运筹学——解对偶单纯形法
运筹学-单纯形法灵敏度对偶
若新增约束如下:
max z 50x1 100x2 x1 x2 300 2x1 x2 400 x2 250 10x1 30x2 5000(电力约束) x1, x2 , 0
x1 x2 s1
把最优解x1=50,x2 =250代入电力约束 1050+30 250=80005000 新约束不满足,最优解变化
例题:已知某线性规划初始可行基是(S1 S2 S3 a1), 最终单纯形表如下,求对偶价格不变时的△bi变化范围
x1 x2 s1
50 100 0
X1 50
1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0
0
1
Zj
50 100 0
δj
0
0
0
(1) △b1的变化范围: ?
(2) △b2的变化范围:?
(3) △b3的变化范围: ? (4) △b4的变化范围:?
1 0 1 2 0.5
B1 p6'
2
1
1
0.5
2
0 0 1 1.5 1.5
Z6' 50 0.5 0 (2) 100 1.5 175
' 6
C6
Z6'
150 175
25
δ6´<0,最优解不变,即仍生产Ⅰ50件,Ⅱ100件。
2、变量xk系数列由pk变为pk´,在最终单纯形表 上xk是基变量
x1 x2 s1
50 100 0
X1 50 1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0
运筹学 对偶单纯形法
=min{j’ / akj’┃akj’<0}=r’/akr’那么 xr为进基变量,转4; 4.以akr’为转轴元,作矩阵行变换使其变为1,该
列其他元变为0,转2。
2.对偶单纯形法
例3.2:求解线性规划问题:
1.线性规划对偶问题
对称形式: (P) Max z = cT x s.t. Ax ≤ b x ≥0 “Max -- ≤ ”
互为对偶 (D) Min f = bT y s.t. AT y ≥ c y ≥0 “Min-- ≥”
线性规划的对偶模型
原问题(或对偶问题) 约束条件右端项 目标函数变量的系数 目标函数 max 约 束 条 件 m个 ≤ ≥ = n个 变 量 ≥0 ≤0 无约束 对偶问题(或原问题) 目标函数变量的系数 约束条件右端项 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 约 束 条 件 变 量
否
所有aik
计算
0
否
是
Hale Waihona Puke 0 bi be min aik 0 aik aek
计算
j min aej 0 k < aej aek
以为中心元素进行迭代
以为中心元素进行迭代
单纯形法和对偶单纯形法步骤
2.对偶单纯形法 对偶单纯形法的适用范围 对偶单纯形法适合于解如下形式 的线性规划问题
0 x4 0 1 0 0 0 1 0 0 0 1 0 0
0 x5 0 0 1 0 -1 -1 1 -100 -1 1 1 -50
I
θ i 300 400 250 50 75
运筹学及其应用4.3 对偶单纯形法
min w= 2x1+3x2+4x3+0x4+0x5 x1+2x2+ x3-x4= 1 2x1- x2+3x3– x5=4 x1,x2,x3,x4,x5≥ 0
min w= 2x1+3x2+4x3+0x4+0x5 -x1-2x2- x3+x4= -1 -2x1+x2-3x3+x5= -4 x1,x2,x3,x4,x5≥ 0
4
234 000
0
x1 x2 x3 x4 -1 -2 -1
x4 x5 b 1 0 -1
max
2 −2
4 ,
−3
=
−1
0 x5 -2* 1 -3 0 1 -4
σ 234 000
0 x4 0 -2.5 0.5 1 -0.5 1
2 x1 1 -0.5 1.5 0 -0.5 2
σ 0 4 1 0 1 -4
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格; (2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
