第六章 流体力学
流体力学第6章讲解

2、射孔的形状,圆孔口和方孔显然其扩张的情况不会相同。不同的射口形状有 不
同的实验值。用φ表示这个影响因素, 对圆断面射流 φ=3.4,长条缝射孔 φ=2.44。
圆孔综口合射这流两:个t影g响因素K:x k=Kφα 3.4a
x
R 1 3.4 as 3.4( as 0.294)
r0
vm
vm r0 1
1
v0 R
2
1
[(11.5 )2 ]2d
0
9
第二节圆断面射流的运动分析
1
n
1
n
[(1 1.5 )2 ] d Bn; [(1 1.5 )2 ] d Cn
0
0
n
1
1.5
2
2.5
3
Bn
0.0985
0.064
0.0464
0.0359
0.0286
第一节无限空间淹没紊流射流特性
二、紊流系数a及几何特征
其斜率即:tga=常数=k。 对于不同的条件,k值是不同的常数,也叫实验常数。 通过实验发现,k值的影响因素有两个主要的因素:
1、射孔出口截面上气流的紊流强度。 紊流强度的大小用紊流系数a(A)来表示:a大紊流的强度就大,因此,紊
流 系数的大小可以反映出射流的扩张能力,所以,a也叫表征射流流动结构的 特征系数。另一方面,由于a反映的是射流混合能力的大小,因此,a还可以反 映孔口出口截面上的速度均匀程度。a越小,则混合能力越差,说明流速越均匀 。
二、断面流量Q
R
微环面的流量表达式 Q 2vydy Q0 r02v0
0
主体段:
R
Q
v r 0
y
y
2 ( )( )d( )
流体力学 第六章 流体波动

由上式可见,波群中包含两个波动的乘积。
其中:
sinkx t
称为高频载波,其波数k和圆频率ω都分别接近 各个单波的波数和圆频率。即
k
k1 k2 2
k1
k2,
1 2
2
1
2
载波的波速也接近于各个单波的波速,即
c 1 2
k k1 k2
Q* 2Qcos kx t
称为低频包络,它是载波的包络线,或称波包,
1
界面波传播速度是有相同厚度H的重力表面
波速度的十分之一。
§3 群速度
单波(单色波,单纯波):具有一定振幅、一 定频率和一定波长在时间和空间都是无限的波 动。
群波(group wave):由各种单色波叠加而成 的波动。叠加结果,有些振幅是相抵消的,有 些是加强的。所以群波的振幅随时间和空间改 变。群波 混合波
设其形式解为:
u(x,t) B sin k(x ct) (6.2.21)
代入原方程,
u t
g
h x
h
t
H
u x
0
(6.2.22)
有:
B g A H
(6.2.23)
说明u和h位相相同(c>0),或位相相差180(0 c 0).
若取 1波速 1 对于海洋若取H=4km, 0.01, c 20m / s,
kx ly mz t (x, y, z,t)
其中:
/ t k / x l / y m / z
圆频率 x 方向的波数 y 方向的波数 z 方向的波数
全波数的概念
定义波数矢量为:
K ki lj mk
波数矢量垂直于等位相面(波阵面) (波数矢量即为波动传播的方向) 定义其模称为全波数
流体力学第6章(2007)

4)射流的极点、极角和核心收缩角
把外边界反向延长,其交点就是极点 外边界与射流轴线的交角a叫射流的极角(外圆锥的半角)。 内边界与轴线的交角叫核心收缩角(内圆锥的半角)。
5
第一节无限空间淹没紊流射流特性
二、紊流系数a及几何特征
其斜率即:tga=常数=k。 对于不同的条件,k值是不同的常数,也叫实验常数。 通过实验发现,k值的影响因素有两个主要的因素: 1、射孔出口截面上气流的紊流强度。 紊流强度的大小用紊流系数a(A)来表示:a大紊流的强度就大,因此,紊 流 系数的大小可以反映出射流的扩张能力,所以,a也叫表征射流流动结构的 特征系数。另一方面,由于a反映的是射流混合能力的大小,因此,a还可以反 映孔口出口截面上的速度均匀程度。a越小,则混合能力越差,说明流速越均匀 。 2、射孔的形状,圆孔口和方孔显然其扩张的情况不会相同。不同的射口形状有 不 同的实验值。用φ表示这个影响因素, 对圆断面射流 φ=3.4,长条缝射孔 φ=2.44。
21
第四节 温差或浓差射
Q as as 2 3.74 0.90( ) Q0 r0 r0
Q Q Q as as 2 1 0.76( ) 1.32( ) Q0 Q0 r0 r0
16
第二节 圆断面射流的运动分析
七、起始段断面平均流速v1
r0 v1 Q/ A Q Q ( )( )2 v0 Q0 / A0 Q0 Rr v1 v0 as as 2 1 0.76 1.32( ) r0 r0 as as 2 1 6.8 11.56( ) r0 r0
来,实际上又回到了射流中。
热力特性:扩张区域同静止气体交换热量,由于过程为等压过程,由热力学的知
识可知,Q=ΔH-VdP 即交换的热量等于运动区域与静止区域的
第六章流体力学10.8

