212121121)()()(x x x x x x x x x x x x x x r r r 时εεε112221)()()(x x x x x x r r r εεε+≤,221121)()()(x x x x x x r r r εεε+≤有效数字―如果近似值x 的绝对误差限ε是它某一个数位的半个单位,我们就说x 准确到该位. 从这一位起到前面第一个非0数字为止的所有数字称为x 的有效数字.关于有效数字的结论有: (1)设精确值x *的近似值x ,若mn a a a x 10.021⨯±=a 1,a 2,…,a n 是0~9之中的自然数,且a 1≠0,n l x x l m ≤≤110⨯50=≤--,.*ε 则x 有l 位有效数字.(2)设近似值mn a a a x 10.021⨯±= 有l 位有效数字,则其相对误差限111021+-⨯≤l r a ε(3) 设近似值m n a a a x 10.021⨯±= 的相对误差限不大于1110)1(21+-⨯+l a则它至少有l 位有效数字.(4) 要求精确到10-k(k 为正整数),则该数的近似值应保留k 位小数. 二、实例例1 设x *= π=3.1415926…,求x *的近似值及有效数字.解 若取x *的近似值x =3.14=0.314×101, 即m =1,它的绝对误差是-0.001 592 6…,有31105.06592001.0-*⨯≤=- x x ,即l =3,故近似值x =3.14有3位有效数字.或x =3.14的绝对误差限0.005,它是x *的小数后第2位的半个单位,故近似值x =3.14准确到小数点后第2位,有3位有效数字. 若取近似值x =3.1416,绝对误差是0.0000074…,有5-1*10⨯50≤00000740=-.. x x ,即m =1,l =5,故近似值x =3.1416有5位有效数字.或x =3.1416的绝对误差限0.00005,它是x *的小数后第4位的半个单位,故近似值x =3.1416准确到小数点后第4位,亦即有4位有效数字.若取近似值x =3.1415,绝对误差是0.0000926…,有 0000926.0=-*x x 41105.0-⨯≤,即m =1,l =4,故近似值x =3.1415只有4位有效数字.或x =3.1415的绝对误差限0.0005,它是x *的小数后第3位的半个单位,故近似值x =3.1415准确到小数点后第3位.注意:这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字.若末位数不是四舍五入得到的,那末它就不一定有s 位有效数字,必须用其绝对误差限来确定.绝对误差限是哪一位的半个单位,也就是精确到该位,从而确定有效数字. 例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.000 4 -0.002 00 9 000 9 000.00解 因为x 1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×101―5,即m =1,l =5,故x =2.000 4有5位有效数字. a 1=2,相对误差限025000.01021511=⨯⨯=-a r εx 2=-0.002 00,绝对误差限0.000 005,因为m =-2,l =3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr =3110221-⨯⨯=0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, l =4, x 3=9 000有4位有效数字,a =9,相对误差限εr =4110921-⨯=0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,l =6,x 4=9 000.00有6位有效数字,相对误差限为εr =6110921-⨯=0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,即绝对误差限是ε=0.0005, 故至少要保留小数点后三位才可以.ln2≈0.693例4 数值x *=2.197224577…的六位有效数字的近似值x =2.19722,而不是2.19723.注意:取一个数的近似数,若取5位有效数字,则只看该数第6位数,采取四舍五入的方法处理.