1
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格;
(2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
5
• 作业 • P81 1.12(1)
6
§3 对偶单纯形法
单纯形法:由 XB = B-1b ≥ 0,使σj ≥ 0,j = 1,···,m 对偶单纯形法:由σj ≥ 0(j= 1,···,n),使XB = B-1b ≥ 0 相同点:都用于求解原问题
应用运筹学基础:线性规划(4)-对偶与对偶单纯形法
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
对偶单纯形法的计算步骤_实用运筹学:案例、方法及应用_[共3页]
41第2章对偶理论与灵敏度分析即y 是对偶问题(D )的一个可行解。
条件式(2-21)称为对偶可行性条件,即最优性条件式(2-20)与对偶可行性条件式(2-21)是等价的,因此,如果一个原始可行基B 是原问题(P )的最优基,则1=B y c B -就是对偶问题(D )的一个可行解,此时对应的目标函数值1B w=yb =c B -,等于原问题(P )的目标函数值,可知1=B y c B -也是对偶问题(D )的最优解。
若原问题(P )的一个基本解1=0B b x ⎛⎞⎜⎟⎝⎠-对应的检验数向量满足条件式(2-20),即 =(,)=0,0B N N B σσσc c B N -1(-)≤则称x 为(P )的一个正则解。
于是可知,原问题(P )的正则解x 与对偶问题(D )的可行解y 是一一对应的,它们由同一个基B 所决定,我们称这一基为正则基。
因此,我们可以设想另一条求解思路,即在迭代过程中,始终保持对偶问题解的可行性,而原问题的解由不可行逐渐向可行性转化,一旦原问题的解也满足了可行性条件,也就达到了最优解。
也即在保持正则解的正则性不变条件下,在迭代过程中,使原问题解的不可行性逐步消失,一旦迭代到可行解时,即达到了最优解。
这正是对偶单纯形法的思路,这个方法并不需要把原问题化为对偶问题,利用原问题与对偶问题的数据相同(只是所处位置不同)这一特点,直接在反映原问题的单纯形表上进行运算。
2.3.2 对偶单纯形法的计算步骤求解如下标准形式线性规划问题:max =z cx s.t.0Ax =bx ⎧⎨⎩≥对偶单纯形法的计算步骤如下:(1)找一个正则基B 和初始正则解(0)x ;将原问题化为关于基B [不妨设12=(,,,)m B P P P ]的典式,列初始对偶单纯形表,如表2-5所示。
表2-5 对偶单纯形表12 1 2 12121c 1x 1'b 1 0 … 0 1+1'm a 1+2'm a … 1'n a 2c 2x 2'b 01 02+1'm a 2+2'm a … 2'n am c m x'm b 0…1 +1'mm a +2'mm a … 'mn a c j -z j0 0 0+1m σ+2m σ…n σ(2)若1=b'B b -≥0,则停止计算,当前的正则解1=x B b -,即为原问题的最优解;否则转下一步。
对偶单纯形法(经典运筹学)
对标准型 maxz CX s.t AXb X 0,b 0
AB,N
CC B CN
X
X X
B N
A P 1P 2 P m P m 1 P n 设 BP 1 P 2 P m是可
于A是 X b
B
N
XB XN
b
BX BNN Xb
B 可逆
XBB1bB1NN X
且ZCB CNXXNB CBXBCNXN
C B (B 1 b B 1 NN )X C N X N
0 1 -1 -1 0
1 0 1/5 4/5 6/5 0 0 -2/5 -3/5 3/5 .
1、确定出基变量:
设br =min{bi | bi <0}
则取br所在行的基变量 为出基变量
即取X4为出基变量
2、确定入基变量: 原则: 保持检验行系数≤0
C B B 1 b (C N C B B 1 N )X N
.