第六章流体力学基础基本概念一、流体的粘滞性流体流动时,由于流体与固体壁面的附着力及流体本身的分子运动和内聚力,使各流体层的速度不相等。
在两个相邻流体层之间的接触面上,将产生一对阻碍两层流体相对运动的等值反向的摩擦力,叫做内摩擦力。
流体的粘滞性:流体流动时产生内摩擦力的性质。
二、理想流体与实际流体粘性流体:具有粘性的流体(实际流体)。
理想流体:忽略了粘滞性的流体。
三、流体流动的基本概念1.稳定流动与非稳定流动(1)稳定流动运动流体内任意点的速度u和压力p仅仅是空间坐标()z,的函数,而不x,y随时间变化而变化。
()zu,=,uyx()z,p,=xyp(2)非稳定流动运动流体内任意点的速度u和压力p不仅是空间坐标()z,的函数,也随x,y时间而不同。
()t z,,=u,yxu()t z,,=pp,yx2.迹线与流线(1)迹线流体质点的运动轨迹。
(2)流线流场:流体流动的空间。
流线:是流场中某一瞬间绘出的一条曲线,在这条曲线上所有各流体质点的流速矢量与该曲线相切。
流线的性质:①稳定流动时,流线形状不随时间而变化;②稳定流动时,同一点的流线始终保持不变,且流线上质点的迹线与流线重合,即流线上的质点沿流线运动;③流线既不会相交,又不能转折,只能是光滑的曲线。
假定某一瞬间有两条流线相交于M点或转折。
M处就该有两个速度矢量,这是不符合流线的定义。
3.流管、微小流速及总流(1)流管在流场中取出一段微小的封闭曲线,过这条曲线上各点引出流线,这些流线族所围成的封闭管状曲面。
(2)微小流束及总流流束:在流管中运动的流体。
微小流束:断面无穷小的流束称为微小流束。
微小流束断面上各点的运动要素相等。
流管内的流体只能在流管内流动,流管外的流体也只能在流管外流动。
伯努利方程一、理想流体的伯努利方程仅在重力作用下作稳定流动的理想流体gu g p Z g u g p Z 2//2//22222111++=++ρρ=常数1Z 和2Z :过流断面1-1和2-2距基准面0-0的高度,1u 和2u :断面1-1和2-2的流速,1p 和2p :断面1-1和2-2的压力,ρ:为流体密度。
流体力学

2008年真题:盛水容器a 和b 的上方密封,测压管水面位置如 图所示,其底部压强分别为pa与pb若两容器内水深相等, 则pa与pb的关系为: (A) pa pb (B) pa pb (C) pa pb (D)不能确定 答案:A
等压面的概念
由压强相等的点连成的面,称为等压面。等压面 可以是平面,也可以是曲面。
第六章 流 体 力 学
6.1流体的主要物性与流体静力学
6.1.1 流体的连续介质模型 1.假设液体是一种连续充满其所占据空间的毫无空隙的连 续体。流体力学所研究的液体运动是连续介质的连续流动。 意义:使描述液体运动的一切物理量在空间和时间上连续, 故可利用连续函数的分析方法来研究液体运动。 2.流体质点:指微观充分大(其中包含大量分子),宏观
连通容器
连通容器
连通器被隔断
2009年真题 : 1.静止的流体中,任一点的压强的大小与下列哪一项无关? (A) 当地重力加速度 (B) 受压面的方向
(C) 该点的位置
答案:B 2009年真题:
(D) 流体的种类
静止油面(油面上为大气)下3m深度处的绝对压强为下列哪一 项?(油的密度为800kg/m3,当地大气压为100kPa)
充满以流管为边界的一束液流,称为微小流束,也叫元流。
性质:微小流束内外液体不会发生交换;恒定流微小流束的 形状和位置不会随时间而改变,非恒定流时将随时间改变; 横断面上各点的流速和压强可看作是相等的。 任何一个实际水流都具有一定规模的边界,这种有一 定大小
尺寸的实际水流称为总流。总流可以看作是由无限多个微小
1.渐变流过流断面近似为平面 2.恒定渐变流过流断面上流体动压近似按静压分布,同一 过流断面:z+p/(ρg)=c
流体力学第六章明渠恒定均匀流

