八年级数学几何证明题

合集下载

初二数学压轴几何证明题(含答案)

初二数学压轴几何证明题(含答案)

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G 为DF的中点,连接EG,CG,EC.ﻫ(1)如图1,若点E在CB边的延长线上,直接写出EG与GC 的位置关系及的值;ﻫ(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.解:(1)EG⊥CG,=,ﻫ理由是:过G作GH⊥EC于H,ﻫ∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,ﻫ∵G为DF中点,ﻫ∴H为EC中点,ﻫ∴EG=GC,GH=(EF+DC)=(EB+BC),ﻫ即GH=EH=HC,ﻫ∴∠EGC=90°,即△EGC是等腰直角三角形,∴=;ﻫ(2)ﻫ解:结论还成立,ﻫ理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中ﻫ∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,ﻫ∴∠1=∠2=90°-∠3=∠4,ﻫ∴∠EBC=180°-∠4=180°-∠1=∠HDC,在△EBC和△HDC中ﻫ∴△EBC≌△HDC.ﻫ∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,ﻫ∵G为EH的中点,ﻫ∴EG⊥GC,=,ﻫ即(1)中的结论仍然成立;ﻫﻫ(3)ﻫ解:连接BD,∵AB=,正方形ABCD,ﻫ∴BD=2,ﻫ∴cos∠DBE==,∴∠DBE=60°,ﻫ∴∠ABE=∠DBE-∠ABD=15°,ﻫ∴∠ABF=45°-15°=30°,∴tan∠ABF=,∴DE=BE=,∴DF=DE-EF=-1.解析: (1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;ﻫ(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;3(ﻫ)连接BD,求出cos∠DBE==,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC上,取DF的中点G,连接EG,CG.(1)延长EG交DC于H,试说明:DH=BE.ﻫ(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.ﻫ(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由.(1)证明:∵∠BEF=90°,∴EF∥DH,ﻫ∴∠EFG=∠GDH,ﻫ而∠EGF=∠DGH,GF=GD,ﻫ∴△GEF≌△GHD,ﻫ∴EF=DH,而BE=EF,ﻫ∴DH=BE;ﻫ(2)连接DB,如图,ﻫ∵△BEF为等腰直角三角形,∴∠EBF=45°,ﻫ而四边形ABCD为正方形,∴∠DBC=45°,ﻫ∴D,E,B三点共线.ﻫ而∠BEF=90°,∴△FED为直角三角形,ﻫ而G为DF的中点,∴EG=GD=GC,∴∠EGC=2∠EDC=90°,∴EG=CG且EG⊥CG;ﻫﻫ(3)第2问中的结论成立.理由如下:连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,ﻫ∵G为DF的中点,O为BD的中点,M为BF的中点,ﻫ∴OG∥BF,GM∥OB,ﻫ∴四边形OGMB为平行四边形,∴OG=BM,GM=OB,而EM=BM,OC=OB,∴EM=OG,MG=OC,∵∠DOG=∠GMF,而∠DOC=∠EMF=90°,∴∠EMG=∠GOC,ﻫ∴△MEG≌△OGC,∴EG=CG,∠EGM=∠OCG,ﻫ又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,ﻫ∴EG=CG且EG⊥CG.解析:(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.ﻫ(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.ﻫ(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF =90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BD F,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.ﻫ(1)探索EG、CG的数量关系和位置关系并证明;ﻫ(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.ﻫ解:(1)EG=CG且EG⊥CG.ﻫ证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.ﻫ∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.ﻫ∴∠EGF=2∠EDG,∠CGF=2∠CDG.ﻫ∴∠EGF+∠CGF=2∠ED C=90°,ﻫ即∠EGC=90°,∴EG⊥CG.ﻫﻫ(2)仍然成立,证明如下:如图②,延长EG交CD于点H.ﻫ∵BE⊥EF,∴EF∥CD,∴∠1=∠2.ﻫ又∵∠3=∠4,FG=DG,ﻫ∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.ﻫ∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG.ﻫ(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,ﻫ∴△HFG≌△CDG,ﻫ∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,ﻫ∴HE=EC,∠BEC=∠FEH,ﻫ∴∠BEF=∠HEC=90°,ﻫ∴△ECH为等腰直角三角形.又∵CG=GH,∴EG =CG 且EG ⊥C G.解析:(1)首先证明B 、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG ,∠CGF=2∠CDG,从而证得∠EGC=90°;ﻫ(2)首先证明△FE G≌△DHG,然后证明△ECH 为等腰直角三角形.可以证得:EG=CG 且EG ⊥C G.ﻫ(3)首先证明:△BEC ≌△FEH,即可证得:△ECH 为等腰直角三角形,从而得到:EG=C G且EG ⊥CG.已知,正方形A BCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G,连接EG 、C G.ﻫ(1)如图1,若△B EF 的底边B F在BC 上,猜想E G和CG 的数量关系为______;ﻫ(2)如图2,若△B EF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△B EF 的直角边BE 在∠DB C内,则(1)中的结论是否还成立?说明理由. 解:(1)GC=EG,(1分)理由如下:ﻫ∵△BEF 为等腰直角三角形,ﻫ∴∠DEF=90°,又G为斜边DF 的中点, ∴EG= DF,∵A BCD 为正方形,ﻫ∴∠BCD=90°,又G为斜边DF 的中点,∴CG= DF,ﻫ∴G C=EG;ﻫ(2)成立.如图,延长EG 交CD 于M,D,∵∠BEF =∠FEC=∠BCD=90°,∴EF ∥C1 2 1 2∴∠EFG=∠MD G,ﻫ又∠E GF=∠DGM ,D G=FG ,∴△G EF ≌△GMD,ﻫ∴EG=MG,即G 为EM 的中点.∴CG为直角△EC M的斜边上的中线,ﻫ∴CG=G E= EM;(3)成立.ﻫ取BF 的中点H,连接EH ,GH ,取BD 的中点O,连接O G,OC . ∵CB=CD,∠DCB=90°,∴C O= BD .ﻫ∵DG=G F,ﻫ∴GH ∥BD ,且GH= BD ,ﻫOG ∥BF,且OG= B F,ﻫ∴CO =GH .∵△BEF 为等腰直角三角形. B F∴EH=∴EH=OG . ∵四边形O BHG 为平行四边形, ∴∠BOG =∠BH G.∵∠B OC=∠BH E=90°. ∴∠GOC=∠EHG .ﻫ∴△GOC ≌△E HG .ﻫ∴EG=GC .此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.解析:(1)E G=CG,理由为:根据三角形BEF 为等腰直角三角形,得到∠DEF 为直角,又G 为DF 中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG 为DF 的一半,同理在直角三角形DC F中,得到CG 也等于DF 的一半,利用等量代换得证;ﻫ(2)成立.理由为:延长EG 交CD 于M,如图所示,根据“A SA ”得到三角形E FG 与三角形GDM 全等,由全等三角形的对应边相等得到EG 与MG 相等,即G 为EM 中点,根据直角三角形斜边上的中线等于斜边的一半得到E G与CG相等都1212 1 2 1 2。

八年级数学几何证明题

八年级数学几何证明题

几何证明:【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形.证明:∵∠BCE=90°∠ACD=90° 在△ECB 和△ACD 中 ∠BCE=∠BCA+∠ACE BE=AD ∠ACD=∠ACE+∠ECD ∠BCE=∠ACD ∴∠ACB=∠ECD EC=CD∵△ECD 为等边三角形 ∴△ECB ≌△DCA( HL ) ∴∠ECD=60° CD=EC ∴BC=AC 即ACB==60° ∵∠ACB=60°∴△ABC 是等边三角形 [例2】、如图,已知BC > AB ,AD=DC 。

BD 平分∠ABC 。

求证:∠A+∠C=180°.证明:在BC 上截取BE=BA,连接DE, ∴∠A=∠BED AD= DE ∵BD 平分∠BAC ∵AD=DC ∴∠ABD = ∠EBD ∴DE=DC在△ABD 和△EBD 中 得 ∠DEC=∠CAB=EB ∵∠BED+∠DEC=180° ∠ABD = ∠EBD ∴∠A+∠C=180° BD=BD△ABD ≌ △EBD (SAS )1、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

①倍长中线【例. 3】如图,已知在△ABC 中,90C ︒∠=,30B ︒∠=,AD 平分BAC ∠,交BC 于点D . 求证:2BD CD =证明:延长DC 到E ,使得CE=CD,联结AE ∵∠ADE=60° ∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC ∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°∴DB=DA ∠ADE=60°图6DCBEA【例4.】 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

八年级上学期数学期末专题:几何证明综合(原题和解析)

八年级上学期数学期末专题:几何证明综合(原题和解析)