对问题maxz CX
m Z a C B B x 1 b ( C N C B B 1 N ) X N
s.t AX b X 0
XBB1bB1NN X
取可行基
BP1 P2
XB0,XN0
Pm关于可行基B的典则形式
检验数
令XN 0 得 XBB1b0得基本X 可 1行 B1b解 ,0
3x1 x2 x3
3
s.tx41x1 2x32x2
x4 6 x5 3
x1,x2,x3,x4,x5 0
取 B 基 P 3 ,P 4 ,P 5 基X 本 0 , 0 , 解 3 , 6 , 3
X1 X2 X3 X4 X5 检 -2 -1 0 0 0 Z
不
可
X3 -3 -1 1 0 0 -3
2.2运筹学 对偶问题的基本性质
y1*
x
* s1
0
y2*xs2* 0
ym*
x
s
* m
0
若y
* 1
0则x
* s1
0
若x
* s1
0则y
* 1
0
对偶变量不为0 ,原问题相应 约束式是等式
原问题约束为
已知线性规划问题
不等式,相应
min 2 x1 3 x2 5 x3 2 x4 3 x5
对偶变量为0
x1 x2 2 x3 x4 3 x5 4
(2)
2 y1 3 y2 5
(3)
y1 y2 2
(4)
3 y1 y2 3
(5)
y1 , y2 0
将
y* 1
,
y* 2
的值代入约束条件,得(2),(3),(4)为严格不等式;由互
补松弛性得 x*2 x*3 x4* 0。因 y1,y2 0;原问题的两个约束条
件应取等式,故有
x1* 3 x5* 4
B 1b C B B 1b
与-原原问问问题令题题的Y的的基=检C检解验B验(B差数数-1一对,故比负应较可号对-得-)偶---对- 偶问题YS的2=一CB个B-基1N解-C.N
YS1=0
原 问 题
对偶 问题
变量性质
检验数 基解
变量性质
基变量
非基变量
XB 0
-YS2 非基变量
XN
XS
CN-CBB-1N -CBB-1
机械设备
甲 1
原材料A 4
影子价格
原材料B 0
经济意义பைடு நூலகம் 在其它条件 不变的情况 下, 单位资源变 化所引起的 目标函数的 最优值的变 化。
运筹学对偶问题
X 0
min W YB s .t. (B) YA C T Y 0
其中: C c 1 c 2 c n
Y y 1 y 2 y m
b 1
B
b2
b m
a11
A
a21
an1
a12 a22
a 整m理2 课件
a1n a2n amn
那么它的对偶问题就是“在另外一些条件下, 使工作的消耗(浪费、成本等)尽可能的小”。
实际上是一个问题的两个方面。
整理课件
25
例:某产品计划问题的
线性规划数学模型为
假设生产部门根据市场变化,
max F 2x1 x2 s.t.
决定停止生产甲、乙产品, 而将原有的原料、设备专用
3x1 5x2 15 5x1 2x2 10 x1 , x2 0
(A‘)
(B‘)
max Z ' 4 x 1 5 x 3 5 x 4 s .t. 3 x 1 2 x 3 2 x 4 20 4 x 1 3 x 3 3 x 4 10 x1 x3 x4 5 x1 x3 x4 5 x1 0, x3 0, x4 0
min W ' 20 y1 ' 10 y 2 ' 5 y 3 ' 5 y 4 ' s.t. 3 y1 '4 y 2 ' y 3 ' y 4 ' 4 2 y1 '3 y 2 ' y 3 ' y 4 ' 5 2 y1 '3 y 2 ' y 3 ' y 4 ' 5 y1 ' 0, y2 ' 0, y3 ' 0, y4 ' 0
大学运筹学经典课件第六章单纯形法的灵敏度分析与对偶
12
§1 单纯形表的灵敏度分析
三、约束方程系数矩阵A灵敏度分析
下面分两种情况讨论
1.在初始单纯形表上的变量Xk的系数列Pk改变为P’k经过迭代后,在最终单纯 形表上Xk是非基变量。由于单纯形表的迭代是约束方程的增广矩阵的行变换, Pk变成Pk’仅仅影响最终单纯形表上第k列数据,包括Xk的系数列、Zk以及 k, 这时最终单纯形表上的Xk的系数列就变成了B-1Pj’,而Zk就变成CBB-1Pk’,新的检 验数 k=Ck-CBB-1Pk’。若 k≤0,则原最优解仍然为最优解。若 k 〉0,则继续进 行迭代以求出最优。
这个约束条件的对偶价格就和这个剩余变量的 有关了。这将使得最优目
标值特别“恶化”而不是改进,故这时约束条件z j的对偶价格应取 值的相反