§6-1 明渠恒定均匀流的特性及其计算公式
明渠水流: 渠槽或河槽中液流具有与大气相 通的自由表面 恒定流:运动要素不随时间变化。
均匀流: 流线为平行直线,运动要素沿程不变。
棱柱形渠道:横断面形状、尺寸均沿程不变 的长直渠道,A=f(h)。
梯形断面:
过水断面面积 A (b mh)h
一断面,然后分别对这些断面进行水力
计算,最后进行叠加。
2 n 1 3 Ri i Ai Ri i i 1 ni
Q Ai C i
i 1
n
Q,求i。
确定渠道的断面尺寸:已知Q、i、n、m,
求断面尺寸b和h。
确定渠道的断面尺寸: (1)b一定,求h 假定若干不同的h值,绘出Q=f(h)曲线, 找出对应的h。 (2)h一定,求b 假定若干不同的b值,绘出Q=f(b)曲线, 找出对应的b。
(3)按梯形水力最佳断面条件,确定b和h。 确定边坡系数m,计算宽深比β m,根据 h=f(β m)得出h。 (4)已知 Q、v、i、n、m,求断面尺寸b和h。
V 2
明渠均匀流的计算公式: 谢才公式:v C RJ C Ri
1 y 巴甫洛夫斯基公式:C R , y f (n, R) n Q AV AC Ri K i (K:流量模数)
1 曼宁公式: C R n
1 6
粗糙系数n反映河、渠壁面对水流阻力的
大小,与渠道壁面材料、水位高低、施工质
量及渠道修成后的运行管理等有关。
设计n值偏大,设计阻力偏大,断面尺寸
偏大,实际流速>设计流速;
设计n值偏小,设计阻力偏小,断面尺寸
偏小,实际流速<设计流速;
水力最佳断面:流量一定时过水断面最小
流体力学第六章流体节流与缝隙流动

第六章流体节流与缝隙流动(了解各种节流及缝隙流动现象,理解影响流量的因素,理解偏心状缝。
掌握气蚀现象。
) §6.1 流体的节流节流:管道内流体流经断面突然缩小的截面后,又进入和以前一样断面的管道,致使压力下降的现象,称为节流。
一、气体节流气体节流后各参数的变化规律,表6-1进行简要分析二、液体节流缝隙中油液产生运动的原因:1)缝隙两端存在压力差;1)组成缝隙的壁面存在相对运动;3)缝隙大小的变化。
缝隙中油液的运动大都呈稳定层流:1)缝隙高度与其长度宽度相比很小,液体在缝隙中流动时受固体壁面的影响;2)油液具有一定的粘度,Re一般很小。
§6.2 液体在小孔中的流动通道截面为圆孔型(分为薄壁小孔型和细长小孔型)。
l d≤。
薄壁小孔:当横隔板壁厚L与孔口直径d之比小于0.5,即/0.5l d>。
液压和润滑系统中的导油管。
细长小孔:小孔的长径比/4§6.3 液体流经平面缝隙平面缝隙:由两平行平面夹成的缝隙。
齿轮泵齿顶与泵壳之间的油液运动,柴油机中滑块与导板之间的油液流动。
结论:1)缝隙中液体流速按抛物线规律分布的;2)流经平面缝隙的流量与缝隙厚度δ的三次方成正比,和动力粘度μ成反比。
§6.4 液体流经同心环状缝隙同心环状缝隙:由内外两个同心圆柱面所围成的缝隙。
结论:流经平面缝隙的流量与缝隙厚度δ的三次方成正比。
§6.5 液体流经偏心环状缝隙偏心环状缝隙:在船舶机械中的环状缝隙,当运动部件装配不当或工作受力不均时,同心环状缝隙就变成偏心环状缝隙。
结论:流经偏心环状缝隙的流量与偏心距成正比,偏心距最大时,泄漏量为同心环状缝隙的2.5倍。
§6.6 液体流经具有相对运动的平行面缝隙喷油泵中的柱塞泵。
类型:(1、2、3)1)平行剪切流动∆=p,由于液体粘滞性,通过平行板的运动液体运动。
2)压差流动液体的运动,在缝隙两端的压差作用下实现。
3)压差与剪切流动的合成液体的运动,在缝隙两端的压差和平行剪切力的作用下共同实现。
《流体力学》第六章气体射流