与第7位,第8位的数值大小无关.本例取6位有效数字,左起第6个数是2,而第7个数是4,故应舍去,得到x=2.19722.本例第8个数,第9个数都是大于或等于5的数,再入上去,就得到x=2.19723,是不对的. 我们计算一下它们的误差. 取x=2.19722,e=x -x*=-0.000 004 577…,∣e ∣=∣x -x*∣=0.000 004 577…<0.000 005=0.5×101-6取x=2.19723,e=x -x*=0.000 005 423…,∣e ∣=∣x -x*∣=0.000 005 423…<0.000 05=0.5×101-5 即x=2.19723只有五位有效数字. 例5 设近似值x 1,x 2满足ε(x 1)=0.05,ε(x 2)=0.005,那么ε(x 1x 2)=?解 已知x 1,x 2的绝对误差限,求x 1x 2的绝对误差限.由绝对误差限的传播公式)()()(211221x x x x x x εεε+==1221005.005.0)(x x x x +=ε注:该传播公式也可以用于多个数的积, 213312321321)()()()(x x x x x x x x x x x x εεεε++=)(3)(),(2)(232x x x x x x εεεε==等.三、练习题1.下列各数中,绝对误差限为0.000 05的有效近似数是( B ) (A)-2.180 (B) 2.1200 (C) -123.000 (D) 2.120 2. 数8.000033的5位有效数字的近似值是多少? 答案:8.000 03. 若误差限为0.5×10-5,那么近似数0.003400有( B )位有效数字. (A) 2 (B) 3 (C) 4 (D) 64. 若近似值x 的绝对误差限为ε=0.5×10-2,那么以下有4位有效数字的x 值是( B ).(A) 0.934 4 (B) 9.344 (C) 93.44 (D)934.4 5. 已知准确值x *与其有t 位有效数字的近似值x =0.0a 1a 2…a n ×10s (a 1≠0)的绝对误差∣x *-x ∣≤( A ). (A) 0.5×10 s -1-t (B) 0.5×10 s -t (C) 0.5×10s +1-t (D) 0.5×10 s +t6. 已知x *1=x 1±0.5×10-3,x *2=x 2±0.5×10-2,那么近似值x 1,x 2之差的误差限是多少?答案:0.55×10-2. 7. 设近似值x =-9.73421的相对误差限是0.0005,则x 至少有几位有效数字. 答案:38. 用四舍五入的方法得到近似值x =0.0514,那么x 的绝对误差限和相对误差限各是几? 答案:0.000 05,0.0019. 设近似值x 1,x 2满足ε(x 1)=0.05,ε(x 2)=0.005,那么ε(x 1+x 2)=? 答案:0.05510. 设近似值x =±0.a 1a 2…a n ×10m ,具有l 位有效数字,则其相对误差限为( B ).(A) 1110121+-⨯+l a (B)1110)1(21+-⨯+l a(C)111021+-⨯l a (D) la -⨯1021111. 测量长度为x =10m 的正方形,若ε(x )=0.05m ,则该正方形的面积S 的绝对误差限是多少?答案:1(m)12.数值x*=2.197224577…的六位有效数字的近似值x=( B ).(A) 2.19723 (B) 2.19722 (C) 2.19720 (D) 2.19722513. 将下列各数舍入成三位有效数字,并确定近似值的绝对误差和相对误差. (1) 2.1514 (2) -392.85 (3) 0.00392214. 已知各近似值的相对误差,试确定其绝对误差:(1) 13267 e r=0.1% (2) 0.896 e r=10%四、练习题答案1. B2. 8.000 03. B4. B .5. A6. 0.55×10-2.7. 38. 0.000 05,0.0019. 0.05510. B11. 1(m)12. B13. (1)2.15, e=-0.001 4, e r=-0.000 65;(2) -393 , e=-0.15, e r=-0.00038;(3)0.00392, e=-0.000 002, e r=0.0005114. (1) e=0.13×102 (2) 0.9×10-1。