数- 。
zj
对z j于含有等于号的约束条件,其约束条件的对偶价格就和该约束方
程的人工变量有关了。其约束条件的对偶价格就等于此约束方程的人工变
量的 值。
zj
管理运筹学
成了Ck+ Ck。这时 K= Ck-Zk就变成了Ck+ Ck- Zk= K+ Ck。要使原来的最优解 仍为最优解,只要 K+ Ck≤0即可,也就是Ck的增量 Ck≤- K。
2.在最终的单纯形表中, X k是基变量 当Ck变成Ck+ Ck时,最终单纯形表中约束方程的增广矩阵不变,但是基变量的目 标函数的系数CB变了,则ZJ(J=1,2,…..,N)一般也变了,不妨设CB=(CB1, CB2。。。, Ck, …, CBm),当CB变成=(CB1, CB2。。。,Ck+ Ck,…,CBm),则:
如要使XB成为可行解,只要使上述等式的右边>0,就可求出
b
运筹学第2章 对偶理论01-对偶问题及影子价格、对偶单纯形法
第2章对偶理论及灵敏度分析主要内容对偶理论⏹线性规划对偶问题⏹对偶问题的基本性质⏹影子价格⏹对偶单纯形法灵敏度分析⏹灵敏度问题及其图解法⏹灵敏度分析⏹参数线性规划线性规划的对偶问题⏹对偶问题的提出⏹原问题与对偶问题的数学模型⏹原问题与对偶问题的对应关系实例:某家电厂家利用现有资源生产两种产品,有关数据如下表:设备A设备B 调试工序利润(元)612521115时24时5时产品Ⅰ产品ⅡD一、对偶问题的提出如何安排生产,使获利最多?厂家设Ⅰ产量–––––Ⅱ产量–––––1x 2x ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=052426155 2max 212121221x x x x x x x s.t.x x z ,设设备A ——元/时设备B ––––元/时调试工序––––元/时1y 2y 3y 收购付出的代价最小,且对方能接受。
出让代价应不低于用同等数量的资源自己生产的利润。
设备A 设备B 调试工序利润(元)0612521115时24时5时ⅠⅡD ⏹厂家能接受的条件:⏹收购方的意愿:32152415min yy y w ++=单位产品Ⅰ出租收入不低于2元单位产品Ⅱ出租收入不低于1元出让代价应不低于用同等数量的资源自己生产的利润。
1252632132≥++≥+y y y y y52426155 2212121221⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=x x x x x x x s.t.x x z ,max ⎪⎩⎪⎨⎧≥≥++≥+++=0y 125265241532132132321y y y y y y y t s y y y w ,,.min 对偶问题原问题收购厂家一对对偶问题⎩⎨⎧≥≥=⇒⎩⎨⎧≥≤=00bY C YA s.t.Yb w X AX t s CX z min ..max ),(21c c C =⎪⎪⎫ ⎛=1x x X )(ij a A =()321,y ,y y Y =⎪⎪⎪⎫ ⎛=321b b b b 3个约束2个变量2个约束3个变量原问题对偶问题其它形式的对偶问题?特点:1.原问题的约束个数(不包含非负约束)等于对偶问题变量的个数;2.原问题的价值系数对应于对偶问题右端项;3.原问题右端项对应于对偶问题的价值系数;4.原问题约束矩阵转置就是对偶问题约束矩阵;5.原问题为求最大,对偶问题是求最小问题;6.原问题不等约束符号为“≤”,对偶问题不等式约束符号为“≥”;二、原问题与对偶问题的数学模型1.对称形式的对偶当原问题对偶问题只含有不等式约束时,称为对称形式的对偶。
运筹学第8讲:对偶单纯形法及灵敏度分析简介
② 原问题有可行解(b≥0), 对偶问题无可行解(存在δj>0),采 用单纯形法继续求解
③ 原问题无可行解(存在bi<0), 对偶问题有可行解( δ≤0 ), 采用对偶单纯形法继续求解
④ 原问题无可行解(存在bi<0), 对偶问题无可行解(存在δj>0), 设法使bi>0,并引入人工变量,采用大M 法继续求解
P38:例3.6
某公司生产甲、乙、丙、丁四种产品,已知制造单件产品时分
别占用的设备A、B的台时,设备A、B每天可用于生产的能力 以及单件产品的收益情况如下表所示。问该公司应该如何制定 最优生产计划? 项目 甲 乙 丙 丁 每天可用能力
设备A(h) 设备B(h)