.
射流参数的计算
段 名
参数名称
符号
圆断面射流
平面射流
扩散角 主
α tg3.4a tg2.44a
体
段 射流直径 或半高度
D b
D d0
6.8
as d0
0.147
b b0
2.44
0.095 as 0.147
d0
v1 0.492
v0
as 0.41
b0
v2
v2 v0
as
0.23 0.147
d0
v2 v0
0.833 as 0.41 b0
.
段名 参数名称
符 号
圆断面射流
平面射流
起
流量
Q
2
QQ0 10.76ar0s1.32ar0s
Q Q0
1 0.43 as b0
始
v 断面平均 流速
B0Kx
tgKxK3.4a
x
紊流系数
起始段
主体段
C
B
A
R
M
α r0
核心
0
D X0
边 E
界 层
Sn
F
S
X
射流结构
.
紊流系数与 出口断面上 紊流强度有 关,也与出 口断面上速 度分布的均 匀性有关。 (表6-1)
紊流系数
喷嘴种类 带有收缩口的喷嘴
a
0.066 0.071
圆柱形管
带有导风板的轴流式通风机 带导流板的直角弯管
已知射流直径D, v2,d0,a, 求S和Q0
流体力学第六章

积分常数C1、C2由边界条件确定。
C1 exp( h) C2 exp( h) 0
消去一个常数
C C1 exp(h) C 2 exp(h) 2 C exp ( z h) exp ( z h) Cch ( z h) 2 Cch ( z h)sin x cos t 在 z0
t x x y y z
自由面上的运动边界条件
波浪问题的基本方程和边界条件:
2φ
2φ x
2
2φ y
2
1 t 2
n 0
z p pa
2
2
0
运动学方程 动力学方程
gz 0
=+
pa C (t ) dt
1 p pa gz 0 t 2
在自由面上: z , p pa
1 g 0 t 2
在自由面上:
z ( x, y, t ) , z z ( x x, y y, t t )
流体质点的速度 :
Ach ( z h) u cos x cos t x shh
w Ash ( z h) sin x cos t z shh
波数和频率之间的关系
Ach ( z h) sin x cos t shh
z0
0 在 z h z g 0 在 z 0 t
Ach ( z h) sin x cos t shh
2 gthh
流体质点的运动轨迹(有限水深):
u w
Ach ( z h) sh h Ash ( z h) sh h
流体力学 第6章

6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v
8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数
流体力学第六章 气体射流

射流考虑,当长宽比大于10时,按平面射流考虑。
6.按射流流体的流动方向与外界空间流体的流动
方向不同,可分为顺流射流、逆流射流和叉流射流。
7.按射流流体与外界空间内流体的温度及浓度不
同,可分为温差射流和浓差射流。
8.按射流流体内所携带的异相物质的不同,可分
为气液两相射流,气固两相射流和液固两相射流以及
流到无限大空间中,流动不受固体边壁的限制,
为无限空间射流,又自由射流。反之为有限空间 射流
射流的分类方法:
1.按射流流体的流动状态不同,可分为层流射流 和紊流射流。一般按喷口直径和出口流速计算的雷诺 数大于30以后即为紊流射流。 2.按射流流体的流动速度大小不同,可分为亚音 速射流和超音速射流。
3.按射流流体在充满静止流体的空间内扩散流动
R 3 .4 R 0 ( as R0 0 . 294 ) 3 . 4 a s R 0
所以,喷口至工作区的距离为
s R R0 3 .4 a 1 . 2 0 . 15 3 . 4 0 . 08 3 . 86 m
射流起始段长度为
习 题 解 析
s n 0 . 672 R0 a 0 . 672 0 . 15 0 . 08 1 . 26 m 3.86 m
R r0 = x x0 = x0 s x0 =1+ s x0 1 3 .4 a s r0 3 .4 ( as r0 0 . 294 )
R r0
3 .4 a x , x
x r0
D d0
as 6 .8 d 0 . 147 0
tg K a
0 . 965 as r0 0 . 294
,可得
《流体力学》第六章_粘性流体绕物体的流动

第四节 平面层流边界层的微分方程
❖ 在这一节里,将利用边界层流动的特点如流体的粘度大小、 速度与温度梯度大和边界层的厚度与物体的特征长度相比为 一小量等对N-S方程进行简化从而导出层流边界层微分方程。 在简化过程中,假定流动为二维不可压定常流,不考虑质量 力,则流动的控制方程N-S方程为:
vx
vx x
◆空间流动三维问题,N—S方程及其求解 ◆扰流阻力及其计算 ◆附面层的问题
第一节 不可压缩粘性流体的运动微分方程
以流体微元为分析对象,流体的运动方程可写为 如下的矢量形式:
DV F P
Dt
(8-1)
这里 :
DV V V V
Dt t
(8-2)
是流体微团的加速度,微分符号:
D Dt
t
V
p 2
vr r
p
3
2 r0
cos
( ) r, rr0
(1 vr r
v0 r
v ) v
r
r
3
sin
2 r0
(8-25)
对上述两式积分,可分别得到作用在球面上的压强和切应力 的合力。将这两个合力在流动方向的分量相加,可得到流体 作用在圆球上的阻力为:
FD 6 r0 3 d
2vy z 2
)
p z
(2vz
x 2
2vz y 2
2vz z 2
)
(8-18)
一、蠕动流动的微分方程
●如果流动是不可压缩流体,则连续性方程为:
vx v y vz 0 x y z
(8-19)
将式(8-18)依次求
2 x
p
2
、
2 y
p
2
、 2
流体力学第六章边界层理论(附面层理论)