【期末压轴题】专题05:几何证明综合(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列六个命题①有理数与数轴上的点一一对应①两条直线被第三条直线所截,内错角相等①平行于同一条直线的两条直线互相平行;①同一平面内,垂直于同一条直线的两条直线互相平行;①直线外一点到这条直线的垂线段叫做点到直线的距离①如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.2个B.3个C.4个D.5个2.下列几个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;①如果1∠=∠;∠和2∠是对顶角,那么12①一个角的余角一定小于这个角的补角;①三角形的一个外角大于它的任一个内角.A.1个B.2个C.3个D.43.下面说法正确的个数有()x-<-的(1)不等式两边乘(或除以)同一个数,不等号的方向不变;(2)5-是324解;(3)三角形的外角等于与它不相邻的两个内角的和;(4)如果ABC的三个内角满∠=∠-∠,那么ABC一定是直角三角形;(5)三角形的高所在的直线交于一足A C B点,这一点不在三角形内就在三角形外A.1个B.2C.3个D.4个4.下列命题中假命题有()①两条直线被第三条直线所截,同位角相等①如果两条直线都与第三条直线平行,那么这两条直线也互相平行①点到直线的垂线段叫做点到直线的距离①过一点有且只有一条直线与已知直线平行①若两条直线都与第三条直线垂直,则这两条直线互相平行.A.5个B.4个C.3个D.2个5.下列命题为真命题的是( )A .如果0mn =,那么0m =且0n =B .两边分别相等的两个直角三角形全等C .三角形的三条角平分线相交于一点,并且这一点到三个顶点的距离相等D .如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等 6.一副三角板如图摆放,点F 是45°角三角板ABC 的斜边的中点,4AC =.当30°角三角板DEF 的直角顶点绕着点F 旋转时,直角边DF ,EF 分别与AC ,BC 相交于点M ,N .在旋转过程中有以下结论:①MF NF =;①四边形CMFN 有可能为正方形;①MN 长度的最小值为2;①四边形CMFN 的面积保持不变:①CMN △面积的最大值为2,其中正确的个数是( )A .2B .3C .4D .57.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,D 为BC 边上一点,将ABD △绕点A 逆时针旋转90°得到ACE ,点B 、D 的对应点分别为点C 、E ,连接BE ,将AC 平移得到DF (点A 、C 的对应点分别为点D 、F ),连接AF ,若AB =2BD =,则AF 的长为( )A .B .6C .D 8.如图,等腰Rt ABC 中,AB =AC ,①BAC =90°,AD ①BC 于点D ,①ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;①DMN 为等腰三角形;①DM 平分①BMN ;①AE =23EC ;①AE =NC ,其中正确结论有( )A .2个B .3个C .4个D .5个9.如图,凸四边形ABCD 中,90,90,60,3,A C D AD AB ∠=︒∠=︒∠=︒==若点M 、N 分别为边,CD AD 上的动点,则BMN △的周长最小值为( )A .B .C .6D .310.如图,Rt ABC 中,90ACB ∠=︒且CA CB =,D 为ABC 外一点,连接AD ,过D 作DE DA ⊥交BC 于点E ,F 为DE 上一点且DF DA =,连接BF ,CD .将线段CD 绕点C 逆时针旋转90︒到线段CG ,连接DG 分别交BF 、BA 于点M 、N ,连接BG 、CF .下列结论:①BM FM =;①CG =;①BCG AND ∠>∠;①CF AD +>;①若2BG =,BC =CF =2ADFC S =四边形 )A .2个B .3个C .4个D .5个 11.如图,在ABC 中,点E 在边AC 上,EB =EA ,①A =2①CBE ,延长BD 到F ,使DF =DB ,连接CF ,过点C 作CD ①BF 于点D ,BD =16,AC =22,则边BC 的长为( )A .B .C .D .12.如图,把含30°的直角三角板ABC 绕点B 顺时针旋转至如图EBD ,使BC 在BE 上延长AC 交DE 于F ,若AF =4,则AB 的长为( )A.2B .C .D .3二、填空题 13.如图,在平面直角坐标系中,点()6,0A ,点()0,P m ,将线段PA 绕着点P 逆时针旋转90°,得到线段PB ,连接AB ,OB ,则BO BA +的最小值为__________.14.如图,在ABC 中,CA BC =,8AB =,5AC =,点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连接CE ,DE ,AE ,当ADE 是直角三角形时,求AD 的长为_____________.15.如图,已知30B ∠=,45C ∠=,150BDC ∠=,且5BD CD ==,则AB =_________16.如图,在矩形ABCD 中,点E 在线段AD 上,连接BE 、CE ,点F 在线段BE 上,连接CF ,若①EBC =2①ECD ,DE =2,BF =9,tan①EFC =43,则线段CE 的长为______.17.如图,在等腰ABC 中,120ACB ∠=︒,8AC BC ==,D 、E 为边AB 上两个动点,且6DE =,则CDE △周长的最小值是________.18.如图,点D 是等边①ABC 内部的一点,①ADC =120°,AB 2=19,23AD CD =,则线段BD 的长度是 ___.19.如图所示,①AOB =50°,①BOC =30°,OM =11,ON =6.点P 、Q 分别是OA 、OB 上动点,则MQ +PQ +NP 的最小值是 ___.20.①ABC中,①ACB=60°,AC=4,BC=13,以AB为边作等边①ABD,过D作DE①BC 于E,则BE的长为____.三、解答题21.如图,AD与BC交于点O,①AD=BC;①①A=①C;①AB=CD,请以①①①中的两个作为条件,另一个为结论,写出一个真命题,并加以证明.已知:求证:证明:22.如图,在Rt①ABC中,①C=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以4cm/s的速度运动,设运动时间为t秒.(1)当t= 时,AP平分①ABC的面积.(2)当①ABP为等腰三角形时,求t的值.(3)若点Q是边AB上一点,且QP①BC,垂足为P,请用无刻度的直尺和圆规,作出点P、点Q,使得QA=QP.(4)若点E、F为BC、AB上的动点,求AE+EF的最小值.23.在①ABC中,P是BC边上的一动点,连接AP.(1)如图1,①BAC=90°,AB=AC,①BAP=15°,且PC.求:①ABP的面积.(2)如图2,若①BAC=90°,AB=AC,AP为边作等腰Rt①APE,连接BE,F是BE的中点,连接AF,猜想PE,PB,AF之间有何数量关系?并证明你的结论.(3)如图3,作PD①AB于D,PE①AC于E,若①B=75°,①C=45°,BC=9﹣当DE最小时,请直接写出DE的最小值.24.如图,在Rt ABC中AB=10,BC①AC,P为线段AC上一点,点Q,P关于直线BC对称,QD①AB于点D,DQ与BC交于点E,连结DP,设AP=m.(1)若BC=8,求AC的长,并用含m的代数式表示PQ的长;(2)在(1)的条件下,若AP=PD.求CP的长:(3)连结PE,若①A=60°,PCE与PDE的画积之比为1:2,求m的值.25.定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,MN AM >,MN BN >,若2AM =,3MN =,则BN =_________;(2)如图,在等腰直角ABC 中,AC BC =,90ACB ∠=︒,M ,、N 为直线AB 上两点,满足45MCN ∠=︒.①如图2,点M 、N 在线段AB 上,求证:点M 、N 是线段AB 的勾股分割点;小林同学在解决第(2)小题时遇到了困难,陈老师对小林说:要证明勾股分割点,则需设法构造直角三角形,你可以把CBN 绕点C 逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程;①如图3,若点M 在线段AB 上,点N 在线段AB 的延长线上,AM =,BN =,求BM 的长.26.如图,在ABC 中,45A ∠=︒.(1)如图1,若AC =2AB =,求ABC 的面积;(2)如图2,D 为ABC 外的一点,连接CD ,BD 且CD CB =,ABD BCD ∠=∠,过点C 作CE AC ⊥交AB 的延长线于点E ,求证:2BD AB +=;(3)如图3,在(2)的条件下,作AP 平分CAE ∠交CE 于点P ,过E 点作EM AP ⊥交AP 的延长线于点M ,点K 为直线AC 上点的一个动点,连接MK ,过M 点作MK MK '⊥,且始终满足MK MK '=,连接AK ',若AC =AK MK ''+取得最小值时()2AK MK ''+的值.27.如图(1),CD 、BE 是①ABC 的两条高,M 为线段BC 的中点.(1)求证:MD =ME .(2)若①ABC =70°,①ACB =42°,求①DME 的度数.(3)若将锐角①ABC 变为钝角①ABC ,如图(2),①BAC =α,请直接写出①DME 的度数.(用含α的式子表示)28.如图,在ABC 中,AB AC =,过点A 作线段AD ,使AB AD =,连接BD ,CD . (1)如图1,当30ABC ∠=︒时,求BDC ∠度数;(2)如图2,求证:11802BDC BAC ∠+∠=︒; (3)如图3,在(1)的条件下,过点D 作DF BC ⊥,垂足为点F ,并反向延长DF 到点E ,使DA DE =,连接AE 交DC 于点M ,若2BD DM ==,求AE 的长.29.如图,已知ABC 是等腰直角三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰直角PCQ ,其中①PCQ =90°,探究并解决下列问题:(1)如图1,若点P 在线段AB 上时,猜想P A 2,PB 2,PQ 2三者之间的数量关系 ; (2)如图2,若点P 在AB 的延长线上,在(1)中所猜想的P A 2,PB 2,PQ 2三者之间的数量关系仍然成立,请利用图2进行证明;(3)若动点P 满足PA PB =23,求PC AC的值(请利用图3进行探求). 30.在平面直角坐标系中,O 为原点,点()2,0A ,点()0,2B ,把ABO 绕点B 逆时针旋转,得A BO ''△,点A ,O 旋转后的对应点为A ',O ',记旋转角为α.(1)如图①,当点O '落在边AB 上时,求点O '的坐标;(2)如图①,当60α=︒时,求AA '的长及点A '的坐标.【期末压轴题】专题05:几何证明综合(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列六个命题①有理数与数轴上的点一一对应①两条直线被第三条直线所截,内错角相等①平行于同一条直线的两条直线互相平行;①同一平面内,垂直于同一条直线的两条直线互相平行;①直线外一点到这条直线的垂线段叫做点到直线的距离①如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.2个B.3个C.4个D.5个【标准答案】C【思路点拨】利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案.【精准解析】解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;①两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;①平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;①同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;①直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;①如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,故选:C.【名师指导】本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大.2.下列几个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;①如果1∠=∠;∠和2∠是对顶角,那么12①一个角的余角一定小于这个角的补角;①三角形的一个外角大于它的任一个内角.A.1个B.2个C.3个D.4【标准答案】B【思路点拨】根据平行线的性质对①进行判断;根据对顶角的性质对①进行判断;根据余角与补角的定义对①进行判断;根据三角形外角性质对①进行判断.【精准解析】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果①1和①2是对顶角,那么①1=①2,所以①正确;一个角的余角一定小于这个角的补角,所以①正确;三角形的外角大于任何一个与之不相邻的一个内角,所以①错误.故选:B.【名师指导】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.下面说法正确的个数有()(1)不等式两边乘(或除以)同一个数,不等号的方向不变;(2)5-是324x-<-的解;(3)三角形的外角等于与它不相邻的两个内角的和;(4)如果ABC的三个内角满足A C B∠=∠-∠,那么ABC一定是直角三角形;(5)三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外A.1个B.2C.3个D.4个【标准答案】C【思路点拨】利用不等式性质2可判断(1);利用解不等式求解可判断(2);利用三角形外角性质可判断(3);利用三角形内角和与条件组成方程组可判断(4);利用直角三角形高所在直线交点可判断(5)即可.【精准解析】解(1)不等式两边乘(或除以)同一个正数,不等号的方向不变,故(1)不正确;(2)324x-<-,移项合并得32x<-,系数化1得23x<-,①5-是324x-<-的解正确,故(2)正确;(3)三角形的外角等于与它不相邻的两个内角的和,故(3)正确;(4)如果ABC 的三个内角满足A C B ∠=∠-∠,又①180A B C ∠+∠+∠=︒①180C B B C ∠-∠+∠+∠=︒解得90C ∠=︒①ABC 一定是直角三角形,故(4)正确;(5)三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外直角三角形的高所在的直线交于一点,在三角形边上,故(5)不正确;①说法正确的个数有3个.故选择C .【名师指导】本题考查不等式的性质,不等式的解法与解,三角形外角性质,直角三角形判定,三角形高所在直线的交点位置,掌握不等式的性质,不等式的解法与解,三角形外角性质,直角三角形判定,三角形高所在直线的交点位置是解题关键.4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等①如果两条直线都与第三条直线平行,那么这两条直线也互相平行①点到直线的垂线段叫做点到直线的距离①过一点有且只有一条直线与已知直线平行①若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个【标准答案】B【思路点拨】根据平行线的性质和判定,点到直线距离定义一一判断即可.【精准解析】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;①如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;①点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;①过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;①若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.故选B .【名师指导】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.5.下列命题为真命题的是( )A .如果0mn =,那么0m =且0n =B .两边分别相等的两个直角三角形全等C .三角形的三条角平分线相交于一点,并且这一点到三个顶点的距离相等D .如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等【标准答案】D【思路点拨】分清“或”与“且”的区别,可判断A ,利用全等三角形的判定方法可判断B ,利用角平分线的性质可判断C ,利用平行线间的距离处处相等性质可判断D .【精准解析】A .①0mn =,①m =0或n =0,如果0mn =,那么0m =且0n =不是真命题,故选项A 不正确B. ①有两边对应相等的两个直角三角形全等,①两边分别相等的两个直角三角形全等不是真命题,故选项B 不正确;C. ①三角形的三条角平分线相交于以点,这点到三边的距离相等,①三角形的三条角平分线相交于一点,并且这一点到三个顶点的距离相等不是真命题,故选项C 不正确;D. 如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等是真命题,故选项D 正确.故选择D .【名师指导】本题考查真命题,由正确的题设能推出结论正确,是真命题,否则是假命题是解题关键. 6.一副三角板如图摆放,点F 是45°角三角板ABC 的斜边的中点,4AC =.当30°角三角板DEF 的直角顶点绕着点F 旋转时,直角边DF ,EF 分别与AC ,BC 相交于点M ,N .在旋转过程中有以下结论:①MF NF =;①四边形CMFN 有可能为正方形;①MN 长度的最小值为2;①四边形CMFN 的面积保持不变:①CMN △面积的最大值为2,其中正确的个数是( )A .2B .3C .4D .5【标准答案】C【思路点拨】 利用两直角三角形的特殊角、性质及旋转的性质分别判断每一个结论,找到正确的即可.