单件利润(元)
3 2
4
2 3
3
1 2
上式两边左乘B-1,得到
题的最优基B不变,我们可以直接 求出新问题的最优解
X B B1b B1NX N
(1)
运筹学
第8讲:对偶单纯形法及灵敏度分析简介
设 Pj
为初始单纯形表中的第j 列列向量,
设 Pj’为最终单纯形表中的第j 列列向量 例如: 3 P 1 2 我们不难得到:
运筹学
第8讲:对偶单纯形法及灵敏度分析简介
同时,
Pj ' B1Pj
(3)
例如:
3 5 2 5 3 1 B P 1 1 2 0 P ' 2 5 3 5
1
再考察式(1),由于XN=[0, 0]T,因而
X B * B1b
(2) 解:设乙的收益c2直接反映到原问题的最终单纯形表中,得到
为使最优生产计划不变,则δ3, δ4 ,δ5, δ6 ≤0,得到
对偶单纯形法(经典运筹学)
解:问题化为标准型 max Z 2 x1 x 2 5 x1 x 2 x3 2 x 2 x3 x 4 5 s.t 6x xx 9 xx 2 2 6 x3 3 5 5 9 44 x1 , x 2 , x3,x 4,x5 0
X1 X2 X3 X4 X 5
2 检 0 1 -1 1 2 -4 0 -2 1 1 -6 0 0 1 0 0 0 0 1
Z Z-10
X1 1 X4 0
5 5 -9
X5 0
4
14 13 X1 X 2 X 3
检
X1 X4
0 1 0 0 0 0 0 1
X4
X5
-1/4 Z-31/4 1/4 1/2 11/4 1/2
所在行的基变量出基 则取br
4、以ari0 为主元素进行换基迭代 ,得一新的单纯形表, 转2
例:用对偶单纯形法 求解下列问题 max Z 2 x1 x 2 x1 x 2 x3 5 2x x 5 11 9 2 3 最优解 X ( ,) s.t 4 4 4 x 6 x 9 2 3 31 x1 , x 2 ,Z x3 0 最优值
-1/2 0 -1/2 0 -2 3/2 1 0
X2
-1/4 9/4
11 9 1 最优解 X ( ,, 0, , 0 ) 4 4 2 初始基 B (P ) 1,P 4,P 5 31 最优值 Z 不是典则形式 4
注意:对偶单纯形法仅限于初始基B对应 可用对偶单 的典则形式中目标函数的系数(检 纯形法 验数)均≤0的情形。 B的典则形式
对偶单纯形法是求解对偶规划的一种方法 × 对偶单纯形法:利用对偶理论得到的一个 求解线性规划问题的方法
单纯形法(原始单纯形法)的两个条件:
运筹学对偶单纯形法
8. 最优松紧性 设
= (XT, XTs) = ( x1 , x2 , … , xn , … , xn+m )T
T = (YT,Ys ) = ( y1 , y2 , … , ym , … , ym+n )T
分别是(P1) (D1)的可行解,那么 和 分别是(P1) (D1)最优解的充分必要条件是: ⑴ xj >0 → ym+j = 0 ⑵ ym+j>0 → xj = 0 ⑶ xn+i > 0 → yi = 0 ⑷ yi > 0 → xn+i = 0
关系3:一般对偶关系
对偶问题 目标要求
规范不等式 约束的式号
(P) max ≤ (aij)m×n
第 k 个约束 约束个数 第 k 个右端常数 (非)规范不等式约束 等式约束
(D) min ≥ (aji)n×m
第 k 个变量 变量个数 第 k 个价值系数 非负(正)变量 自由变量
系数阵 函数 约束 与 变量
(2) 对资源 i 现行分配量的评估。当资源 i 在市场上脱销时, 其总存量无法增加,但可酌情调整其在企业内部的现行分配量, 以便获得最佳经济效益。 二、 当 yi* 代表影子利润(即企业的目标是实现最大总利 润)时: (1) 对资源 i 总存量的评估。 (2) 对资源 i 现行分配量的评估。
对偶问题的经济解释
工时利润 (百元/工时) y1 y2 y3
产品 车间
单耗(工时/件)
甲
乙
最大生产能力 (工时/天)
A B C
单位利润 (百元/件)
1 0 2 3
0 2 3 2
运筹学
单纯形法 从一个初始基可行解出发
对偶单纯形法 从一个初始正则解出发
检验数可 保持右端常数 右端常数 保持检验数非 正可负 非负(可行性) 可正可负 正(正则性) 检验数均≤0,即为最优解 右端常数均≥0,即为最 优解
对偶单纯形法的实质就是对原问题的对偶问题运 用单纯形法求解.