通过减小边界层的阻力,降低流体机械的能耗,提高运行效率。
流动分离控制
控制边界层的流动分离,防止流体机械中的流动失稳和振动,提 高设备稳定性。
流体动力学中的边界层效应
流动特性的影响
边界层内的流动特性对整体流动行为产生重要影响,如湍流、分离 流等。
流动阻力
边界层内的流动阻力决定了流体动力学的性能,如流体阻力、升力 等。
在推导过程中,需要考虑流体与固体表面之间的相互作用力,如粘性力和压力梯 度等,以及流体内部的动量传递和能量传递过程。
边界层方程的求解方法
边界层方程是一个复杂的偏微分方程,求解难度较大。常用的求解方法包括分离变量法、积分变换法、有限差分法和有限元 法等。
分离变量法是将多维问题简化为多个一维问题,通过求解一维问题得到原问题的解。积分变换法是通过积分变换将偏微分方 程转化为常微分方程,从而简化求解过程。有限差分法和有限元法则是将偏微分方程离散化,通过求解离散化的方程组得到 原问题的近似解。
边界层内的流动可以从层流转变为湍流,或从湍 流转为层流。
边界层内的流动状态
层流边界层
流速在物体表面附近呈现平滑变化的流动状态。
湍流边界层
流速在物体表面附近呈现不规则变化的流动状态。
混合流动状态
边界层内的流动状态可以是层流和湍流的混合状态。
03
边界层方程与求解方法
边界层方程的推导
边界层方程是流体力学中的重要方程,用于描述流体在固体表面附近的流动行为 。其推导基于Navier-Stokes方程,通过引入边界层假设,即认为在靠近固体表 面的薄层内,流体的速度梯度变化剧烈,而远离固体表面的流体则可以视为均匀 流动。
展望
随着科技的不断进步和研究的深入,边界层理论在未来 有望取得以下突破。首先,随着计算能力的提升,更加 精确和可靠的数值模拟方法将得到发展,这有助于更好 地理解和预测复杂流动现象。其次,随着实验技术的进 步,将能够获得更高精度的实验数据,为理论模型的发 展提供有力支持。最后,随着多学科交叉研究的深入, 将能够从不同角度全面揭示流体流动的内在机制,推动 流体力学理论的进一步发展。
流体力学第六章PPT课件

A0――孔口所在壁面的全部面积。 上式的适用条件是,孔口处在壁面的中心位置,各方向上影响不完善收缩的程度近于
一致的情况。
想一想:为什么不完善收缩、不完全收缩的流量系数较完善收缩、完全收缩的流量系
数大?
第10页/共117页
3、淹没出流
当液体通过孔口流到充满液体的空间称为淹没出流。 由于惯性作用,水流经孔口流束形成收缩断面c-c,然后扩大。 列出上、下游自由液面1-1和2-2的伯诺里方程。式中水头损失项包括孔口的局部损 失和收缩断面c-c至2-2断面流束突然扩大局部损失。
则(1)式可写成:
H v02 vc2 vc2 (1 ) vc2
2g 2g 2g
2g
令
H0
H
,v0代2 入上式,整理得 2g
第5页/共117页
收缩断面流速为
1
vc 1
2gH0 2gH0
式中H0――作用水头,v0与vc相比,可忽略不计,则H=H0;
φ ――孔口的流速系数,
1 1
孔口出流的流量为
第19页/共117页
例: 某洒水车储水箱长l=3m,直径D=1.5m(如图所示)。底部设有泄水孔,孔口 面积A=100cm2,流量系数μ=0.62,试求泄空一箱水所需的时间。
解:水位由D降至0所需时间
t 1
0 dh
A 2g D h
式中水箱水面面积
lB l 2
D 2
2
h
D 2
2
2
(3)
将式(3)中圆括号的表达式按二项式分式展开,并取前四项
(a b)n an nan1b n(n 1) a b n2 2 n(n 1)(n 2) an3b3
2!
3!
流体力学第六章 流动阻力及能量损失