【精准解析】解:①连接CF ,①F 为AB 中点,AC =BC ,①ACB =90°,①AF =BF =CF ,CF ①AB ,①①AFM +①CFM =90°.①①DFE =90°,①CFM +①CFN =90°,①①AFM =①CFN .同理,①①A +①MCF =90°,①MCF +①FCN =90°,①①A =①FCN ,在①AMF 与①CNF 中,AFM CFN AF CFA FCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AMF ①①CNF (ASA ),①MF =NF .故①正确;①当MF ①AC 时,四边形MFNC 是矩形,此时MA =MF =MC ,根据邻边相等的矩形是正方形可知①正确;①连接MN ,当M 为AC 的中点时,CM =CN ,根据边长为4知CM =CN =2,此时MN最小,最小值为①错误;①当M 、N 分别为AC 、BC 中点时,四边形CDFE 是正方形.①①ADF ①①CEF ,①S ①CEF =S ①AMF①S 四边形CDFE =S ①AFC .故①正确;①由于①MNF 是等腰直角三角形,因此当MF 最小时,FN 也最小;即当DF ①AC 时,MF 最小,此时FN =12AC =2.①MN =当①CMN 面积最大时,此时①MNF 的面积最小.此时S ①CMN =S 四边形CFMN -S ①FMN =S ①AFC -S ①DEF =4-2=2,故①正确.故选:C .【名师指导】此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,综合性强,难度较大,是一道难题.7.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,D 为BC 边上一点,将ABD △绕点A逆时针旋转90°得到ACE ,点B 、D 的对应点分别为点C 、E ,连接BE ,将AC 平移得到DF(点A 、C 的对应点分别为点D 、F ),连接AF ,若AB =2BD =,则AF 的长为( )A .B .6C .D【标准答案】A【思路点拨】由旋转的性质可得BD =CE =2,①ACE =①ABD =45°,由勾股定理可求BE ,由“SAS ”可证①ABE ①①DF A ,可得BE =AF .【精准解析】解:(1)①①BAC =90°,AB =AC=①①ABC =①ACB =45°,BC6,①将①ABD 绕点A 逆时针旋转90°得到①ACE ,①BD =CE =2,①ACE =①ABD =45°,AD =AE ,①DAE =90°,①①BCE =90°,①BE①①BAC =①DAE =90°,①①BAC +①DAE =180°,①①BAE +①DAC =180°,①AC 平移得到DF ,①AC =DF =AB ,AC ①DF ,①①ADF +①DAC =180°,①①ADF =①BAE ,在①ABE 和①DF A 中,AB DF BAE ADF AE AD =⎧⎪∠=∠⎨⎪=⎩,①①ABE ①①DF A (SAS ),①BE =AF =故选:A【名师指导】本题考查了旋转的性质,勾股定理,全等三角形的判定和性质等知识,灵活运用性质性质解决问题是本题的关键.8.如图,等腰Rt ABC 中,AB =AC ,①BAC =90°,AD ①BC 于点D ,①ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;①DMN 为等腰三角形;①DM 平分①BMN ;①AE =23EC ;①AE =NC ,其中正确结论有( )A .2个B .3个C .4个D .5个【标准答案】C【思路点拨】 先根据等腰直角三角形的性质得出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,进而证DFB DAN △≌△,即可判断①,再证ABF CAN △≌△,推出CN AF AE ==,即可判断①;根据全等三角形的判定与性质可得M 为AN 的中点,进而可证得12DM AM NM AN ===,由次可判断①,再根据等腰三角形的性质及外角性质可判断①,最后再根据垂直平分线的判定与性质以及直角三角形的勾股定理可判断①.【精准解析】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒, 45BAD CAD ∴∠=︒=∠, BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒, 9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=,又①M 为EF 的中点,①AM BE ⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN CAN MBN ∴∠=∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩FBD NAD ∴△≌△(ASA ),DF DN ∴=,故①正确;在AFB △和CNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩AFB CAN ∴△≌△(ASA ),AF CN ∴=,AF AE =,AE CN ∴=,故①正确;在ABM 和NBM 中ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠⎩ABM NBM ∴△≌△(ASA ),AM NM ∴=,①点M 是AN 的中点,又①90ADN ∠=︒, ①12DM AM NM AN ===,DM NM =, DMN ∴是等腰三角形,故①正确;DM AM =,22.5DAM ADM ∴∠=∠=︒,45DMN DAM ADM ∴∠=∠+∠=︒,9045DMB DMN DMN ∴∠=︒-∠=︒=∠,DM ∴平分BMN ∠,故①正确;如图,连接EN ,①AM NM =,AM BE ⊥,①BE 垂直平分AN ,①EA =EN ,22.5ENA EAN ∴∠=∠=︒,45CEN ENA EAN ∴∠=∠+∠=︒,又①45C ∠=︒,①90ENC ∠=︒,且EN CN =,在Rt ENC 中,22222EC EN CN EN =+=, ①EC ,AE ∴,故①错误, 即正确的有4个,故选:C .【名师指导】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜边上中线性质,等腰三角形的判定与性质,垂直平分线的判定与性质以及勾股定理等相关知识的应用,能熟练运用相关图形的判定与性质是解此题的关键,主要考查学生的推理能力.9.如图,凸四边形ABCD 中,90,90,60,3,A C D AD AB ∠=︒∠=︒∠=︒==M 、N 分别为边,CD AD 上的动点,则BMN △的周长最小值为( )A .B .C .6D .3【标准答案】C【思路点拨】 由轴对称知识作出对称点,连接两对称点,由两点之间线段最短证明B B '''最短,多次用勾股定理求出相关线段的长度,平角的定义及角的和差求出角度的大小,最后计算出BMN ∆的周长最小值为6.【精准解析】解:作点B 关于CD 、AD 的对称点分别为点B '和点B '',连接B B '''交DC 和AD 于点M 和点N ,DB ,连接MB 、NB ;再DC 和AD 上分别取一动点M '和N '(不同于点M 和)N ,连接M B ',MB'',N B '和N B ''',如图1所示:B B M B M N N B ''''''''''<++,B M BM '''=,B N BN ''''=,BM M N BN B B '''''''∴++>,又B B B M MN NB ''''''=++,MB MB '=,NB NB ''=,NB NM BM BM M N BN ''''∴++<++,BMN l NB NM BM ∆∴=++时周长最小;连接DB ,过点B '作B H DB '''⊥于B D ''的延长线于点H ,如图示2所示:在Rt ABD △中,3AD =,AB =∴DB =230∴∠=︒,530∴∠=︒,DB DB ''=,又1260ADC ∠=∠+∠=︒,301∴∠=︒,730∴∠=︒,DB DB '=,1257120B DB '''∴∠=∠+∠+∠+∠=︒,DB DB DB '''===又6180B DB '''∠+∠=︒,660∴∠=︒,HD ∴=3HB '=,在Rt ①B HB '''中,由勾股定理得:6B B '''.6BMN l NB NM BM ∆∴=++=,故选:C .【名师指导】本题综合考查了轴对称-最短路线问题,勾股定理,平角的定义和两点之间线段最短等相关知识点,解题的关键是掌握轴对称-最短路线问题,难点是构建直角三角形求两点之间的长度.10.如图,Rt ABC 中,90ACB ∠=︒且CA CB =,D 为ABC 外一点,连接AD ,过D 作DE DA ⊥交BC 于点E ,F 为DE 上一点且DF DA =,连接BF ,CD .将线段CD 绕点C 逆时针旋转90︒到线段CG ,连接DG 分别交BF 、BA 于点M 、N ,连接BG 、CF .下列结论:①BM FM =;①CG =;①BCG AND ∠>∠;①CF AD +>;①若2BG =,BC =CF =2ADFC S =四边形 )A .2个B .3个C .4个D .5个【标准答案】C【思路点拨】 先证明()BCG ACD SAS △≌△,得到对应边相等,对应角相等,依次得出①正确和①错误,由等腰直角三角形的性质和勾股定理,得出①正确,由三角形的三边关系,可以得出①正确,利用勾股定理逆定理和三角形面积公式即可判定①正确.【精准解析】解:①90ACB ∠=︒,90GCD ∠=︒,①75=∠∠,又①CA CB =且CD CG =,①()BCG ACD SAS △≌△,①BG AD =,2CAD ∠=∠,①=BG AD DF =①=90ADE ∠︒,①=360180CAD CED ACB ADE +∠︒--=︒∠∠∠,①=1CAD ∠∠,①1=2∠∠,①3=1+4=2+4=GBM ∠∠∠∠∠∠,又①=DMF GMB ∠∠,=BG DF ,①()DMF GMB AAS △≌△,①GM DM =,BM FM =,故①正确;①222CD CG DG +=,①()2222CG DM =,CD =①CG ,故①正确;CF AD CF DF CD +=+>,即CF AD +>,故①正确; ①==45CAN CDN ︒∠∠,86NDC =+∠∠∠,85NAC =+∠∠∠,①5=6∠∠,①7=6∠∠,故①错误;如图,连接AF ,若2BG =,BC =CF =①==2BG AD DF =,①2228AF AD DF =+=,即AF①2222AF CF BC AC +==,①AF CF ⊥,①11S =+S 2222ADF AFC ADFC S =⨯⨯+△△四边形①正确; 故选:C ..【名师指导】本题综合考查了全等三角形的判定与性质、勾股定理及其逆定理、等腰直角三角形等内容,解决本题的关键是能正确分析图形中的相等关系,能在相等的边和角中进行转化,能构造直角三角形进行求解等.11.如图,在ABC中,点E在边AC上,EB=EA,①A=2①CBE,延长BD到F,使DF =DB,连接CF,过点C作CD①BF于点D,BD=16,AC=22,则边BC的长为()A.B.C.D.【标准答案】A【思路点拨】过点C作CH AB∥交BF于点H,由此可得①A=①ECH,①EBA=①EHC,再根据EB=EA可得①A=①EBA,进而可得AC=BH=22,结合DF=DB=16可得BF=32,DH=6,FH=10,再利用垂直平分线的性质可得BC=CF,进而可得①F=①CBE,再结合①A=2①CBE,①EHC=①HCF+①F可得CH=FH=10,最后利用勾股定理计算即可求得答案.【精准解析】解:如图,过点C作CH AB∥交BF于点H,①CH AB∥,①①A=①ECH,①EBA=①EHC,①EB=EA,①①A=①EBA,①①ECH=①EHC,①EC=EH,①EC+EA=EH+EB,即AC=BH=22,又①DF=DB=16,①BF=BD+DF=32,DH=BH-BD=6,①FH=BF-BH=32-22=10,①CD①BF,DF=DB,①BC=CF,①①F=①CBE,又①①A=2①CBE,①①EHC=①ECH=2①F,又①①EHC=①HCF+①F,①①HCF+①F=2①F,①①HCF=①F,①CH=FH=10,①在Rt DCH中,CD,8①在Rt BCD中,BC故选:A.【名师指导】本题考查了平行线的性质,等腰三角形的判定,三角形的外角性质,垂直平分线的性质以及勾股定理的应用,根据题意作出正确的辅助线并能熟练运用相关图形的性质是解决本题的关键.12.如图,把含30°的直角三角板ABC 绕点B 顺时针旋转至如图EBD ,使BC 在BE 上延长AC 交DE 于F ,若AF =4,则AB 的长为( )A .2B .C .D .3【标准答案】C【思路点拨】 连接AE ,可证明①ABE 为等边三角形AE =AB ,①AEF 为直角三角形,再结合含30°角的直角三角形的性质和勾股定理可求得AE ,从而得出AB .【精准解析】解:连接AE ,由题意可知,在Rt ①ABC 中,①①BAC =30°,①ACB =90°,①①ABC =60°,根据旋转的性质可知,30BE AB BED BAC =∠=∠=︒,①①ABE 为等边三角形,①AE =AB ,①AEB =60°,①EAF =30°,①①AEF =90°,①122EF AF ==,AB AE == 故选:C .【名师指导】本题考查勾股定理,旋转的性质,含30°角的直角三角形,等边三角形的性质和判定.能正确作出辅助线构筑等边三角形是解题关键.二、填空题13.如图,在平面直角坐标系中,点()6,0A ,点()0,P m ,将线段PA 绕着点P 逆时针旋转90°,得到线段PB ,连接AB ,OB ,则BO BA +的最小值为__________.【标准答案】【思路点拨】过点B 作BC ①y 轴于点C ,作O 关于直线BC 的对称点D ,连接AD ,BD ,由题意易得①BCP ①①POA ,则有PC =OA =6,BC =OP =m ,则有CO =6+m ,DO =12+2m ,由三角不等关系可知AB BD AD +≥,进而问题可求解.【精准解析】解:过点B 作BC ①y 轴于点C ,作O 关于直线BC 的对称点D ,连接AD ,BD ,如图所示:①PA PB ⊥,①90BPC APO ∠+∠=︒,①90PAO APO ∠+∠=︒,①BPC PAO ∠=∠,①90,BCP POA BP PA ∠=∠=︒=,①①BCP ①①POA ,①点()6,0A ,点()0,P m ,①PC =OA =6,BC =OP =m ,①CO =6+m ,由轴对称可知:,OC CD BD OB ==,①DO =12+2m ,由三角不等关系可知AB BD AD +≥,即AB OB AD +≥,①AB +OB 的最小值即为AD 的长,①AD =①当m =0时,AD 最短,为AD故答案为【名师指导】本题主要考查图形与坐标、勾股定理、轴对称的性质及全等三角形的判定与性质,熟练掌握图形与坐标、勾股定理、轴对称的性质及全等三角形的判定与性质是解题的关键. 14.如图,在ABC 中,CA BC =,8AB =,5AC =,点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连接CE ,DE ,AE ,当ADE 是直角三角形时,求AD 的长为_____________.【标准答案】1或7.【思路点拨】根据题意分两种情况:①当点D 在AF 上时;①当点D 在BF 上时;进行讨论即可求解.【精准解析】解:作CF ①AB 于F ,①在①ABC 中,CA BC =,8AB =,5AC =,①AF =4,①3CF =,①如图1,当点D 在AF 上时,①①ADE =90°,①①ADC =①EDC =(360°-90°)÷2=135°.①①CDF =45°.①CF =DF .①AD =AF -DF =AF -CF =4-3=1.①如图2,当点D 在BF 上时,①①ADE =90°,①①CDF =45°.①CF =DF .①AD =AF +DF =AF +CF =4+3=7.故答案为:1或7.【名师指导】本题主要考查勾股定理,等腰三角形的性质以及轴对称的性质,解本题的关键是注意运用数形结合的思想解决问题.15.如图,已知30B ∠=,45C ∠=,150BDC ∠=,且5BD CD ==,则AB =_________【标准答案】【思路点拨】延长CD交AB于E,根据题意可求得①BDE=①B =30°,再根据等腰三角形的判定和三角形外角性质求得BE=DE,①AED=2①B=60°,过E作EF①BD于F,过A作AP①CE于P,利用等腰三角形的性质和含30°角在直角三角形的性质可得BF= 12BD,BE=2EF,AE=2EP,AP= ,根据勾股定理和等腰直角三角形判定分别求出BE、DE、EP,进而求得AE即可解答.求解即可.【精准解析】解:延长CD交AB于E,①①BDC=150°,①B=30°,①①BDE=①B =30°,①BE=DE,①AED=2①B=60°,过E作EF①BD于F,过A作AP①CE于P,则BF= 12BD=52,在Rt①BEF中,①B=30°,①BE=2EF,由勾股定理得:BF2+EF2=BE2,解得:BE= ,即DE,在Rt①APE中,①AED=60°,则①EAP=30°,①AE=2EP,①AP= ,①AP①CE,①C=45°,①①CAP=45°,①CP=AP,①EP+CP=DE+CD,CD=5,①EP+5,解得:EP,①AE=2EP①AB=BE+AE=故答案为:【名师指导】本题考查等腰三角形的判定与性质、含30°角的直角三角形的性质、勾股定理、三角形的外角性质、解一元一次方程等性质,理解题意,添加适当的辅助线,掌握相关知识间的联系与运用是解答的关键.16.如图,在矩形ABCD 中,点E 在线段AD 上,连接BE 、CE ,点F 在线段BE 上,连接CF ,若①EBC =2①ECD ,DE =2,BF =9,tan①EFC =43,则线段CE 的长为______.【标准答案】【思路点拨】过点C 作CH BE ⊥于H ,证明()ABE HCB AAS ≅,得到AB CH CD ==,继而证明t R CDE ≅t ()R CHE HL ,结合已知tan①EFC =43,设4,3AB CH CD x FH x ====,在Rt ABE △中,根据勾股定理得222BE AB AE =+,结合因式法解一元二次方程得到2x =,从而解得8CD =,最后在Rt CDE △中,有应用勾股定理解题即可.【精准解析】解:过点C 作CH BE ⊥于H ,设①ECD =,2EBC αα∠=。