灵敏度分析的概念
线性规划问题的系数有 aij、bi 、 cj,这些系数 往往是估计值或预测值。 市场条件变化, cj值就会变化;工艺条件和技术 水平改变, aij就变化; bi是根据资源投入后的经济效 果决定的一种选择,市场供应条件发生变化时,亦会 改变。 提出问题:
2 1 1 5 1 7 c7 C B B P7 c7 5, 2 1 2 c7 0 2 3 2
当c7 ≤ 5/2时,最优基、最优解、最优值不变。原 最优生产方案保持不变。
5.3 应用QM软件进行灵敏度分析
P5 15 — 20 200
已知产品P2的最低需求和最高需求分别为10和 100单位;产品P4的最低需求和最高需求分别为20和 150单位,其余产品的产量无限制。该厂有9台磨床 和6台钻床,每周工作6天,每天两班,每班8小时。 另用24名工人进行装配,每人每天一班。为获取最 大的总利润,试求一周内每种产品各应生产多少? 并根据计算机求解后的输出结果回答下列问题:
(2) CN-CBB-1N≤0
只要 X B B1 b 0 ,而以B为基的检验数不变,则 最优解不变,但最优解的数值发生了变化(由 B 1 b B 1 b ),最优值CBB-1b也发生变化。 变为
B 1 b b B 1b B 1b ≥0
br 的范围由
2
σj
运筹学第4章 单纯形法的对偶问题
管理运筹学
3
§1 线性规划的对偶问题
如果我们把求目标函数最大值的线性规划问题看成原问题,则把求目标函数最小值的线 性规划问题看成对偶问题。下面来研究这两个问题在数学模型上的关系。
1 求目标函数最大值的线性规划问题中有n 个变量 m个约束条件,它的约束条件都是小于 等于不等式。而其对偶则是求目标函数为最小值的线性规划问题,有m个变量n个约束条件, 其约束条件都为大于等于不等式。
5x1 3x2 x3 200
管理运筹学
10
§1 线性规划的对偶问题
通过上面的一些变换,我们得到了一个和原线性规划等价的线性规划 问题:
max z 3x1 4x2 6x3
s.t. 2x1 3x2 6x3 440,
6x1 4x2 x3 100, 5x1 3x2 x3 200 5x1 3x2 x3 200 x1, x2 , x3 0
进一步,我们可以令y3
y
' 3
y
'' 3
,这时当
y
' 3
y
'' 3
时,y
0,当
y
' 3
y
'' 3
时, y3 0 。这也就是说,尽管
y
' 3
,
y
'' 3
0,
但 y3 的取值可以为正,可以为0,
可以为负,即 y3 没有非负限制。
这样我们把原规划的对偶问题化为
min f 440 y1 100 y2 200 y3
这样第二个约束条件也就符合要求。对于第三个约束条件,我们可以 用小于等于和大于等于两个约束条件来替代它。即有
对偶单纯形法(经典运筹学)
X1 X2 X3 X4 X5 检 X3 -2 -1 0 -3 -1 1 0 0 0 0 Z -3
X4
X5
-4 -3 0
1 2 0
1
0
0
1
-6
3
不 可 行
即max Z 2 x1 x2
3 3x1 x 2 x3 4 x 3x x4 6 1 2 s.t x5 3 x1 2 x 2 x1 , x 2 , x3 , x 4 , x5 0
-1/3 0 -1/3 0 2/3 1
X 3 X4 X5 0 -3/5 -2/5 Z+12/5 1 -1 -1 0
X2 0 X1 1
1 0
0 0
1/5 4/5 6/5 -2/5 -3/5 3/5
3 6 最优解X ( ,, 0, 0, 0 ) 5 5 最优值Z 12 5
则取xi0 为入基变量
1
1
令X N 0 得X B B b 0 得基本可行解 X 1 B b,0
1
1
1 、若所有的检验数 CN B 1 N 0 , 则X 1为最优解
2、检验数 C N C B B 1 N中存在一个分量 0, 且该分量对应的列 向量中所有的分量 0, 则目标函数值在可行解 域内无上界
1、确定出基变量: 设br =min{bi | bi <0} 则取br所在行的基变量 为出基变量 即取X4为出基变量 2、确定入基变量: 原则: 保持检验行系数≤0