数值分析讲义

数值分析讲义

由于除数很小,将导致商很大,有可能出现“溢出”现 象另外. ,设x* ,y* 的近似值分别为x,y,则z=x÷y是z*=x*÷y*
的近似值.此时,z的绝对误差满足估计式
e(z) z* z (x* x) y x( y y* ) y e(x) x e( y)
yy*
y2
可见,若除数太小,则可能导致商的绝对误差很大。
n k, k 1,...2,1
类似地可得
Ik
I
* k
(1) nk
k!( n!
I
n
I
* n
)
,
k n, n 1,...,1,0
可见,近似误差Ik-I*k是可控制的,算法是数值稳定的。
例如,由于
e 1 10
01 x9e1dx
I9
01 x9dx
1 10
取近似值 I9
1 (e1 1 ) 0.0684 2 10 10
§3 绝对误差、相对误差和有效数字
设x是精确值x*的一个近似值,记 e=x*-x
称e为近似值x的绝对误差,简称误差。如果满足 |e|≤
则称为近似值x的绝对误差限,简称误差限。 精确值x* 、近似值x和误差限之间满足: x-≤x*≤x+
通常记为 x*=x±
绝对误差有时并不能很好地反映近似程度的好坏,如
随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等 各个领域。本课仅限介绍最常用的数学模型的最基本的数 值分析方法。
§2 误差的来源和分类
误 1.差模是型描误述差数值数计学算模之型中通近常似是值由的实精际确问程题度抽,象在得数到值的, 计一般算带中有十误分差重,要这,种误误差差按称来为源模可型分误为差模。型误差、观测误差、 截断误2.差观和测舍误入差误差数四学种模。型中包含的一些物理参数通常是 通过观测和实验得到的,难免带有误差,这种误差称为观 测误差。

数值分析基础

数值分析基础

数值分析基础数值分析是一门研究利用计算机进行数值计算的学科,它涉及到数学、计算机科学和工程学等多个领域。

数值分析基础是数值计算领域最基本的理论和方法,为实现高精度、高效率的数值计算提供了重要的基础。

一、数值分析的概念数值分析是通过数值方法解决数学问题的过程。

它的基本思想是将连续的数学问题转化为离散的数值问题,并利用计算机进行求解。

数值分析的应用范围非常广泛,包括线性代数方程组的求解、非线性方程求根、插值与逼近、数值微积分、常微分方程的初值问题和边值问题的数值解等。

二、数值计算的误差分析在数值分析中,误差分析是非常重要的一环。

数值计算过程中产生的误差可以分为截断误差和舍入误差。

截断误差是由于在离散化和近似计算中引入的近似误差,而舍入误差是由于计算机在表示实数时的有限精度引起的。

准确估计和控制误差是数值计算的核心问题之一。

三、常用的数值计算方法1. 插值与逼近方法:插值是在给定一组数据点的情况下,通过构造一个函数来近似这组数据点之间未知函数值的方法。

常用的插值方法有拉格朗日插值和牛顿插值。

逼近是通过在给定函数空间中寻找一个尽可能接近原函数的近似函数的方法,常见的逼近方法有最小二乘逼近和Chebyshev逼近。

2. 数值积分方法:数值积分是计算定积分的近似值的方法。

常见的数值积分方法有梯形法则、辛普森法则和复合求积法。

3. 数值微分方法:数值微分是通过差商逼近导数的计算方法。

常见的数值微分方法有中心差商、前向差商和后向差商。

4. 数值求解线性方程组的方法:线性方程组求解是数值计算中的一个重要问题。

常用的求解方法有直接法和迭代法。

5. 常微分方程数值解法:常微分方程数值解法是通过数值方法求解微分方程的方法。

常用的数值解法有欧拉法、龙格-库塔法和变步长方法等。

四、数值计算的应用领域数值分析在各个学科领域都有广泛的应用。

在物理学中,数值分析被用于求解天体运动、弹道问题等。

在工程学中,数值分析被用于优化设计、结构力学分析等。

数值分析 - 第2章 误差

数值分析 - 第2章  误差
解 f ′( x) = 3 x 2 − 2 = −0.548
ef ( x) ≤ f ′( x ) ε ( x ) = 0.548 × 0.25 ×10 −3 = 0.137 × 10 −3 例7 设 x= π=3.1415926…,求 x 的近似值 x*及有效数字
解 若取 x 的近似值 x=3.14=0.314×101, 即 m=1,它的绝对误差是-0.001 592 6…,有
10 − l +1 ≤ 20 × 10 −4 10 − l ≤ 2 × 10 −4 l =4
例 5 近似值 2.15 的相对误差限不大于多少,才能够保证它至少的三位有效数字
解: a1 = 2
m =1
l =3Biblioteka εr =1 2 ( 2 +1)
−2 × 10 −3+1 = 1 6 × 10
例6 设 x=0.2200 的绝对误差限 ε ( x ) = 0.25 ×10 −3 求函数 f ( x ) = x 3 − 2 x + 1 的绝对误差限
x − x ∗ = 0.001 592 6 ≤ 0.5 × 101−3
即 l=3,故近似值 x*=3.14 有 3 位有效数字.或 x*=3.14 的绝对误差限 0.005,它是 x 的小数后第 2 位的半个单位, 故近似值 x*=3.14 准确到小数点后第 2 位,有 3 位有效数字.
若取近似值 x=3.1416,绝对误差是 0.0000073…,有
x − x ∗ = 0.0000073 ≤ 0.5 × 101−5
即 m=1,l=5,故近似值 x*=3.1416 有 5 位有效数字.或 x*=3.1416 的绝对误差限 0.00005,它是 x 的小数后第 4 位的 半个单位,故近似值 x=3.1416 准确到小数点后第 4 位,亦即有 5 位有效数字. 若取近似值 x=3.1415,绝对误差是 0.0000926…,有 x − x = 0.0000926