人教版八年级数学上册几何证明习题集

人教版八年级数学上册几何证明习题集

C八年级上册几何证明题题集1、 已知:在⊿ABC 中,AB=AC ,延长AB 到D ,使AB=BD ,E 是AB 的中点。

求证:CD=2CE 。

2、 已知:在⊿ABC 中,作∠FBC=∠ECB=21∠A 。

求证:BE=CF 。

B3、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。

CB4、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。

ABB DCA B C DE P 图 ⑴5、如图甲,Rt ∆ABC 中,AB=AC ,点D 、E 是线段AC 上两动点,且AD=EC ,AM ⊥BD ,垂足为M ,AM 的延长线交BC 于点N ,直线BD 与直线NE 相交于点F 。

(1)试判断∆DEF 的形状,并加以证明。

(2)如图乙,若点D 、E 是直线AC 上两动点,其他条件不变,试判断∆DEF 的形状,并加以证明。

6、已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。

7、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .①②③图88、△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点,就下面给出的三种情况,如图8中的①②③,先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度.并利用图③证明你的结论.9、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。

(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。

八年级数学下册期末几何题证明题专题

八年级数学下册期末几何题证明题专题

1.(10分)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP于E,点F在DP 的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.(1)求证:△AEG是等腰直角三角形;(2)求证:AG+CG=DG.2.(8分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.3.(9分)如图,在梯形ABCD中,M、N分别为AD、BC的中点,E、F分别为BM、CM的中点.(1)求证:四边形MENF是平行四边形;(2)若四边形MENF的面积是梯形ABCD面积的,问AD、BC满足什么关系?4.如图,在四边形 ABCD 中,AD=12,DO=OB=5,AC=26,∠ADB=90°.(1)求证:四边形 ABCD 为平行四边形;(2)求四边形 ABCD 的面积.5、四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.6、如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.7、如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.8、如图,在菱形ABCD中,AB=2,∠DAB=60°。

点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD、AN。

(1)求证:四边形AMDN是平行四边形。

(2)当AM为何值时,四边形AMDN是矩形?请说明理由。

9.(6 分)如图,菱形ABCD 的对角线AC、BD 相交于点O,且DE∥AC,AE∥B D.求证:四边形AODE 是矩形.10(9 分)如图,在△ABC 中,D 是BC 边上的中点,E 是AD 边上的中点,过A 点作BC的平行线交CE 的延长线于点F,连结BF.(1)求证:四边形AFBD 是平行四边形.(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?请说明理由.10.(7 分)如图,在△ABC 中,AB=AC,AD 平分∠BAC 交BC 于点D,分别过点A、D作AE∥BC、DE∥AB,AE 与DE 相交于点E,连结CE.(1)求证:BD =CD.(2)求证:四边形ADCE 是矩形.11.(9 分)如图,E、F 分别是矩形ABCD 的边BC、AD 上的点,且BE =DF.(1)求证:四边形AECF 是平行四边形.(2)若四边形AECF 是菱形,且CE = 10,AB = 8,求线段BE 的长.12.(7 分)如图,在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AB 于点E,交AC 于点F,连结DE、DF.(1)求证:∠ADE=∠DAF.(2)求证:四边形AEDF 是菱形.13.【感知】如图①,四边形ABCD、AEFG 都是正方形,可知BE =DG .【探究】当正方形AEFG 绕点A 旋转到图②的位置时,连结BE、DG.求证:BE =DG .【应用】当正方形AEFG 绕点A 旋转到图③的位置时,点F 在边AB 上,连结BE、D G.若DG =13 ,AF = 10 ,则AB 的长为.14. (10 分)如图,以△ABC 的三边为边分别作等边△ACD、△BCE、△ABF.(1)求证:四边形ADEF 是平行四边形(2)△ABC 满足什么条件时,四边形ADEF 是矩形?(3)△ABC 满足什么条件时,四边形ADEF 是菱形?20.如图,将▱ABCD 的边 DC 延长到点 E ,使 CE=DC ,连接 AE ,交 BC 于点 F . (1)求证:△ABF ≌△ECF ;(2)若∠AFC=2∠D ,连接 AC 、BE ,求证:四边形 ABEC 是矩形.18.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC ,且DE =21AC ,连接CE 、OE(1) 求证:四边形OCED 是平行四边形; (2) 若AD =DC =3,求OE 的长.21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB =3,BC =5,连接BD ,∠BAD 的平分线分别交BD 、BC 于点E 、F ,且AE ∥CD (1) 求AD 的长;(2) 若∠C =30°,求CD 的长.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.18. (本题满分12分)如图,DB∥AC,且DB=12AC,E是AC的中点。

专题五几何证明人教版八年级数学(上册)-【完整版】

专题五几何证明人教版八年级数学(上册)-【完整版】
证明:在△DAB和△CBA中,
∴△DAB≌△CBA(AAS). ∴BD=AC. ∴AD=BC. 在△ADC和△BCD中,
∴△ADC≌△BCD(SSS). ∴∠CDA=∠DCB.
四、 证明线段垂直
15. 如图,点 C 在线段 AB 上,AD∥EB,AC=BE,
AD=BC,CF 平分∠DCE.求证:CF⊥DE.
∵F为CE的中点, ∴AF平分∠EAC. ∴AF⊥CE.即∠AFC=90°. 又∠FAC+∠ACE=180°-∠AFC=90°, ∠DAC=∠ACE, ∴∠DAC+∠FAC=90°. 即∠DAF=90°. ∴AF⊥AD.
五、 证明等边三角形
20. 如图,在△ABC 中,D 为 AC 边上一点,DE⊥AB
专题五 几何证明人教版八年级数学上册-精 品课件p pt(实 用版)
专题五 几何证明人教版八年级数学上册-精 品课件p pt(实 用版)
在△ACM和△DCN中,
∴△ACM≌△DCN(ASA). ∴CM=CN. 又∠DCN=60°, ∴△CMN为等边三角形.
专题五 几何证明人教版八年级数学上册-精 品课件p pt(实 用版)
证明:∵△ABC≌△EDC, ∴BC=DC,∠ACB=∠DCE.
在△BCF和△DCH中,
∴△BCF≌△DCH(SAS). ∴∠FBC=∠HDC. 在△FBC和△FDK中, ∵∠FBC=∠HDC,∠BFC=∠DFK, ∴∠DKF=∠ACB.
14. 如图,AC 与 BD 相交于点 O,∠DBA=∠CAB, ∠1=∠2. 求证:∠CDA=∠DCB.
点 F,连接 BE. 求证:BE⊥AF.
证明:∵AD∥BC, ∴∠DAE=∠F,∠ADE=∠FCE.
在△ADE和△FCE中,

八年级数学十二道全等几何证明题(难度适中型)

八年级数学十二道全等几何证明题(难度适中型)

全等几何证明(1)如图,已知点D为等腰直角△ABC一点,∠CAD=∠CBD=15°.E 为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;全等几何证明(2)如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.全等几何证明(3)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.全等几何证明(4)如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;全等几何证明(5)如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO全等几何证明(6)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE ⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;全等几何证明(7)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.全等几何证明(7)如图,AD∥BC,AE平分∠BAD,AE⊥BE;说明:AD+BC=AB.全等几何证明(8)将两个全等的直角三角形ABC和DBE如图方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC 所在直线于点F.求证:AF+EF=DE全等几何证明(9)如图,在△ABC中,AD平分∠BAC,AB=AC-BD,则∠B∶∠C的值为多少?全等几何证明(10)已知:如图,P是正方形ABCD点,∠PAD=∠PDA=150.求证:△PBC是正三角形.ADP全等几何证明(11)如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与C BCD相交于F.求证:CE=CF.全等几何证明(12)设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.D。

中考复习初中数学几何证明经典试题(含答案)

中考复习初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,0是半圆的圆心,C、E是圆上的两点,CD丄AB , EF丄AB , EG丄CO. 求证:CD = GF .(初二).如下图做GH丄AB,连接EO。

由于GOFE四点共圆,所以/ GFH =Z OEG, 即厶GHFOGE,可得EO = GO = CO,又CO=EO,所以CD=GF 得证。

GF GH CD2、已知:如图,P是正方形ABCD内点,/ PAD =Z PDA = 15°. 求证:△ PBC是正三角形.(初二)3、如图,已知四边形ABCD、A i B i C i D i都是正方形,A2、B2、C2、D2分别是AA i、BB i、CC i、DD i的中点.及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP = AQ .(初二)3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN P 、Q .4、 1、求证:四边形 A 2B 2C 2D 2是正方形.(初二)已知: 求证: 如图,在四边形 的延长线交 / DEN = Z△ ABC 中, MN F .ABCD 中,AD = BC , M 、N 分别是 AB 、CD 的中点,AD 、BC 于E 、F .经典题(二)已知: (1) 求证:AH = 20M ;(2) 若/ BAC = 60°,求证:H 为垂心 (各边高线的交点),0为外心,且 0M 丄BC 于M . AH = A0 .(初二)2、设MN 是圆O 外一直线,过O 作OA 丄MN 于A ,自A 引圆的两条直线,交圆于DCGN求证:AP = AQ .(初二)ECAM NP4、如图,分别以厶 ABC 的AC 和BC 为一边,在△ ABC 的外侧作正方形 ACDE 和正方形 CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于 AB 的一半.(初二)经典题(二)1、如图,四边形 ABCD 为正方形, 求证:CE = CF .(初二)2、如图,四边形 ABCD 为正方形,DE // AC ,且CE = CA ,直线EC 交DA 延长线于F . 求证:AE = AF .(初二)DE // AC , AE = AC , AE 与 CD 相交于 F .FEAD1、设P 是边长为1的正△ ABC 内任一点,4、如图,PC 切圆0于C , AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于3、设ABCD 为圆内接凸四边形,求证: AB • CD + AD • BC = AC • BD .(初三)B 、D .求证: AB = DC , BC = AD .(初三)1、已知:△ ABC 是正三角形,P 是三角形内一点 求:/ APB 的度数.(初二)2、设P 是平行四边形 ABCD 内部的一点,且/求证:/ PAB = Z PCB .(初二)4、平行四边形 ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE = CF .求证:/ DPA =Z DPC .(初二)AO DB EFC求证:4、如图,△ ABC 中,/ ABC =Z ACB = 80°, D、E 分别是AB、AC 上的点,/ DCA = 30°, / EBA = 20°,求/ BED 的度数. LiB C经典题(一)1•如下图做GH丄AB,连接E0。

初二数学 几何证明初步经典练习题 含答案

初二数学 几何证明初步经典练习题 含答案

几何证明初步练习题1、三角形的内角和定理:三角形的内角和等于180°.推理过程:○1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800. 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。

3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。

4. 已知,如图,AE5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°.反证法经典例题6.求证:两条直线相交有且只有一个交点.7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。

求证:AB 与CD 必定相交。

8.2一.角平分线--轴对称9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13求DE的长第9题图 第10题图 第11题图分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12FC=12(AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分ABC ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD=CE ,∴BC =AB +CD .11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D ,过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN .分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND .∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN .二、旋转12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF=EF .求证:45EAF ∠=. C B ADE F D A B C B A E D NM B D A C分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易证ΔAGE ≌ΔAFE .∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠,AC=AE.求证:ΔABC ≌ΔADE .分析:若ΔABC ≌ΔADE ,则ΔADE 可视为ΔABC 绕A逆时针旋转1∠所得.则有B ADE ∠=∠.∵12B ADE ∠+∠=∠+∠,且12∠=∠.∴B ADE ∠=∠.又∵13∠=∠.∴BAC DAE ∠=∠.再∵AC=AE.∴ΔABC ≌ΔADE .14、如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF.分析:将ΔABF 视为ΔADE 绕A顺时针旋转90即可.∵90FAB BAE EAD BAE ∠+∠=∠+∠=.∴FBA EDA ∠=∠. 又∵90FBA EDA ∠=∠=,AB=AD.∴ΔABF ≌ΔADE .(ASA)∴DE=DF. 平移第14题图 第15题图 第16题图 第17题图三、平移15、如图,在梯形ABCD 中,BD ⊥AC ,AC =8,BD =15.求梯形ABCD 的中位线长. 分析:延长DC到E使得CE=AB.连接BE.可得ACEB .可视为将AC平移到BE.AB平移到CE.由勾股定理可得DE=17.∴梯形ABCD中位线长为8.5.16、已知在ΔABC 中,AB =AC ,D 为AB 上一点,E为AC 延长线一点,且BD =CE .求证:DM =EM 分析:作DF∥AC交BC于F.易证DF=BD=CE.则DF可视为CE平移所得.∴四边形DCEF为DCEF .∴DM=EM.线段中点的常见技巧 --倍长四、倍长17、已知,AD为ABC 的中线.求证:AB+AC>2AD.分析:延长AD到E使得AE=2AD.连接BE易证ΔBDE ≌ΔCDA .∴BE=AC.∴AB+AC>2AD.18、如图,AD 为ΔABC 的角平分线且BD =CD .求证:AB =AC . 分析:延长AD到E使得AD=ED.易证ΔABD ≌ΔECD .∴EC=AB. ∵BAD CAD ∠=∠.∴E CAD ∠=∠.∴AC=EC=AB. 19、已知在等边三角形ABC中,D和E分别为BC与AC上的点,且AE=CD.连接AD与BE交于点P,作BQ⊥AD于Q.求证:BP=2PQ.分析:延长PD到F使得FQ=PQ.在等边三角形ABC中AB=BC=AC,60ABD C ∠=∠=.又∵AE=CD,∴BD=CE.∴ΔABD ≌ΔBCE .∴CBE BAD ∠=∠.∴60BPQ PBA PAB PBA DBP ∠=∠+∠=∠+∠=.易证ΔBPQ ≌ΔBFQ .得BP=BF,又60BPD ∠=.∴ΔBPF 为等边三角形.∴BP=2PQ.中位线五、中位线、中线:20、已知在梯形ABCD 中,AD ∥BC ,E和F分别为BD 与AC 的中点, 求证:1()2EF BC AD =-. 分析:取DC中点G,连接EG与FG.则EG为ΔBCD 中位线,FG为ΔACD 的中位线. ∴EG∥=12BC ,FG ∥=12AD .∵AD ∥BC .∴过一点G有且只有一条直线平行于已知直线BC,即E、F、G共线.∴1()2EF BC AD =-. 直角三角形斜边上的中线等于斜边的一半21、已知,在ABCD 中BD AB 21=.E为OA的中点,F为OD中点,G为BC中点. 求证:EF=EG.分析:连接BE .∵BD AB 21=,AE=O E.∴BE⊥CE,∵BG=CG. ∴BD EG 21=.又EF为ΔAOD 的中位线.∴AD EF 21=.∴EF=EG. 22、在ΔABC 中,AD是高,CE是中线,DC=BE,DG⊥CE于G.求证:(1)CG=EG.(2)2B BCE ∠=∠.分析:(1)连接DE.则有DE=BE=DC.∴Rt ΔCDG ≌Rt ΔEDG (HL).∴EG=CG.∵DE=BE.∴B BDE DEC BCE ∠=∠=∠+∠.∵DE=CD.∴DEC BCE ∠=∠.∴2B BCE ∠=∠.几何证明初步测验题(1)一、选择题(每空3 分,共36 分)1、使两个直角三角形全等的条件是( )A 、一组锐角对应相等B 、两组锐角分别对应相等C 、一组直角边对应相等D 、两组直角边分别对应相等2、如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =( )A .20°B .25°C .30°D .40°第2题图 第4题图 第6题图 第7题图3、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中( )A .有两个角是直角B .有两个角是钝角C .有两个角是锐角D .一个角是钝角,一个角是直角4、如图,直线AB 、CD 相交于点O ,∠BOE=90°,OF 平分∠AOE ,∠1=15°30’,则下列结论不正确的是( ) A D B E F OC B E F ED G AA.∠2=45° B.∠1=∠3 C.∠AOD+∠1=180° D.∠EOD=75°30’5、下列说法中,正确的个数为()①三角形的三条高都在三角形内,且都相交于一点②三角形的中线都是过三角形的某一个顶点,且平分对边的直线③在△ABC中,若∠A=12∠B=13∠C,则△ABC是直角三角形④一个三角形的两边长分别是8和10,那么它的最短边的取值范围是2<b<18A.1个 B.2个 C.3个 D.4个6、如图,在AB=AC的△ABC中,D是BC边上任意一点,DF⊥AC于F,E在AB边上,使ED⊥BC于D,∠AED=155°,则∠EDF等于()A、50°B、65°C、70°D、75°7、如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm8、如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.9、如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.小明认为:若MN = EF,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF.你认为()A.仅小明对 B.仅小亮对 C.两人都对 D.两人都对第9题图第10题图第11题图第12题图10、如图,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,•则四个结论正确的是().①点P在∠A的平分线上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.A.全部正确; B.仅①和②正确; C.仅②③正确; D.仅①和③正确11、如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠②③∠+∠2=90°④=3:4:5 ⑤A.1 B.2 C.3 D.412、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.13B.12C.23D.不能确定二、填空题(每空3 分,共15 分)13、命题“对顶角相等”中的题设是_________ ,结论是___________ 。

