一次函数复习培优讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数总复习
题型一、点的坐标
方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;
若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;
1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;
2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;
3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则
a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。 题型二、关于点的距离的问题
方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;
任意两点(,),(,)A A B B A x y B x y ;
若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B
y y -;
点(,)A A A x y
1、点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;
2、点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;
3、点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;
4、已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M
N ⎛⎫⎛
⎫- ⎪ ⎪⎝⎭⎝⎭
,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;
6、已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________. 题型三、一次函数与正比例函数的识别
方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k
≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0)
1、当k_____________时,()2323y k x x =-++-是一次函数;
2、当m_____________时,
()21345m y m x x +=-+-是一次函数;
3、当m_____________时,
()21445m y m x x +=-+-是一次函数;
4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法:
k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度;
b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线垂直。
当 时,两直线相交。 当 时,两直线交于y 轴上同一点。 ☆特殊直线方程:
X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 (1) 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。 2、对于函数1223
y x =
-, y 的值随x 值的________而增大。 3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
4、直线y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是_________。
5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_______象限。
6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数
(1)当m取何值时,y随x的增大而减小?
(2)当m取何值时,函数的图象过原点?
题型五、待定系数法求解析式
方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。
☆已知是直线或一次函数可以设y=kx+b(k≠0);
☆若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b经过点(2,-6),求函数的解析式。
2、直线y=kx+b的图像经过A(3,4)和点B(2,7),
3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x (小时)之间的函数关系式,并且确定自变量x的取值范围。
4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。