第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。
对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。
对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。
第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。
流体力学第六章_伯努利积分和动量定理

m gΔh g ( z4 z3 ) ( m 1)gΔh ( c)
[例4.6] 文丘利流量计:沿总流的伯努利方程(3-3) 由连续性方程
V2 A1 V1 A2
( d)
将(d)式代入(c)式 ,整理后可得大管的平均速度为
V1 k 2 g h
上式中
( m / ) 1 k 2 ( A / A ) 1 1 2
动能 重力势能
2
(沿流线)
压强势能
b) 拉格朗日积分
rotv 0 , v grad
V grad P 0 2 t
2
V P F (t ) t 2
2
c) 伯努利-拉格朗日积分
V ~ V C 2
不可压缩重流体
2
V p C 2
2
可压缩均熵流体
V p C 2 1
2
说明1:
伯努利方程的限制条件 ①沿流线
1V12
2
条件的放宽
沿流束
gz1 p1
2V22
2
gz 2
p2
(沿流束)
②定常流
不定常流
(取α1=α2=1)
2 v V12 p1 V22 p2 gz1 gz2 ds 1 t 2 2
1/ 2
k称为流速系数,文丘利管的流量公式为
Q kA1 2 g h
沿流线伯努利方程的限制条件无粘性流体粘性流体gzgz无粘性流体粘性流体不可压缩流体可压缩流体常数62伯努利积分和拉格朗日积分的应用很大的容器表明自由面a静止不动从而这是个定常问题分析
流体力学第6章流体运动微分方程

b p C1 2 x
C2 0
38
于是得速度分布
1 p 2 vx (by y ) 2 x
(2)上板以匀速U沿x方向运动 这时的边界条件为
vx | y 0 0, vx | y b U
39
代入式(5)可得
U b p C1 b 2 x
若此流场满足连续性方程和无旋条件,试求
A,B,C,D所满足的条件。不计重力影响。
13
解:由连续方程可知
u=Ax+By, v=Cx+Dy, w=0
u v 0 x y
则有
A D 0
又由于流动无旋,则有
则有
u v y x B C 0
14
练习: 有一个三维不可压流场,已知其x向和y向的分 速度为
yy
x
dx
17
对流体微团应用牛顿第二定律,则沿x轴 方向的运动微分方程为
xx f x dxdydz xx dydz ( xx dx)dydz x yx yx dzdx ( yx dy)dzdx zx dxdy y zx Dv x ( zx dz)dxdy dxdydz z Dt
代入上式的第一式并整理得:
20
Dv x vx vx vx 1 p fx ( 2 2 2 ) Dt x x y z
2 2 2
同 理 Dv z 1 p 2vz 2vz 2vz 得 fz ( 2 2 2 ) Dt z x y z
v x v y 0 x y
9
例题:不可压缩流体的二维平面流动,y方向 的速度分量为 2 y
v y yx
试求x方向的速度分量,假定x=0时,vx=0。
流体力学第六章 边界层理论 (附面层理论)

流体力学第六章
1921年起,层流边界层的近似算法大量出现,这些算 法大多数以流体力学中的一般积分原理为基础:如卡门-波 尔豪森积分、列宾森的能量积分等.
整理ppt
流体力学第六章
整理ppt
流体力学第六章
第一节 普朗特边界层微分方程式 6.1.1普朗特理论
整理ppt
流体力学第六章
一、普朗特关于对边界层的定义:
整理ppt
6.2.3附加边界条件
流体力学第六章
以下三个方程均只有两个未知量: u(y),(x)
U(x),p(x)为已知 一.哥氏积分
k1x0uk2dyU kk11 x0udypx0ukdyk0uk1uy2dy
二.卡氏积分
x
0
u2dy
U
x
0
udy
p x
u y
0.
三.列氏积分
流体力学第六章
[u
v x
v
v y
]
(
p y
)
2v x2
2v y 2
U
(U L
)
1 L
(U
L
)2
1
(
p ) y
(U
L
)
1
2
U U 1 (U )2 1 ( p ) (U )2
LL L
y
L
p y
U2 L2
U2 U
L
2
整理ppt
流体力学第六章
比较
p x
U2 L
0
u
kdy
k
0
u
k 1
u y
2
dy
(6-2-3)
x
u 2dy
0
流体力学泵与风机-第6章-气体射流ppt课件

篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
§6.1
无限空间淹没紊流射流的特征
一、过渡断面(转折断面)、起始段、主体段
射流核心:u=u0 边界层: u<u0
主体段: 轴心u<u0 , u沿程下降 射流特征:几何?速度等?
出口截面动量流量
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
§6.2
圆断面射流的运动分析
一、主体段轴心速度vm
R
2v2ydyr02v02 0
两端同除以R2vm2 ,在一个断面上vm可视为常数进行计算
(r0)2(v 0)2 2R (v)2ydy () 21 (1 1 .5)4d 0 .09 Rv m 0 v m RR 0
r 0 3 .4 a 0 .15 3 .4 0 .08
(2)先求起始段核心长度sn
sn 0 .6r 7 a 0 1 0 .6 7 0 0 ..0 1 1 8 5 1 .2m 6 3 .8m 6所在求主断体面段内
v2 0.4545 0.4545 0.193
v0 as0.2940.0 83.860.294
三、运动特征
主 y--体-断速段面度:上分任布意: 点至vvm 轴心距[1离(R y问)1.题5]2:[1v m如1.5何]2确定?
R---该断面射流半径 v---y点的速度 vm---轴心速度
起始段:
y---断面上任意点 至核心边界的距离
R---同断面的边界层厚度 v---y点的速度 vm---核心速度v0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 气体的一维定常流动
第一节 气体一维流动的基本概念
气体的状态方程
T 热力学温度 E 流体的内能 S= E V T)
S = S(V,T)
比定容热容和比定压热容 cV 比定容热容 两者的关系 γ = cp cV c p 比定压热容 p V = 等温过程 p V 热力学过程
选用与微弱扰动波一起运动的相对坐标系作 为参考坐标系, 为参考坐标系,流动转化成定常的了
第一节 气体一维流动的基本概念
由连续方程 略去二阶微量 由动量方程
(ρ1 + dρ )(c − dv )A − ρ1cA = 0
cdρ = ρ1dv
(1)
ρ1cA(c − dv) − c] = [ p1 − ( p1 − dp)]A [
2 1 1 2
绝热过程 等熵过程
dQ = 0
p
ργ
= 常数
或者
pvγ =
常数
第一节 气体一维流动的基本概念
声速和马赫数 声速是微弱扰动波在弹性介质中的传播速度
p2
ρ2
T2
c − dv
c
p1
ρ1
T1
活塞以微小的速度dv向右运动, 活塞以微小的速度dv向右运动,产生 dv向右运动 一道微弱压缩波, 一道微弱压缩波,流动是非定常的
或者
1 p0 − p = ρv2ε p 2
压缩性因子
ε p = 1+ Ma2 +
1 4
2-γ 4 Ma +L 24
极限状态 气流膨胀到完全真空所能达到的最大速度 极限速度
能量方程的另一种形式
vmax = 2γR T0 γ −1
2 2 c0 c2 v 2 v max + = = γ −1 2 2 γ −1
(
)
联立得
dp 1-M a2 dA = d p ρ γM a2 2 dv A
Ma < 1
Ma > 1
ρ
= −Ma
v
Ma = 1 At = Acr
dT dv = −(γ −1)Ma2 T v
p、 v
(1) Ma〈1时,气流作亚声速流动 dv与dA正负号相反, 与dA正负号相同。 。 dp 由此可知:对于亚声速 变截面的流动,随着流 通截面积的增大,气流 速度 降低,压强增大;截面 积减小,则流速增大, 压强降低。
Ma > 1
或者
0
v cr
v max
v
令Ma=1 则总静 参数比公式变成
p cr 2 γ −1 = γ + 1 p0
γ
ρ cr 2 = γ + 1 ρ0
1 γ -1
第四节 气流的三种状态和速度系数
速度系数 气流速度与临界声速的比值 vmax γ +1
dρ c= dp s
ρ1cdv= dp
(2)
由(1)、(2)得 )、(2 流体的体积模量
K=
声速公式
c= K
Vdp dp =ρ dV dρ
代入声速公式得
dρ ρ 1 = = dp γp γRT
ρ
由等熵过程关系式以及状态方程可得 代入声速公式得
c= γ p
ρ
= γRT
第一节 气体一维流动的基本概念
pcr 2.1132 ×105 ρ cr = = = 2.8653 kg m 3 RTcr 297 × 248.32
vcr = γRTcr = 1.4 × 297 × 248.32 = 321.33 m s
qm = ρ cr vcr
πd 2
4
= 2.8653 × 321.33 ×
π × 0.052
4
γ γ −1
ρ γ -1 2 = 1 M∗ ρ0 γ + 1
1
γ −1
第五节 气流参数和通道截面之间的关系
设无粘性的完全气体沿微元流管作定常流动, 设无粘性的完全气体沿微元流管作定常流动,在该流管的微元距离dx上,气体 质量力可以不计, 流速由v变为vdx,压强由p变为p+dp,质量力可以不计,应用牛顿第二定律