初中八年级数学下册几何证明题练习

初中八年级数学下册几何证明题练习

八年级数学下册几何证明题练习1.已知:△ABC 的两条高BD ,CE 交于点F ,点M ,N ,分别是AF ,BC 的中点,连接ED ,MN ; (1)证明:MN 垂直平分ED ; (2))若∠EBD=∠DCE=45°,判断以M ,E ,N ,D 为顶点的四边形的形状,并证明你的结论;2.四边形ABCD 是正方形,△BEF 是等腰直角三角形,∠BEF=90°,BE=EF ,连接DF ,G 为DF 的中点,连接EG ,CG ,EC ;(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及GCEC的值; (2)将图1中的△BEF 绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF 绕点B 顺时针旋转α(0°<α<90°),若BE=1,AB=2,当E ,F ,D 三点共线时,求DF 的长;3.已知,正方形ABCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G ,连接EG 、CG .(1)如图1,若△BEF 的底边BF 在BC 上,猜想EG 和CG 的关系为-----------------------------------------------; (2)如图2,若△BEF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由; (3)如图3,若△BEF 的直角边BE 在∠DBC 内,则(1)中的结论是否还成立?说明理由.4.如图正方形ABCD ,点G 是BC 上的任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F ;(1)如图l ,写出线段AF 、BF 、EF 之间的数量关系:------------------------------;(不要求写证明过程)(2)如图2,若点G 是BC 的中点,求GFEF的比值; (3)如图3,若点O 是BD 的中点,连OE ,求EFOF的比值;5.在△ABC中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).(1)如图1,当BE∥CF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四边形;(2)如图2,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND.求证:∠EMD=∠FND.6.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC 为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).7.菱形ABCD中,点E、F分别在BC、CD边上,且∠EAF=∠B;⑴如果∠B=60°,求证:AE=AF;⑵如果∠B=α(0°<α<90°),(1)中的结论:AE=AF是否依然成立,请说明理由;⑶如果AB长为5,菱形ABCD面积为20,BE=a,求AF的长;(用含a的式子表示)F EDC B A8.在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A ⇒B ⇒C 向终点C 运动,连接DM 交AC 于点N . (1)如图1,当点M 在AB 边上时,连接BN : ①求证:△ABN ≌△ADN ; ②若∠ABC=60°,AM=4,求点M 到AD 的距离; (2)如图2,若∠ABC=90°,记点M 运动所经过的路程为x (6≤x≤12).试问:x 为何值时,△ADN 为等腰三角形.9. 如图,矩形ABCD 中,AB=4cm ,BC=8cm ,动点M 从点D 出发,按折线DCBAD 方向以2cm/s 的速度运动,动点N 从点D 出发,按折线DABCD 方向以1cm/s 的速度运动. (1)若动点M 、N 同时出发,经过几秒钟两点相遇?(2)若点E 在线段BC 上,且BE=2cm ,若动点M 、N 同时出发,相遇时停止运动,经过几秒钟,点A 、E 、M 、N 组成平行四边形?10. 如图,矩形ABCD 中,AB=6 ,∠ABD=30°,动点P 从点A 出发,以每秒1个单位长度的速度在射线AB 上运动,设点P 运动的时间是t 秒,以AP 为边作等边△APQ (使△APQ 和矩形ABCD 在射线AB 的同侧).(1)当t 为何值时,Q 点在线段BD 上?当t 为何值时,Q 点在线段DC 上?当t 为何值时,C 点在线段PQ 上?(2)设AB 的中点为N ,PQ 与线段BD 相交于点M ,是否存在△BMN 为等腰三角形?若存在,求出t 的值;若不存在,说明理由; ⑶(选做)设△APQ 与矩形ABCD 重叠部分的面积为s ,求s 与t 的函数关系式.。

初二数学几何证明题(5篇可选)

初二数学几何证明题(5篇可选)

初二数学几何证明题(5篇可选)第一篇:初二数学几何证明题1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。

2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M 是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。

3.。

如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。

4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。

5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC 且与AB的延长线交与点E,求证四边形AECD是等腰梯形?6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。

1.求证四边形ABCD是菱形。

2.若∠AED=2∠EAD,求证四边形ABCD是正方形。

7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。

求证:EF=BE+DF第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论AEB第三篇:初二几何证明题初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。

M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D求证:∠AHE=∠BGE证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF ∵FM‖BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC证明:BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)==>BE=AB*BC/(BC+AC)同理:CD=AC*BC/(BC+AB)假设AB≠AC,不妨设AB>AC.....(*)AB>AC==>BC+ACAC*BC==>AB*AB/(BC+AC)>AC*BC/(BC+AB)==>BE>CDAB>AC==>∠ACB>∠ABC∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2==>∠BEC>∠BDC过B作CE平行线,过C作AB平行线,交于F,连DF则BECF为平行四边形==>∠BFC=∠BEC>∠BDC (1)BF=CE=BD==>∠BDF=∠BFDCF=BE>CD==>∠CDF>∠CFD==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC (2)(1)(2)矛盾,从而假设(*)不成立所以AB=AC。

初中数学-几何证明经典试题(含答案)

初中数学-几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)E经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB·CD +AD·BC =AC·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)D经典难题(五)求证:≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。

期中真题几何证明40题专练—2023-2024学年八年级数学上册(沪教版)(解析版)

期中真题几何证明40题专练—2023-2024学年八年级数学上册(沪教版)(解析版)