数值分析实验报告2

数值分析实验报告2

实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。

二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力. 三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。

(1)取不同的步长h 。

分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。

(2)用龙贝格求积计算完成问题(1)。

(3)用自适应辛普森积分,使其精度达到10-4。

五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f ab dx x f b a+-≈⎰ (1.1) )]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-= (1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη(1.3) 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。

2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4) )]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5) ),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。

《数值分析》第一章 数值计算中的误差

《数值分析》第一章 数值计算中的误差

值,其绝对误差限等于该近似值末位的半个单位。
14
§2 舍入方法与有效数字
2.2 舍入方法
2.2.2四舍五入法
• 例:设a=-2.18和b=2.1200是分别由准确值x和y 经过四舍五入而得到的近似值,问: a、b的绝 对误差限、相对误差限各是多少?
解: (a) 0.005 0.5 102
(b) 0.00005 0.5104
n位
≤ 0 . 0 … 0 999... < 0 . 0 … 0 1=1×10-n
n位
n-1位
• 截断法产生的绝对误差限不超过近似数a最末位 的1个单位。
11
§2 舍入方法与有效数字
2.2 舍入方法
2.2.2四舍五入法
• 四舍情况,
A=a0 a1 … am . am+1 … am+n
• 当am+n+1 =0,1,2,3,4时,
4
§2 舍入方法与有效数字
5
§2 舍入方法与有效数字
2.1 绝对误差与相对误差
• 近似数a的绝对误差 , 简称误差 设a是精确值A的近似值,
=a-A
• 绝对误差限 ||=|a-A|<(上界)
• 由上式可推知 a- <A<a+,也可表示为A=aAFra biblioteka-a
a+
6
§2 舍入方法与有效数字
2.1 绝对误差与相对误差
• 相对误差 : 绝对误差与精确值之比 =/A。 • 实际计算/a。
代替后误差
a A 1 2
A a Aa
Aa
• 相对误差限 ||=|/a |< /|a|= (上界)
• 绝对误差是有量纲的量,相对误差没有量纲,有时 亦用百分比、千分比表示。

数值分析

数值分析

二 数值分析(一) 数值分析的背景随着计算机技术的发展和科学技术的进步, 计算数学的理论与基本方法已影响到许多学科, 并在生产、管理以及科学研究中得到了广泛应用。

数值分析作为计算数学的主要部分, 它是研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现, 是一门与计算机使用密切结合的实用性和实践性很强的数学课程, 是应用数学专业、信息与计算科学专业及很多理工科专业的核心课程。

数值分析除了具备数学高度抽象性与严密科学性的特点外, 有其自身的特点, 其理论体系构建、算法设计等的思维方式具有鲜明特征, 与其它数学课程相比, 更加注重方法和解决实际问题的工程思想, 特别注意在方法的精确性和有效性之间平衡。