ρvdv= −dp
同除以压强整理, 同除以压强整理,并引入声速公式 对等熵过程关系式取对数后微分有
dp ρ 2 dv = − vdv = −γMa p p v
dp dρ =γ ρ p
dp dρ dT = + p ρ T
对完全气体状态方程取对数后微分
第五节 气流参数和通道截面之间的关系
dA dv = Ma 2 − 1 A v
( 2 ) p amb p 0 = p cr p 0 时,喷管内为亚声速流 ,出口截面的气流达临 界状态, Ma = 1, p = p cr = p amb , q m q m , max = 1, 气体在喷管内仍可得到 完全膨胀。
(3) pamb p0 〈 pcr p0 时,整个喷管的气体流动为亚声速,在出口截面上Ma = 1, p = pcr 〉 pamb , qm qm ,max = 1。由于出口的气流压强高于环境背压,气体在喷管内没有完全膨胀,气体流出 喷管后将继续膨胀,故称膨胀不足。此时,虽然背压小于临界压强,由于微弱扰动波不能 逆流上传,流量不再随着背压降低而增大,称这种现象为壅塞现象。
当v=vmax时
Ma2 =
2 ∗
∗
M∗max =
ccr
=
M ∗ = v ccr
γ -1
M*与Ma的关系 2M 2
(γ +1) − (γ −1)M∗2
M
(γ +1)Ma2 = 2 + (γ -1)Ma2
总静参数比用速度系数表示
γ -1 2 T c2 = 2 = 1M∗ T0 c 0 γ +1
p γ -1 2 = 1 M∗ p0 γ + 1
(2) Ma〉1时,气流作超声速流动 dv与dA正负号相同,dp与dA正负号相反。 。 可见,对于超声速流, 随着截面积的增大,气 流速度增大,压强降低 ;截 面积减小,则气流速度 减小,压强增大。
v(x)
pcr
vcr
p(x)
x
(3) Ma = 1时,气流跨声速流动。 dA = 0, dv = 0, dp = 0。根据上式分析可知, 气流由超声速变为亚声 速时, 管道必须先收缩,后扩 张,中间必然出现一个 最小截面。在这一截面 上流速度实现声速,达 到临界状态, 最小截面称为喉部。其 后随着截面积的增大, 气流作超声速流动。
γ γ −1
总静参数比
据等熵关系式
ρ0 γ -1 2 = 1 + Ma ρ 2
1 γ -1
第四节 气流的三种状态和速度系数
考虑气体的压缩性与否及会带来多大误差γ p (2 - γ )γ 6 γ γ 2 4
= 1 + Ma + Ma + p 2 8
0
2 -γ 1 Ma + L = 1 + Ma2 1 + Ma2 + Ma4 + L 48 2 24 4
2c 3c 4c
(a)气体静止不动 (a)气体静止不动
(a)
2c
3c
4c
o
(b)
2
o
(b)气流亚声速流动 (b)气流亚声速流动 (c)气流以声速流动 (c)气流以声速流动 (d)气流超声速流动 (d)气流超声速流动 马赫角
c 1 sin α = = v Ma 1 α = sin Ma
= 1.8076 kg s
缩放喷管
流量
第六节 喷管流动的计算和分析
2 qm,cr = At γ +1 A A
At =
γ +1 2 (γ -1)
v2 Ma = γRT
2
Ma<1 Ma=1 Ma>1
亚声速流 声速流 超声速流
马赫数通常还用来划分气体的流动状态
第二节 微小扰动在空气中的传播
如果在空间的某一点设置一个扰动源,周围无任何限制, 如果在空间的某一点设置一个扰动源,周围无任何限制,则扰动源 发出的扰动波将以球面压强波的形式向四面八方传播, 发出的扰动波将以球面压强波的形式向四面八方传播,其传播速 度为声速. 度为声速.分四种情况讨论 v = 0 v< c
滞止状态 : 气流速度等熵地滞止到零这时的参数称为滞止参数
气体一维定常绝能流的制止焓是个常数 得
cp =
2
v2 T+ = T0 2cp
γR γ −1
v2 Ma = 2 c
c = γRT
2
}
2 T0 c 0 γ -1 2 = 2 = 1+ Ma T c 2
p0 γ - 1 Ma 2 = 1 + p 2
第六节 喷管流动的计算和分析
收缩喷管
列容器内虚线面上和喷管出口的能量方程 2
γ p v γ p0 + = γ- ρ 2 γ −1 ρ0 1
p 0
0
得
v=
2γ p0 p ρ0 1− γ −1 ρ0 p0 ρ
T 0 v =0 0 p T v
γ −1 γ −1 pγ pγ 2γ p0 2γ v= 1− = RT 1− p0 γ −1 0 p0 γ −1 ρ0
例6 − 1封闭容器中的氮气 [γ = 1 .4, R = 297 J (kg ⋅ K )] 的滞止参数 p 0 = 4 × 10 5 Pa , T0 = 298 K 。气体经过安装于容器 壁面上的收缩喷管流出 ,已知喷管出口直径 d = 50 mm ,出口环境背压 p amb = 10 5 Pa ,试求喷管的质量流量 。 2 2 Tcr = = = 0.8333 T0 γ +1 1.4 +1 解