期中真题几何证明40题专练一.解答题(共40小题)1.(2022秋•宝山区校级期中)五边形ABCDE中,AB=AE,AD平分∠CDE,∠B+∠E=180°,求证:BC+DE=CD.【分析】在DC上截取DF=DE,连接AF,先证△ADF≌△ADE,再证△ACF≌△ACB,即可得证结果.【解答】证明:如图,在DC上截取DF=DE,连接AF,∵AD平分∠CDE,∴∠ADF=∠ADE,在△ADF和△ADE中,,∴△ADF≌△ADE(SAS),∴AF=AE,∠FAD=∠EAD,∵AB=AE,∠BAE=∠CAD,∴AB=AF,∠BAC=∠FAC,在△ACF和△ACB中,,∴△ACF≌△ACB(SAS)∴BC=CF,∵CD=CF+DF,∴CD=BC+DE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解题的关键是准确作出辅助线构造全等三角形.2.(2022秋•虹口区校级期中)如图,△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,且ED ⊥AB于点F,且AB=DE.(1)求证:BD=2EC;(2)若BD=10cm,求AC的长.【分析】(1)根据AAS证明△ABC≌△EDB得BD=BC,再根据E是BC的中点,即可得出结论;(2)根据(1)的结论,结合BD=10,即可求出AC的长.【解答】(1)证明:∵ED⊥AB,∠ACB=∠DBC=90°,∴∠BFE=∠DBC=90°,∴∠BEF+∠ABC=∠BDE+∠BEF=90°,∴∠ABC=∠BDE,在△ABC和△EDB中,,∴△ABC≌△EDB(AAS),∴BD=BC,∵E是BC的中点,∴BC=2CE,∴BD=2EC;(2)解:由(1)知,△ABC≌△EDB,∴BE=AC,∵BD=2CE,即BD=2BE,∵BD=10,∴AC=BE=5cm.【点评】本题考查了全等三角形的判定与性质,证明△ABC≌△EDB是解题的关键.3.(2022秋•静安区校级期中)如图,AD是△ABC的高,∠B=2∠C,BD=5,BC=25,求AB的长.【分析】在线段DC上截取DE=BD,连接AE,根据线段垂直平分线的性质得到AB=AE,求得∠B=∠AEB,根据三角形外角的性质得到∠AEB=∠CAE+∠C,求得AE=CE,于是得到结论.【解答】解:如图:在线段DC上截取DE=BD,连接AE,∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,∵∠B=2∠C,∴∠AEB=2∠C,∵∠AEB=∠CAE+∠C,∴∠C=∠CAE,∴AE=CE,∵BD=5,BC=25,∴DE=BD=5,∴AB=AE=CE=BC﹣BD﹣DE=15.【点评】此题主要考查的是等腰三角形的判定和性质,作出辅助线正确构建出等腰三角形是解答此题的关键.4.(2020秋•杨浦区校级期中)如图,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过B作BE⊥CD,分别交AC于点E、交CD于点F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和CD的数量关系,并证明你的猜想.【分析】(1)证得∠EBC=∠ACD,∠A=∠ACD,则结论可得出;(2)过点D作DG⊥AC于点G,根据ASA证明△DCG≌△EBC,可得出结论.【解答】(1)证明:∵BE⊥CD,∴∠BFC=90°,∴∠EBC+∠BCF=180°﹣∠BFC=90°,∵∠ACB=∠BCF+∠ACD=90°,∴∠EBC=∠ACD,∵AD=CD,∴∠A=∠ACD,∴∠A=∠EBC;(2)解:CD=BE.过点D作DG⊥AC于点G,∵DA=DC,DG⊥AC,∴AC=2CG,∵AC=2BC,∴CG=BC,∵∠DGC=90°,∠ECB=90°,∴∠DGC=∠ECB,在△DGC和△ECB中,,∴△DCG≌△EBC(ASA),∴CD=BE.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形的性质,关键是掌握全等三角形的判定定理.5.(2020秋•徐汇区校级期中)如图,AD∥BC,点E是AB的中点,联结DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:AD=BF;(2)当点G是FC的中点时,判断△FDC的形状.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E 为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE,根据全等三角形的性质即可得解;(2)连接EG,根据题意,结合全等三角形的性质得到GE⊥DF,GE是△FDC的中位线,根据三角形中位线的性质即可得出△FDC是直角三角形.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF;(2)解:△FDC是直角三角形,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE⊥DF,∵点G是FC的中点,DE=FE,∴GE∥CD,∴CD⊥DF,∴△FDC是直角三角形.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,利用AAS证明△ADE≌△BFE是解本题的关键.6.(2022秋•静安区校级期中)如图,AB=AC,AD=AE,∠BAD=∠CAE,BE与CD相交于点F.求证:(1)∠ADC=∠AEB;(2)FD=FE.【分析】(1)利用AAS证明△ABD≌△ACE即可;(2)连接DE,利用等腰三角形的性质和判定即可证明结论.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAD+∠EAD=∠CAE+∠DAE,∴∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠ADC=∠AEB;(2)连接DE,∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠ADC﹣∠ADE=∠AEB﹣∠AED,∴∠FDE=∠FED,∴FD=FE.【点评】本题主要考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握等腰三角形的性质和判定是解题的关键.7.(2022秋•杨浦区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:FM⊥EH.【分析】根据等腰三角形的性质可求∠B=∠C,根据ASA可证△BEF≌△CFH,根据全等三角形的性质可求EF=FH,再根据等腰三角形的性质可证FM⊥EH.【解答】证明:∵AB=AC,∴∠B=∠C,在△BEF与△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴FM⊥EH.ASA证明△BEF≌△CFH.8.(2021秋•浦东新区期中)如图,在△ABC中,BD平分∠ABC,∠A=2∠C,求证:BC=AB+AD.【分析】在BC上截取BE=BA,由“SAS”可证△ABD≌△EBD,可得∠BED=∠A,AB=BE,AD=DE,由外角的性质可得∠C=∠EDC,可证EC=ED,即可得结论.【解答】证明:如图,在BC上截取BE=BA,连接DE,∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴∠BED=∠A,AB=BE,AD=DE,∵∠A=2∠C,∴∠BED=2∠C,∵∠BED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴BC=BE+EC=AB+AD.【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.9.(2021秋•徐汇区校级期中)已知在△ABC中,AB=AC,在边AC上取一点D,以D为顶点,DB为一条边作∠BDF=∠A,点E在AC的延长线上,∠ECF=∠ACB.求证:(1)∠FDC=∠ABD;(2)DB=DF;(3)当点D在AC延长线上时,DB=DF是否依然成立?在备用图中画出图形,并说明理由.【分析】(1)根据角的和差即可得到结论;(2)过D作DG∥BC交AB于G,根据等腰三角形的性质和全等三角形的判定和性质定理即可得到结论;(3)过D作DG∥BC交AB于G,根据平行线的性质得到∠ADG=∠ACB,∠AGD=∠ABC,根据等腰三角形的性质得到∠ABC=∠ACB,根据全等三角形的判定和性质即可得到结论.【解答】(1)证明:∵∠BDC=∠A+∠ABD,即∠BDF+∠FDC=∠A+∠ABD,∵∠BDF=∠A,∴∠FDC=∠ABD;(2)过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AB﹣AG=AC﹣AD,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF;(3)仍然成立,如图2,过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AG﹣AB=AD﹣AC,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,∵∠ACB+∠BCF+∠FCD=180°,∴∠ACB+∠BCF+∠DGB=180°,∵∠DGB=∠ABC.∴∠ACB+∠BCF∠ABC=180°,∵∠A+∠ABC+∠ACB=180°,∴∠A=∠BCF,∵∠BDF=∠A,∴∠BCF=∠BDF,∴∠CBD=∠CFD,∵∠GBD=180°﹣∠ABC﹣∠CBD=180°﹣∠FCD﹣∠CFD=∠FDC,∴∠GBD=∠FDC,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.10.(2022秋•浦东新区期中)如图,已知在△ABC中,AB=AC,点D、E分别在AC、AB上,且AD=AE,点F在BC的延长线上,DB=DF.(1)求证:∠ABD=∠ACE.(2)求证:CE∥DF.【分析】(1)由“SAS”可证△ADB≌△AEC,可得∠ABD=∠ACE;(2)由等腰三角形的性质可得∠=∠F,由外角的性质可得∠ACE=∠CDF,可得结论.【解答】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE;(2)∵DB=DF,∴∠DBF=∠F,∵∠ABC=∠ABD+∠DBC,∠ACB=∠F+∠CDF,∴∠ABD=∠CDF,∴∠ACE=∠CDF,∴CE∥DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,掌握全等三角形的判定方法是本题的关键.11.(2020秋•浦东新区校级期中)已知:如图,点B、F、C、E在同一条直线上,AC∥DF,AC=DF,BF =CE.求证:AB∥DE.【分析】根据线段的和差求出BC=EF,由平行线的性质证得∠ACB=∠DFE,根据SAS定理推出△BAC≌△EDF,根据全等三角形的性质得出∠B=∠E,根据平行线的判定即可证得AB∥DE.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△BAC和△EDF中,,∴△BAC≌△EDF(SAS),∴∠B=∠E,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定,平行线的判定的应用,能推出△BAC和△EDF全等是解此题的关键.12.(2022秋•长宁区校级期中)已知:如图,△ABC中,AD平分∠BAC交BC于点D,CF∥AB且CD平分∠FCA,联结FD并延长交边AB于点E,说明CF=AC﹣AE的理由.【分析】由CF∥AB得∠FCB=∠ABC,由CD平分∠FCA得∠FCB=∠ACB,可得∠ACB=∠ABC,从而得AB =AC,由AD平分∠BAC可得CD=BD,再根据ASA证明△FCD≌△EBD,可得FC=BE,从而可得结论.【解答】解:∵CF∥AB,∴∠FCB=∠ABC,∵CD平分∠FCA,∴∠FCB=∠ACB,∴∠ACB=∠ABC,∴AB=AC,∵AD平分∠BAC,∴CD=BD,在△FCD和△EBD中,,∴△FCD≌△EBD(ASA),∴FC=BE,∵AC=AB=AE+EB=AE+CF,∴CF=AC﹣AE.【点评】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,角平分线的意义等知识,运用ASA证明△FCD≌△EBD是解答本题的关键.13.(2022秋•杨浦区期中)如图1所示,已知点E在直线AB上,点F,G在直线CD上且∠EFG=∠FEG,EF平分∠AEG,如图2所示,H是AB上点E右侧一动点,∠EGH的平分线GQ交FE的延长线于点Q,设∠Q=α,∠EHG=β,(1)若∠HEG=40°,∠QGH=20°,求∠Q的度数;(2)判断:点H在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.【分析】(1)先证明,再依据∠HEG=40°,即可得到∠FEG=70°,依据QG平分∠EGH,即可得到∠QGH=∠QGE=20°,根据∠Q=∠FEG﹣∠EGQ进行计算即可;(2)根据∠FEG是△EGQ的外角,∠AEG是△EGH的外角,即可得到∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG ﹣∠EGH,再根据FE平分∠AEG,GQ平分∠EGH,即可得出,,最后依据∠Q=∠FEG﹣∠EGQ进行计算,即可得到.【解答】解:(1)∵EF平分∠AEG,∴∠AEF=∠GEF,∵∠EFG=∠FEG,∴∠AEF=∠GFE,∴AB∥CD,∵∠HEG=40°,∴,∵QG平分∠EGH,∴∠QGH=∠QGE=20°,∴∠Q=∠FEG﹣∠EGQ=70°﹣20°=50°;(2)点H在运动过程中,α和β的数量关系不发生变化,∵∠FEG是△EGQ的外角,∠AEG是△EGH的外角,∴∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG﹣∠EGH,又∵FE平分∠AEG,GQ平分∠EGH,∴,,∴∠Q=∠FEG﹣∠EGQ==,即.【点评】本题主要考查了平行线的判定与性质,三角形外角性质的运用,解题的关键是利用三角形的外角性质:三角形的外角等于与它不相邻的两个内角的和.14.(2022秋•宝山区校级期中)如图,在五边形ABCDE中,(1)已知AB=AE,BC=ED,∠B=∠E,F是CD中点,求证:AF⊥CD.(2)已知AB=AE,BC=ED,∠C=∠D,F是CD中点,求证:AF⊥CD.(3)已知∠B=∠E,BC=ED,∠C=∠D,F是CD中点,求证;AF⊥CD.【分析】(1)连接AC,AD,根据全等三角形的判定和性质得出△ABC≌△AED,AC=AD,再由等腰三角形三线合一即可证明;(2)连接BF,EF,BCF≌△EDF,△ABF≌△AEF,∠CFB=∠DFE,∠AFB =∠AFE,结合图形得出∠AFC=∠AFD,即可证明;(3)连接BD,CE交于点G,根据全等三角形的判定和性质得出△BCD≌△EDC,△CGF≌△DGF,∠AFC=∠AFD,结合图形即可证明.【解答】解:(1)如图所示,连接AC,AD,在△ABC与△AED中,,∴△ABC≌△AED(SAS),∴AC=AD,∵F是CD中点,∴AF⊥CD;(2)如图所示,连接BF,EF,∵F是CD中点,∴CF=FD,在△BCF与△EDF中,,∴△BCF≌△EDF(SAS),∴BF=EF,∠CFB=∠DFE在△ABF与△AEF中,,∴△ABF≌△AEF(SSS),∴∠AFB=∠AFE,∴∠AFB+∠CFB=∠DFE+∠AFE,即∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD;(3)如图所示,连接BD,CE交于点G,∵F是CD中点,∴CF=FD,在△BCD与△EDC中,,∴△BCD≌△EDC(SAS),∴∠CDB=∠DCE,∴CG=DG,在△CGF与△DGF中,,∴△CGF≌△DGF(SAS),∴∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD.【点评】题目主要考查全等三角形的判定和性质,线段中点的性质及等腰三角形的判定和性质等,理解题15.(2022秋•宝山区校级期中)如图,△ABC和△ABD,AB=AD,点E、F在边BC上,点A、F、D共线,∠BAC=∠AFC,∠EAC=∠FCD,求证:AE=CD.【分析】根据三角形内角和定理得出∠CAD=∠ABC,再由三角形外角的性质及全等三角形的判定和性质即可证明.【解答】证明:∵∠BAC=∠AFC,∴180°﹣∠BAC﹣∠ACB=180°﹣∠AFC﹣∠ACB,即∠CAD=∠ABC,∵∠EAC=∠FCD,∴∠EAC+∠ACB=∠FCD+∠ACB,即∠AEB=∠ACD,在△AEB与△DCA中,,∴△AEB≌△DCA(AAS),∴AE=CD.【点评】题目主要考查全等三角形的判定和性质,三角形内角和定理及外角的性质,熟练掌握全等三角形的判定和性质是解题关键.16.(2022秋•虹口区校级期中)如图,△ABC和△BDE都是等边三角形,且点A、D、E在同一直线上,证明AE=BE+CE.【分析】根据等边三角形的性质,得出∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,再根据角之间的数量关系,得出∠ABD=∠CBE,再根据“边角边”,得出△ABD≌△CBE,再根据全等三角形的性质,得出AD=CE,再根据等量代换,即可得出结论.【解答】证明:∵△ABC和△BDE都是等边三角形,∴∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,∴∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+∠CBE,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,∴AE=DE+AD=BE+CE.【点评】本题考查了等边三角形的性质、全等三角形的判定与性质,解本题的关键在熟练掌握相关的性质定理.17.(2022秋•普陀区校级期中)如图,在△ABC中,AD平分∠BAC,E是BC的中点,过点E作FG⊥AD 交AD的延长线于H,交AB于F,交AC的延长线于G.求证:(1)AF=AG;(2)BF=CG.【分析】(1)由FG⊥AD交AD的延长线于H,∠AHF=∠AHG=90°,可根据全等三角形的判定定理“ASA”证明△AHF≌△AHG,得AF=AG;(2)作CL∥AB交FG于点L,则∠AFG=∠CLG,由AF=AG,得∠AFG=∠G,则∠CLG=∠G,得CL=CG,再证明△BEF≌△CEL,得BF=CL,所以BF=CG.【解答】证明:(1)∵AD平分∠BAC,∴∠FAH=∠GAH,∵FG⊥AD交AD的延长线于H,∴∠AHF=∠AHG=90°,在△AHF和△AHG中,,∴△AHF≌△AHG(ASA),∴AF=AG.(2)作CL∥AB交FG于点L,则∠B=∠ECL,∠AFG=∠CLG,∵AF=AG,∴∠AFG=∠G,∴∠CLG=∠G,∴CL=CG,∵E是BC的中点,∴BE=CE,在△BEF和△CEL中,,∴△BEF≌△CEL(ASA),∴BF=CL,∴BF=CG.【点评】此题重点考查全等三角形的判定与性质、等腰三角形的判定与性质、平行线的性质等知识,正确地作出所需要的辅助线构造全等三角形是解题的关键.18.(2022秋•浦东新区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:∠EFM=∠HFM.【分析】证明△BEF≌△CFH(ASA),△EFM≌△HFM(SSS)即可求解.