[11] (二)误差来源利用数值方法求解得到的数值解是解析解的近似结果,因而误差是不可避免的。

误差的来源是多方面的,产生误差的原因主要有以下几个方面:1.模型误差:数学模型——对实际问题的仅是刻画:基于对实际问题近似描述的数学模型进行数值计算,例如利用函数的n 阶Taylor 展式()()()()()()()()()()2000000002!!n nnf x fx f x f x f x x x x x x x x x n ο'''=+-+-++-+-计算函数值;2.观测误差:数学模型或计算公式中通常包含若干参数,这些参数往往是通过观测或实验得到的,这样得到的参数与其真值之间有一定的差异即所谓的观测误差,例如描述弹簧受迫振动的二阶线性常系数微分方程()22d x dx mkx f t dtdtω++=中的质量m 、阻尼系数ω和弹性系数k 等。

更一般地:对物体的长宽高、电压、温度、速度的量测等。

3.截断误差:许多数学运算是通过极限过程定义的,如微分、积分以及无穷级数求和等,由于计算机只能完成有限的算术预算和逻辑运算,所以在利用计算机进行计算是需要把无限的计算过程用有限的计算过程代替,由此产生的误差成为截断误差;4.舍入误差:实际计算时只能按有限位进行,特别是里用计算机计算,由于计算机的有限位的限制,对参与运算的数据以及运算结果往往要进行舍入,例如利用公式2A R π=计算圆的面积时,π需用有限的小数代替,由此产生的误差成为舍入误差。

数值分析要点

数值分析要点

− −
y2 )( y − y2 )( y0
y3 ) − y3
)
+
f
−1
(
y1
)
(
(y y1
− −
y0 )( y y0 )( y1
− −
y2 )( y − y3 ) y2 )( y1 − y3
)
+
f
−1
(
y
2
)
(
(y − y2 −
y0 )( y y0 )( y2
− −
y1 )( y − y1 )( y2
于求例解如的:问函题数,这f (种x) 简用化泰带勒入(T误ay差lo称r) 多为项方式法误差或截断误差。
Pn (x) =
f (0) +
f ′(0) x + 1!
f ′′(0) x 2 2!
+⋯+
f (n) (0) x n n!
近似代替,则数值方法的截断误差是泰勒余项。
4、舍入误差 计算机只能处理有限数位的小数运算,初始参 数或中例间如结:果用都必3 .须141进59行近四似舍代五替入运π ,算产,生这的种误误差差称为舍入误差。
⎢ ⎢
y1
⎥ ⎥
⎢y2 ⎥ ⎢⎢⋯ ⎥⎥
⎢⎣ yn ⎥⎦
其系数行列式为范德蒙 ( Vandemonde )矩阵行列式
1 x0 x02 ⋯ x0n
∏ 1
A= ⋯
x1 ⋯
x12 ⋯
⋯ ⋯
x1n ⋯
= (xi
0≤ j<i≤n
− xj) ≠ 0
1
xn
x
2 n
⋯ xnn
因此,线性方程组的解 a0,a1,⋯,an 存在且唯一。

第一章数值分析(误差分析)

第一章数值分析(误差分析)
*
* e x x * e r * * x x x x* er 则称η 为 x* 的相对误差限。 x
如果
这时 x=10,
x*=10±1;
2019/3/13
第一章 绪论与误差分析
2
本章内容安排
1. 目的意义:了解计算数学的背景知识;掌握误 差的基本知识 2.重 点:误差来源、误差表示、误差传播 及算法设计原则 3.难 点:有效数字 4.内容分配: 第 1 次:§1 计算数学研究的对象和内容 第
§2 误差的来源和分类 2 次:§3 误差的表示 §4 误差的传播 §5 算法设计的若干原则
由于计算机的字长有限,参加运算的数据以及计算结 果在计算机上存放时,计算机会按舍入原则舍去每个数据 字长之外的数字,从而产生误差,这种误差称为舍入误差 或计算误差。 例如,在十进制十位的限制下,会出现 (1.000002)2-1.000004=0
这个结果是不准确的,准确的结果应是 (1.000002)2-1.000004 =1.000004000004-1.000004=4×10-12 这里所产生的误差就是计算舍入误差。 在数值分析中,一般总假定数学模型是准确的,因而 不考虑模型误差和观测误差,主要研究截断误差和舍入误 差对计算结果的影响。
则有误差限 |x-x*|≤1= εx ,
虽然εy是εx 的3倍,但在1000内差3显然比10内差1更精确 些。这说明一个近似值的精确程度除了与绝对误差有关 外,还与精确值的大小有关,所以这时可以用相对误差 来比较这两个近似数的准确度。
2019/3/13 19
第一章 绪论与误差分析
e x x 定义1 .2 记 er x x 则称其为近似值 x *的相对误差。 由于 x 未知, 实际使用时总是将 x * 的相对误差取为