i i0 设 min | a ri 0 a ri a ri 0
1 21 3
X1 检 -2/3 X3 -5/3 X2 4/3 X5 -5/3 X1 检 0 X3 0 X3 X4 0 -1/3 1 0 0
运筹学-3对偶单纯形法
1.对偶单纯形法的应用条件; 2.出基与进基的顺序; 3.如何求最小比值; 4.最优解、无可行解的判断。 作业:教材P76 T2.7
The End of Section 3
灵敏度分析 Exit
即对偶问题具有无
界解,由性质2a知ik 原问a题Lj 无可行解。aik
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
2020年6月20日星期六 Page 9 of 9
本节利用对偶性质6:原问题的检验数与对偶问题的基本 解的对应关系,介绍了一种特殊线性规划的求解方法—对 偶单纯形法。
0
-4
-1
0
-1
— 1.6 — —
2
x2
0.4
0
1 -0.2 -0.4 0.2
x1
2.2
1
0
1.4 -0.2 -0.4
检验数 5.6
0
0 -1.8 -1.6 -0.2
最优解: x2=0.4 x1=2.2
Max z = -5.6
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
【解】先将约束不等式化为等式,再两边同乘以(-1), 得到
min z 2x1 3x2 4x3
x1 2x2 x3 x4 3
2x1 x2 3x3 x5 4
x
j
0,
j
1,2,
,5
用对偶单纯形法,迭代过程如下页或看演示(请启用宏)。
§2.3 对偶单纯形法 The Dual Simplex Method
问题中,λ≤j0分母aij<0,
j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CBB-1是基可行解从X0迭代到另一个基解X1,在迭代过程中保持它 对应的对偶问题的基解是基可行解,逐步消除原问题基解的不可行性,最终达到两者同时为可行解,也就同时是最优解了。这就是对偶单纯 形法的基本思想。
否则转向STEP4;
Step4确定换入变量xOk,其中 水0k=min ot [3lt; [3lt<0;1 <t<n+m ;
Step5取x0l为换出变量,x0k为换入变量进行迭代,然后重复上过程 直到得到最优解。
程序
#i nclude<stdio.h>
#in clude<math.h>
int m,n;
float M=1000000.0;
float A[100][100];
float C[100];
float b[100];
float seta[100];
int num[100];
float z=0;
void in put();
void prin t();
int duiouda nchu nxin g1();
给出一个线性规划问题:
Max z=CX
AX<b
X X)
其对偶问题是:
Min w = Yb
YAXC
YX)
单纯形法解决线性规划问题的思想是:
从问题(1)的一个基解X0开始迭代到另一个基解,在迭代过程中 保持基解的可行性,同时它对应的对偶问题 ⑵的基解Y0二CBB-1的 不可行性逐步消失,直到Y0是问题 ⑵的可行解时,X0就是问题(1)的 最优解了。
{
int i,j;
int flag=O;
float min;
for(j=0;j <n ;j++)
if(A[a][j]>=0)
flag=1;
else {flag=O;break;}
if(flag==1)
{printf("\n该线性规划无最优解!\n"); return -1;}
for(j=0;j <n ;j++)
for(i=0;i<m;i++)
sea nf("%f",&b[i]);
prin tf("\n请输入目标函数各个变量的系数所构成的系数阵
for(i=0;i <n ;i++)