【解答】证明:∵AB=AC,∠BEF=∠CFH,BE=CF,∴∠B=∠C,在△BEF和△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴EM=HM,FM为公共边,∴△EFM≌△HFM(SSS),∴∠EFM=∠HFM.【点评】本题主要考查全等三角形的判定和性质,掌握三角形全等的判定方法和性质是解题的关键.19.(2017秋•上海期中)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B即可得出结论,再根据等腰三角形的性质即可得出∠DEF的度数.【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中,,∴△BDE≌△CEF(SAS).∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=70°.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.20.(2022秋•静安区校级期中)已知:如图,AD∥CF,∠A=∠C=90°,DB平分∠ADF,AD+CF=DF.求证:FB平分∠CFD.【分析】在DF上取一点E,使DE=AD,进而利用SAS证明△ADB与△EDB全等,进而证明△FCB与△FEB 全等,进而解答即可.【解答】证明:在DF上取一点E,使DE=AD,∵DB平分∠ADF,∴∠ADB=∠EDB,在△ADB与△EDB中,,∴△ADB≌△EDB(SAS),∴AB=BE,∠BAD=∠BED,AD=DE,∴∠BAD=∠BED=90°,∵AD∥CF,∴∠C=∠A=90°,∵DF=AD+CF,∴EF=DF﹣DE=DF﹣AD=CF,在Rt△BEF与Rt△BCF中,,∴Rt△BEF≌Rt△BCF(HL),∴∠EFB=∠CFB,即FB平分∠CFD.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.21.(2022秋•静安区校级期中)已知如图,AB=AC,AD=AE,∠BAE=∠CAD,BD与CE相交于点F,求证:FB=FC.【分析】由已知条件证得△ABD≌△ACE,连接BC,要证FB=FC,可利用等式性质来证得.【解答】证明:∵∠BAE=∠CAD(已知),∴∠BAE+∠EAD=∠CAD+∠DAE(等式性质),即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴∠ABD=∠ACE(全等三角形对应角相等),连接BC.∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵∠ABD=∠ACE(已证),∴∠ABC﹣∠ABD=∠ACB﹣∠ACE(等式性质),即∠FBC=∠FCB.∴FB=FC(等角对等边).【点评】本题主要考查了两个三角形的判定和性质,关键是根据SAS证得△ABD≌△ACE.22.(2022秋•闵行区校级期中)如图,已知点A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD,求证:BC∥EF.【分析】证△ABC≌△DEF(SAS),得∠BCA=∠EFD,再由平行线的判定即可得出结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】考查了全等三角形的判定与性质、平行线的判定与性质等知识,熟练掌握平行线的判定与性质,证明三角形全等是解题的关键.23.(2022秋•杨浦区期中)如图,已知△ABC和△CDE都是等边三角形,点D、A、C在同一直线上,延长BA交边DE于点F,联结AE、BD.(1)试说明△ADB≌△F AE的理由;(2)延长EA交BD于点H,求∠DHE的度数.【分析】(1)证△ADF是等边三角形,得AD=FA=DF,∠DFA=60°,再证CD=BF,则AB=FE,然后证∠BAD=∠EFA,进而证△ADB≌△FAE(SAS);(2)由全等三角形的性质得∠ABD=∠FEA,再证∠DHE=∠FEA+∠FAE,即可得出结论.【解答】(1)证明:∵△ABC和△CDE都是等边三角形,∴AB=AC,∠DAF=∠BAC=60CDE=60°,CD=DE,∴△ADF是等边三角形,∴AD=FA=DF,∠DFA=60°,∴AC+AD=AB+FA,即CD=BF,∴BF﹣FA=DE﹣DF,即AB=FE,∵∠BAD=180°﹣∠DAF=180°﹣60°=120°,∠EFA=180°﹣∠DFA=180°﹣60°=120°,∴∠BAD=∠EFA,在△ADB和△FAE中,,∴△ADB≌△FAE(SAS);(2)解:由(1)得:△ADB≌△FAE,∴∠ABD=∠FEA,∵∠DHE=∠ABD+∠BAH,∠FAE=∠BAH,∴∠DHE=∠FEA+∠FAE,∵∠DFA=∠FEA+∠FAE,∴∠DHE=∠DFA=60°.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.24.(2022秋•闵行区期中)如图,点D,E在△ABC的边BC上,AD=AE,BD=CE,求证:∠B=∠C.【分析】方法一:利用全等三角形的性质证明即可.方法二:作AM⊥BC于M.证明AN垂直平分线段BC 即可;【解答】证明方法一:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=∠AED+∠AEC=°,∴∠ADB=∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠C.证明方法二:作AM⊥BC于M.∵AD=AE,∴DM=EM,∵BD=CE,∴DM+BD=EM+CE,即:BM=CM,又∵AM⊥BC,即AM为BC的垂直平分线,∴AB=AC,∴∠B=∠C.【点评】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(2022秋•普陀区期中)已知:如图,在四边形ABCD中,BC=DC,点E在边AB上,∠EBC=∠EDC.(1)求证:EB=ED.(2)当∠A=90°,求证:∠BED=2∠BDA.【分析】(1)由BC=DC,得出∠CBD=∠CDB,再由∠EBC=∠EDC,推出∠EBD=∠EDB,即可得出结论;(2)由三角形内角和定理得出∠BDA+∠ABD=90°=∠A,再由(1)得∠EBD=∠EDB,则∠BDA+∠EDB=∠A,然后由三角形的外角性质即可得出结论.【解答】证明:(1)∵BC=DC,∴∠CBD=∠CDB,∵∠EBC=∠EDC,∴∠EBC﹣∠CBD=∠EDC﹣∠CDB,即∠EBD=∠EDB,∴EB=ED;(2)∵∠A=90°,∴∠BDA+∠ABD=90°=∠A,由(1)得:∠EBD=∠EDB,∴∠BDA+∠ABD=∠BDA+∠EDB=∠A,∴∠BED=∠A+∠ADE=∠BDA+∠EDB+∠ADE=∠BDA+∠BDA=2∠BDA.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理、三角形外角的性质等知识,熟练掌握等腰三角形的判定与性质是解题的关键.26.(2021秋•奉贤区校级期中)在△ABC中,AB=AC,点D是直线BC上的一点(不与点B、C重合),以AD为腰右侧作等腰三角形△ADE,且AD=AE,∠BAC=∠DAE,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度.(2)设∠BAC=α,∠BCE=β.①点D是在线段BC上移动时,如图2,则α、β之间有怎样的数量关系?试说明理由.②点D是在射线CB上移动时,则α、β之间有怎样的数量关系?试直接写出结论.【分析】(1)证明△BAD≌△CAE,得∠B=∠ACE,即可证明;(2)①与(1)同理证明△BAD≌△CAE,得∠ABD=∠ACE,则∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°;②同理证明△ADB≌△AEC,得∠ABD=∠ACE,由∠ABD=∠BAC+∠ACB,则∠BAC=∠BCE.【解答】解:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①α+β=180°,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;②α=β,理由如下:∵∠DAE=∠BAC,∴∠DAB=∠EAC,在△ADB与△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∴∠BAC=∠BCE,∴α=β.【点评】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,三角形外角的性质等知识,证明△ADB≌△AEC是解题的关键.27.(2021秋•浦东新区期中)如图,在△ABC中,AD平分∠BAC,DE∥AC,过点E作EF⊥AD于点O,交BC的延长线于F,连接AF,求证:AF=DF.【分析】根据平行线的性质和等腰三角形的判定和性质解答即可.【解答】证明:∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA,∴AE=DE,∵EF⊥AD,∴EF垂直且平分AD,∴F在AD的垂直平分线上,∴AF=DF.【点评】此题考查等腰三角形的判定和性质,关键是根据平行线的性质和等腰三角形的判定和性质解答.28.(2020秋•浦东新区期中)如图,已知在△ABC中,AB=AC,D是AB上一点,延长AC至点E,使CE =BD.联结DE交BC于点F,求证:DF=EF.【分析】过点D作DG∥AC交BC于点G,由“AAS”可证△DFG≌△ECF,可得DF=EF.【解答】证明:如图,过点D作DG∥AC交BC于点G,∵AB=AC,∵DG∥AC,∴∠ACB=∠DGB,∠DGF=∠ECF,∴∠ACB=∠DGB=∠B,∴DG=DB,∵CE=BD,∴DG=CE,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS)∴DF=EF.【点评】本题考查了全等三角形的判定和性质、等腰三角形的判定与性质等知识,添加恰当辅助线构造全等三角形是解题的关键.29.(2022秋•奉贤区校级期中)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【分析】根据BE∥DF,可得∠ABE=∠D,再利用ASA求证△ABC和△FDC全等即可.【解答】证明:∵BE∥DF,在△ABE和△FDC中,,∴△ABE≌△FDC(ASA),∴AE=FC.【点评】此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.30.(2020秋•普陀区期中)如图,已知AB=AC,BD=CD,过点D作DE⊥AB交AB的延长线于点E、DF ⊥AC交AC的延长线于点F,垂足分别为点E、F.(1)求证:∠DBE=∠DCF.(2)求证:BE=CF.【分析】(1)连接AD,证△ABD≌△ACD(SSS),得∠ABD=∠ACD,即可得出结论;(2)证△BDE≌△CDF(AAS),即可得出结论.【解答】证明:(1)连接AD,如图:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠ABD=∠ACD,∴∠DBE=∠DCF.(2)∵DE⊥AB,DF⊥AC,∴∠E=∠F=90°,由(1)得:∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定和性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.31.(2017秋•静安区期中)如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【分析】(1)根据SAS证明△AED与△BFD全等,再利用等量代换证明即可;(2)根据角平分线的定义和等腰三角形的性质进行证明即可.【解答】证明:(1)∵D为AB的中点,∴BD=AD,在△AED与△BFD中,,∴△AED≌△BFD(SAS),∴∠E=∠DFB,∵DF∥AC,∴∠C=∠DFB,∴∠C=∠E;(2)∵DF平分∠AFB,∴∠AFD=∠DFB,∵∠E=∠DFB,∴∠AFD=∠AED,∵ED=DF,∴∠DAF+∠AFD=90°,∵EF∥AC,∴∠AFD=∠FAC,∴∠DAF+∠FAC=90°,∴AC⊥AB.【点评】本题考查了全等三角形的判定与性质,关键是根据平行线的性质、全等三角形的判定与性质等知识进行解答.32.(2021秋•浦东新区期中)如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE=AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.33.(2022秋•奉贤区校级期中)(1)已知:如图①,△ABC是等边三角形,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:线段EF、DF之间有怎样的数量关系?并证明你的猜想.(2)已知:如图②,在△ABC中,∠B=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:上述(1【分析】(1)证明△EAC≌△DCA(ASA),可得EC=DA,然后根据线段的和差即可得结论;(2)在CA上截取CG=CD,证明△CDF≌△CGF(SAS),可得DF=GF,∠DFC=∠GFC,再证明△AEF≌△AGF(ASA),可得EF=GF,进而可得结论.【解答】解:(1)EF=DF,证明:∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,∵AD、CE分别平分∠BAC、∠ACB,∴∠FAC=BAC,∠FCA=BCA,∴∠FAC=∠FCA,∴FA=FC,在△EAC和△DCA中,,∴△EAC≌△DCA(ASA),∴EC=DA,∵FA=FC,∴EF=DF;(2)EF=DF仍成立,理由如下:如图,在CA上截取CG=CD,在△CDF和△CGF中,,∴△CDF≌△CGF(SAS),∴DF=GF,∠DFC=∠GFC,∵∠DFC=∠FAC+∠FCA=BAC+BCA=60°,∴∠GFC=60°,∠AFE=60°,∴∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣(BAC+BCA)=180°﹣60°=120°,∴∠AFG=120°﹣60°=60°,∴∠AFE=∠AFG,在△AEF和△AGF中,,∴△AEF≌△AGF(ASA),∴EF=GF,∴EF=DF.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,三角形的内角和定理,遇到角平分线,作角平分线上的点到两边的距离构造出全等三角形是解题的关键.34.(2021秋•台江区期中)如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【分析】(1)利用SAS ABC≌△AED;(2)根据全等三角形的性质得到∠ABC=∠AED,根据等腰三角形的性质得到∠ABE=∠AEB,得到∠OBE=∠OEB,根据等腰三角形的判定定理证明.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD,在△BAC和△EAD中,,∴△BAC和≌EAD;(2)∵△BAC≌△EAD,∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠OBE=∠OEB,∴OB=OE.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.35.(2022秋•宝山区校级期中)如图,已知在△ABC中,AB=AC,点D、E分别在边AB、AC上,且AD =AE.(1)求证:DE∥BC;(2)如果F是BC延长线上一点,且∠EBC=∠EFC,求证:DE=CF.【分析】(1)根据等腰三角形的性质和三角形内角和证明即可;(2)根据AAS证明△BDE与△EFC全等即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵AD=AE,∴∠ADE=∠AED,∵∠A=∠A,∴∠ADE=∠ABC,∴DE∥BC;(2)∵∠EBC=∠EFC,∠ABC=∠ACB,∴∠DBE+∠EBC=∠CEF+∠EFC,∴∠DBE=∠CEF,∠DEB=∠EFC,在△BDE与△EFC中,,∴△BDE≌△EFC(AAS),∴DE=CF.【点评】本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定语言性质的运用,解答时证明三角形全等是关键.36.(2022秋•浦东新区期中)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【解答】解:如图,连接AD,在△ABD和△DCA中,,∴△ABD≌△DCA(SSS),∴∠B=∠C.【点评】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.37.(2022秋•徐汇区校级期中)已知:如图,在△ABC中,∠ACB=90°,AD为△ABC的外角平分线,交BC的延长线于点D,且∠B=2∠D.求证:AB+AC=CD.【分析】过点D作DE⊥AB,垂足为点E,由“在角的平分线上的点到这个角的两边的距离相等”可知DE=DC,再证明Rt△ACD≌Rt△AED,由此可得AC=AE,在证明BE=DE即可.【解答】证明:过点D作DE⊥AB,垂足为点E,又∵∠ACB=90°(已知),∴DE=DC(在角的平分线上的点到这个角的两边的距离相等).在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(H.L).∴AC=AE,∠CDA=∠EDA.∵∠B=2∠D(已知),∴∠B=∠BDE.∴BE=DE.又∵AB+AE=BE,∴AB+AC=CD.【点评】本题考查了全等三角形的判定与性质,关键是作辅助线使得AB与AC在同一条直线上才好证AB+AC =CD.38.(2021秋•徐汇区校级期中)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.【分析】求出∠A=∠DEC,∠B=∠C=90°,根据AAS证△ABE≌△ECD,推出AB=CE,求出AB+BC=2AB+BE =11,把BE=3代入求出AB即可.【解答】解:∵AB⊥BC,DC⊥BC,垂足分别是点B、C,∴∠B=∠C=90°.∴∠A+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∵∠AEB+∠AED+∠DEC=180°,∴∠AEB+∠DEC=90°,∴∠A=∠DEC,∵在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AB=CE,∵BC=BE+CE=BE+AB,∴AB+BC=2AB+BE=11,∵BE=3,∴AB=4.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.39.(2022秋•奉贤区校级期中)△ABC为等边三角形,D为AB边上的任意一点.连接CD.(1)在BD的左侧,以BD为一边作等边三角形BDE(尺规作图,保留作图痕迹,不写作法);(2)连接AE,试说明:CD=AE.【分析】(1)可以分别以B、D为圆心,以BD为半径作弧,相交于E;(2)由已知条件,证明△BCD≌△EAB即可.【解答】(1)解:如图:(2)证明:连接AE,如图,∵在△BCD与△BAE中,,∴△BCD≌△BAE(SAS)∴CD=AE.【点评】此题主要考查等边三角形的作法以及性质的运用,还涉及到全等三角形的判定,综合性强.求得三角形全等是正确解答本题的关键.40.(2022秋•静安区校级期中)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;。