数值分析2-方程求根二分法迭代法

数值分析2-方程求根二分法迭代法

即使用|φ'(x0)|>1来判断(但需选择靠近x0上的合适初值) 例:用迭代法求方程 f(x) = x(x+1)2 -1=0 在x=0.4附近的根。
x=φ(x)= φ'(x)= -
(1 | '( x ) |)
1 2
可令正数
,则有
| '( x) | | '( x ) | | '( x) '( x ) | (再利用绝对值性质)

1 1 | '( x) || '( x ) | (1 | '( x ) |) (1 | '( x ) |) 1 2 2
| '( x ) | 1,

1 (1 '( x )) 0. 2
| '( x ) | 1
(先证明第2个条件:构造某区间,有
)
lim '( x) 0 . ( x) 为一阶导数连续,即 x 0
再利用函数极限知识:对任意给定正数 ,总存在

x [ x , x ] 时,有 | '( x) || '( x) '( x ) |
xk+1 - x =φ '( ξ k )( xk - x )
*
*
*
,∴
xk+1 - x* =φ '( ξ k) xk - x*
ξ k )=x , ∴ 又∵ klim( →∞
xk+1 - x* * lim = φ '( x ) k→∞ x - x* k
0
| '( x) | 1,则对任意初值x [a, b] , (6) 若 x [a, b] 时, 迭代公式发散.

数值分析知识点总结

数值分析知识点总结

数值分析知识点总结一、绪论数值分析是一门研究如何使用数值方法解决数学问题的学科。

它广泛应用于科学、工程、医学等领域。

在数值分析中,我们通常将实际问题转化为数学模型,然后使用计算机进行计算。

数值分析的主要内容包括:误差分析、插值与拟合、线性方程组求解、微分方程求解等。

二、误差分析误差分析是数值分析中的一个重要概念。

它包括绝对误差、相对误差和误差限等概念。

在计算过程中,误差会传递和累积,因此需要进行误差分析以评估计算结果的精度。

常用的误差分析方法有:泰勒级数展开、中点公式等。

三、插值与拟合插值与拟合是数值分析中的两个重要概念。

插值方法用于通过一组已知数据点生成一个函数,该函数能够近似地描述这些数据点之间的关系。

拟合方法则是通过一组已知数据点生成一个最佳拟合线或曲面,使得这个线或曲面与已知数据点之间的误差尽可能小。

常用的插值与拟合方法有:线性插值、多项式插值、样条插值、最小二乘法等。

四、线性方程组求解线性方程组是数值分析中经常遇到的一类方程组。

对于线性方程组,我们通常使用迭代法或直接法进行求解。

迭代法包括:雅可比迭代、高斯-赛德尔迭代、松弛法等。

直接法包括:高斯消元法、逆矩阵法等。

在实际应用中,我们通常会选择适合问题的计算方法,并根据需要进行优化。

五、微分方程求解微分方程是描述变量之间的函数关系的一类方程。

在数值分析中,我们通常使用数值方法对方程进行离散化处理,然后使用计算机进行求解。

常用的微分方程求解方法有:欧拉方法、龙格-库塔方法等。

对于复杂的微分方程,我们还可以使用谱方法、有限元方法等进行求解。

六、总结数值分析是一门应用广泛的学科,它涉及到许多数学知识和计算机技术。

在实际问题中,我们需要根据问题的特点选择合适的数值方法进行解决。

在进行计算时,需要注意误差分析、算法的稳定性和收敛性等问题。

随着计算机技术的发展,数值分析的应用领域也在不断扩大,例如、大数据分析等领域。

因此,数值分析的学习和应用具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档