sea nf("%f",&C[i]);
}
int duiouda nchu nxin g1()
{
int i,k;
int flag;
float min=0;
{
temp2=A[i][l];
b[i]=b[i]-b[c]*temp2;
for(j=0;j< n;j++)
A[i][j]=A[i][j]-A[c][j]*temp2;
}
}
temp3=C[l];
for(i=0;i <n ;i++)
C[i]=C[i]-A[c][i]*temp3;
z=z+b[c]*temp3;
{
int i,j,c,l;
float temp1,temp2,temp3;
c=q;
l=p;
temp仁A[c][l];
b[c]=b[c]/temp1;
for(j=0;j <n ;j++)
A[c][j]=A[c][j]/temp1;
for(i=0;i<m;i++)
{
if(i!=c)
if(A[c][l]!=0)
}
void prin t()
{
int i,j;
printf("\n
\n");
prin tf("\t");
for(i=0;i <n ;i++)
{
prin tf("%.3f\t",-C[i]);
}
prin tf("%.3f",z);
printf("\n
for(i=0;i<m;i++)
if(b[i]>=0)
flag=1;
else {flag=0;break;}
if(flag==1)
return -1;
for(i=0;i<m;i++)
{
if(mi n>b[i])
{mi n=b[i];k=i;}
}
return k;
} int duiouda nchu nxin g2(i nt a)
{
if(A[a][j]<0)
seta[j]=-C[j]/A[a][j];
else seta[j]=M;
}
mi n=M;
for(j=0;j <n ;j++)
{
if(min>=seta[j])
{mi n=seta[j];i=j;}
}
nu m[a]=i+1;
return i;
}
void duiouda nchunxin g3(i nt p,i nt q)
题目:对偶单纯形法解线性规划问题
小组成员:
摘要:
运筹学是辅助人们进行科学管理的一种数学方法.而对偶单纯形 法是线性规划中重要的数学方法,在简化运算,解决实际问题中具有 重要的应用。它是解决研究线性约束条件下线性目标函数的极值问题 的数学理论和方法,广泛应用于军事作战、经济分析、经营管理和工 程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的 最优决策,提供科学的依据。在经济管理、交通运输、工农业生产等 经济活动中,提高经济效果是人们不可缺少的要求。关键词:对偶单纯形法线性规划最优解正文:单纯形法和对偶单纯形法的基本思想:
for(i=0;i<m;i++)
for(j=0;j <n ;j++)
sca nf("%f",&A[i][j]);
prin tf("\n请输入初始基变量的数字代码num矩阵:\n");
for(i=0;i<m;i++)
sca nf("%d",&n um[i]);
prin tf("\n请输入方程组右边的值矩阵b:\n");
算法:
用对偶单纯形法解决生产资i和人工变量为基变量的正则解X0,
若X0是可行的则X0是最优解,
停止,否则转向STEP2;
Step2确定换出变量xOI,其中x0l=min{xOr;xOr<O};
Step3如果对所有非基变量xOj,0jX),则该问题无可行解,运算停止,
int duiouda nchu nxin g2(i nt a);
void duiouda nchunxin g3(i nt a,i nt b);
void in put()
{printf("请输入方程组的系数矩阵维数,m行n列:\n");
sca nf("%d%d",&m,&n);
int i,j;
printf("请输入方程组的系数矩阵A(%d行%£列):\n",m,n);