[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)

[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)

[必刷题]2024八年级数学下册几何证明专项专题训练(含答案)试题部分一、选择题:1. 在△ABC中,若AB=AC,点D是BC的中点,则下列结论正确的是()A. AD垂直于BCB. BD=DCC. ∠BAC=90°D. ∠ABC=∠ACB2. 下列关于平行线的性质,错误的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线平行,则它们的任意一对对应角相等3. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列关于全等三角形的判定,错误的是()A. SASC. AASD. SSD5. 在△ABC中,若∠A=60°,∠B=70°,则边BC与边AC的长度关系是()A. BC > ACB. BC = ACC. BC < ACD. 无法确定6. 下列关于相似三角形的性质,正确的是()A. 对应角相等B. 对应边成比例C. 对应角互补D. 对应边相等7. 若等腰三角形的底角为45°,则其顶角的度数是()A. 45°B. 90°C. 135°D. 180°8. 在平行四边形ABCD中,若AB=6cm,AD=8cm,则对角线AC的长度可能是()A. 4cmB. 10cmC. 12cm9. 下列关于圆的性质,错误的是()A. 圆的半径都相等B. 圆的直径是半径的两倍C. 圆的周长与半径成正比D. 圆的面积与半径成正比10. 在直角坐标系中,点P(a,b)关于y轴对称的点是()A. (a,b)B. (a,b)C. (a,b)D. (b,a)二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。

()2. 平行线的同旁内角互补。

()3. 两个等腰三角形的底角相等,则这两个三角形全等。

()4. 在直角三角形中,斜边上的中线等于斜边的一半。

八年级数学几何证明作图题精选

八年级数学几何证明作图题精选

1、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图) (1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;(3分) (2)在DE 上画出点P ,使PC PB +1最小;(2分) (3)在DE 上画出点Q ,使QC QA +最小。

(2分)2、贵港市政府计划修建一处公共服务设施,使它到三所公寓A 、B 、C 的距离相等。

(1)若三所公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位置(尺规作图,保留作图痕迹,不写作法); (2)若∠BAC =56º,则∠BPC = º.3、已知,如图,角的两边上的两点M 、N , 求作:点P ,使点P 到OA 、OB 的距离相等, 且PM=PN (保留作图痕迹)·· ABOM N4、如图,直线AB 和CD 是两条交叉的马路,E 、F 两点是两座乡镇,现要在∠BOD 的区域内建一农贸市场,使它到两条马路的距离相等,且到两乡镇的距离也相等,请你利用尺规作图找出此点。

(保留作图痕迹,不要求写作法)5、(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,的对应点,不写画法); (2)直接写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,.6、某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。

7、已知:△ABC 为等边三角形,D为AB 上任意一点,连结BD . (1)在BD 左下方...,以BD 为一边作等边三角形BDE (尺规作图,保留作图痕迹,不写作法) (2)连结AE ,求证:CD =AE8、如图:A 、B 是两个蓄水池,都在河流MN 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点(保留作图痕迹)FBM N. A .B如图,点D,E分别在等边△ABC的边BC,AB上,且AE=BD,连接AD,CE交于点F,过点B作BQ∥CE交AD延长线于点Q.(1)求∠AFE的度数;(2)求证:AF=BQ.如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A ZABD= ZEBD在Z\ABD 和ZkEBD 中AB=EB < ZABD= ZEBDBD=BDAABD 9 AEBD (SAS)••• DE 二 DC得 ZDEC=ZCVZBED+ZDEC=180° .•.ZA+ZC=180°1、线段的数量关系:通过添加辅助线构造全等三角形转移线段到•个三角形中证明线段相等。

①倍长中线【例.3】如图,已知在△ABC 中,ZC = 90°, ZB = 30#, AD 平分ABAC,交BC 于点D. 求证:BD = 2CD 证明:延长DC 到E,T ZC=90° •••AC 丄 CDVCD=CE •••AD 二 AE几何证明:【例1】・已知:如图6, \BCE 、AACD分别是以3£. AD 为斜边的直角三角形,且='CDE 鬼等边三角形.求证:A ABC 是等边三角形. 证明:VZBCE=90° ZACD=90° ZBCE=ZBCA+ZACE ZACD=ZACE+ZECDAZACB=ZECDVAECD 为等边三角形 AZECD=60° CD=EC 即 ACB==60° 在ZXECB 和AACD 中BE=ADZBCE=ZACD ■EC=CD•••△ECB 竺△DCA(HL)A BC=AC V ZACB=60°图6A A ABC 是等边三角形[例 2】、如图,已知 BC>AB, AD 二DC 。

BD 平分Z ABC 「求证:Z A+Z C=180°. 证明:在 BC 上截取 BE 二BA,连接 DE, A ZA=ZBED AD= DE VBD 平分 ZBAC VAD=DC D使得CE=CD,联结AE/. BD=DEVZB=30° ZC=90° AZBAC=60°TAD 平分ZBAC AZBAD=30° A DB=DA ZADE=60°【例4.】如图,D 是AABC 的边3C 上的点,且CD = AB 、ZADB = ZBAD, AE 是的中线。

求证:AC = 2AE.T AC=DC ••• ZCAD=ZCDA【小结】熟悉法一.法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法. 倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

ABD=2DC证明:延长AE 到点F,使得EF=AE 联结DF 在Z\ABE 和ZkFDE 中 r BE=DE < ZAEB=ZFED I AE=FE•'•△ABE 仝 AFDE (SAS) •••AB二 FD ZABE=ZFDETAB 二 DC ••• FD = DCVZADC=ZABD+ZBAD••• ZADB = ABAD【变式练习】、/. ZADC=ZABD+ZBDA VZABE=ZFDE••• ZADC=ZADB+ZFDE即 ZADC= ZADF 在ZkADF 和Z\ADC 中D=ADZADF 二 ZADC DF=DC•••△ ADF9 ADC(SAS) AAF=AC AAC=2AE如图,A ABC 中,BD=DC=AC, E 是DC 的中点,求证:AD 平分Z BAE. 证明:延长AE 到点F,使得EF=AE 联结DF 在Z\ACE 和AFDE 中• CE =DE < ZAEC=ZFED、AE=FEJ:.AACE £ AFDE (SAS) .\AC=FD ZACE=ZFDE VDB=AC .\DB = DFVZADB=ZACD+ZCAD•••ZADB 二 ZACD+ZCDA J ZACE=ZFDEAZADB=ZADC+ZFDE 即 ZADB= ZADF在Z\ADF 和AADB 中{D=ADZADF= ZADB DF=DB •••△ ADF9 ADB(SAS)AZFAD=ZBAD /.AD 平分ZDAEFOC.•.2ZOAC+2ZACO=120°【变式练习】:如图所示,AD 是Z\ABC 的中线,BE 交AC 于E,交AD 于F,且AC=BFo 求证:AE=EFo 证明:延长AD 至点G,使得DG 二AD,联结BD 在Z\ADC ^lAGDB 中r AD=GD5 ZADC=ZGDB .BD=DC >•'•△ADC ^AGDB (SAS) 得 AC= BG ZCAD=ZBGD VAC=BF••• BG= BF ••• ZBFG=ZBGF VZCAD=ZBGD AZBFG= ZCADVZBFG=ZAFE ••• ZAFE=ZFAEAAE =AF②.借助角平分线造全等【例5】如图,已知在ZkABC 中,ZB=60° , AABC 的角平分线AD,CE 相交于点0,求证:OE=OD证明:在AC 上截取AF=AE ,联结OF 在厶ABC 中,ZB+ZBAD+ZACB=180° VZB=60 °J.\ZBAD+ZACB=120°VAD 平分 ZB ACCOF 中 A ZBAC= 2Z0ACFCOVCE 平分 ZACB在AAOE >fnAAOF 中fAE=AFZ EAO 二 Z FAOAO = AO•••△AOE ^AAOF (ASA)A ZAOE=ZAOE OE=OFVZAOE=60°在ZkCOD 和△ZDCO =ZCO=CO•'•ZACB 二 2ZAC0 ZAOE+ ZAOE+ Z FOC=180 ° ZDOC=ZZFOC=6O°•••△CODCOF (ASA)【例6】.如图,AABC中,ZBAC=90度,AB二AC, BD是ZABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F・求证:BD二2CE.证明:延长BA, CE交于点F,在ABEF和ABEC中,<VZ1=Z2, BE二BE, ZBEF=ZBEC=90%AABEF^ABEC, AEF=EC,从而CF=2CEc又Zl+ZF=Z3+ZF=90% 故Z1=Z3C在AABD 和AACF 中,VZl=Z3t AB二AC, ZBAD=ZCAF=90\AAABD^AACF, ABD=CF, ABD=2CEo【小结】解题后的思考:于角平行线的问题,常用两种辅助线;••• ZOAC+ZACO 二60°T ZAOE二ZOAC+ZACO••• ZAOE=60°T ZAOE=ZCOD•I ZCOD=60cAOD=OFVOE=OFAOE=OD)③旋转【例7】正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF二EF,求Z EAF的度数.延长EB到点G,使得BG二BE.\ZGAE=ZFAEZDAF+ZBAF=90°先证明AADF竺A ABE可得到AF =AG Z DAF= ZGABVEF=BE +DF•I EF = BE+BG =GEZGAB=ZFADAZGAF = 90°AZEAF = 45°/. AGAE 9 A FAE【例8】•将一张正方形纸片按如图的方式折叠,BC、BD为折痕,则ZCED的大小为90° :【例9】・如图,已知ZABC 二ZDBE 二90° ,DB=BE, AB=BC ・⑴求证:AD 二CE, AD 丄CE (2)若ADBE 绕点B 旋转到AABC 外部,其他条件不变,则⑴中结论是否仍成立请证明提示:ZABC=ZDBE=90°•: ZABC-ZDBC=ZDBE ・ZDBC即 ZABD=ZCBE 「•△ABDCBEAD=CEZBAD=ZECB VZBAD+ZAHB=90°【例10】•如图在RtAABC 中,AB 二AC,ZBAC=90° Q 为BC 中点.⑴写出O 点到ZkABC 三个顶点A 、B 、C 的距离关AZECB+ZAHB=90° AZECB+ZCHF=90°AZHFC=90° ■••AD 丄 CE系(不要求证明)(2)如果M、N分别在线段AB、AC上移动,在移动过程中保持AN二BM,请判断AO M N的形状,并证明你的结论.■联结OA则AOAC和AOABD都为等腰直角三角形/. OA=OB=OCAANO 9 ABMO (ZNOA=ZOBM)可得到ZNOM=ZAOB=90°【例口】如图,已知MBC为等边三角形,D、E、F分别在边BC、CA y 43上,且MEF也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的:(2)你所证明相等的线段,可以通过怎样的变化相互得到写出变化过程.AE=BF =CD AF=BD =CEAABC等边三角形ADEF也是等边三角形Y得到ZEFD=60° ZABC=60°VZAFD=ZFBD+ZFDBZAFD=ZAFE+ZEFDAZAFE=ZBDFA AAEF 9 ABFD同理:A AEF^A CDE④.截长补短【例12】.如图,AABC中,AB=2AC» AD 平分ZBAC .且AD二BD,求证:CD1AC【例13】如图,AC〃BD, EA,EB 分别平分ZCAB^DBA, CD 过点E,求ilE;AB=AC+BD可得ON二OMZ NOA=ZMOBAB【例14】如图,已知在△ABC内,ZBAC = 60S ZC = 40° , P, Q分别在BC, CA上,并且AP, BQ分别是ABAC ,ZABC的角平分线。

求证:BQ+AQ二AB+BP证明:如图(1),过O作OD〃BC交AB于D,/•ZADO=ZABC=180° -60° 一40° =80° ,•乂T ZAQO二ZC+ZQBU80° ,AZADO=ZAQO,乂TZDAO二ZQAO, OA=AO,A ADO^A AQO,•••OD=OQ, AD二AQ,又・.PD〃BP,•\ZPBO=ZDOB,乂VZPBO=ZDBO,•\ZDBO=ZDOB,ABD=OD,又V ZBPA=ZC+ZPAC=70° ,ZBOP= ZOBA+ ZBAO=70° ,AZBOP=ZBPO,「•BP 二OB,•••AB+BP 二AD+DB+BP二AQ+OQ+BO 二AQ+BQ。

【例15】.如图,在AABC 中,ZABC二60° , AD、CE 分别平分ZBAC、ZACB,求证:AC二AE+CD.电方法同【例5】【例16】已知:Z1=Z2> CD二DE, EYHABC M.N BC、AC BM =CN AM BN <图,在四边形ABCD 中,ADII BC, BC = DC, CF 平分Z BCD, DFII AB, BF 的延长f△ BFC旻厶DFC: (2) AD = DE.联结BD证明:TCF平分ZBCDAZBCF=ZDCFI^EABCF 和ADCF 中'BC=CD< ZBCF=ZDCFCF=CF•••ZADB 二ZCDBVDFII AB.\ZABD=ZBDFBF=DFAZFDB=ZFBDAZABD=ZFBDG•••△BCF 仝ADCF (SAS)•••BF 二DF(2) VADII BCAZADB=ZCBD在AABD和AEBD中 fZABD=ZEBD< BD=BDI ZADB=ZEDBJ BC = DCZCBD=ZCDB•'•△ABD 9 AEBD (ASA)A AD = DE【课堂练习】1.如图,已知AE 平分ZBAC, BE± AE 于E, ED〃AC. ZBAE=36° ,那么ZBED= 126。

相关文档
最新文档