数学物理方程格林函数
数学物理方法第十二章格林函数解的积分公式

证明过程中可能需要使用到实变函数、复变函数、 偏微分方程等数学工具。
证明难度
格林函数的积分公式证明比较复杂,需要深入理 解数学物理方法和偏微分方程的基本原理。
04
格林函数在物理问题中的 应用
在波动方程中的应用
波动方程是描述波动现象的基本方程,如声波、光波和水波 等。格林函数在求解波动方程中发挥了重要作用,能够给出 波函数的精确解或近似解。
要点三
应用实例
为了更好地理解格林函数解的积分公 式,我们通过几个具体的物理问题进 行了应用。这些例子包括波动方程、 热传导方程等,通过这些例子,我们 可以看到格林函数解的积分公式的实 用性和广泛性。
对未来研究的展望
进一步探索格林函数 的性质和应用
尽管我们已经对格林函数的性质和应 用有了一定的了解,但仍有许多未知 领域值得我们去探索。例如,我们可 以研究格林函数在不同物理问题中的 应用,或者探索格林函数在其他数学 领域中的性质和应用。
积分公式的推广和应 用
在本章中,我们得到了格林函数解的 积分公式,但这个公式可能还有其他 的推广和应用方式。例如,我们可以 尝试将这个公式应用到其他类型的偏 微分方程中,或者尝试将这个公式应 用到其他领域的问题中。
与其他数学物理方法 的结合
数学物理方法中的其他方法,如分离 变量法、变分法等,也可以与格林函 数解的积分公式相结合,以解决更复 杂的物理问题。未来研究可以探索如 何将这些方法有效地结合起来,以更 好地解决实际问题。
03
不同类型的格林函数在求解偏 微分方程时具有不同的应用范 围和特点。
03
格林函数的积分公式
公式推导
公式推导
01
通过求解偏微分方程,将格林函数表示为积分形式,利用边界
拉普拉斯方程的格林函数法

内的解是唯一的。
整理课件
17
§3 格林函数
为 什 么 引 入 格 林 函 数 ?
调 和 函 数 的 积 分 表 达 式 为
1 1 1 u
u(M0)4u(M)n(rM M0)rM M0
dS n
对于狄氏问题或牛曼问题,利用上面公式都不能直接得到想要问
( P x Q y R z)d V P d y d z Q d z d x R d x d y
其 中 取 外 侧 位 正 向 .
由两类曲面积分之间的关系得高斯公式的另一种形式:
整理课件
7
(P xQ yR z)dV (Pcos(n,x)Qcos(n,y)Rcos(n,z))dS.
_ u n 1 r 1 r u n d S 4 u 4 u n 0
当 0 时 , 有 l i m 0 u u ( M 0 ) ,(u 连 续 ) ____
lim 4u0( u一 阶 连 续 可 微 , u有 界 )
0 n
定理:若格林函数G(M,M0)存在,且G(M,M0)C1(),则狄氏
问题2uu0,f(M in)的解(存在的话)可表示为
这 时 需 不 需 要 对 解 加 些 限 制 条 件 呢 ? 看 下 面 一 例 子 。
u0,r1,
u 1 r1
其 中 rx2y2z2
易 知
u1,
u1/r
都 是 上 述 定 解 问 题 的 解 , 即 解 不 唯 一 .为 了 保 证 解 的 唯 一 性 ,
通 常 我 们 要 加 一 些 限 制 条 件 .
取 u 为 调 和 函 数 , 并 假 定 其 在 上 有 一 阶 连 续 偏 导 数 , 取 v 1/r
格林函数法

为第三边值问题的积分表示式
物理意义:右边第一个积分表示区域T中分布的源在r 点产生的场的总和;第二个积分代表边界上的状况对 r点场的影响的总和;两项积分中的格林函数相同。 说明泊松方程的格林函数是点源在一定的边界条件下 所产生的场。
对于拉普拉斯方程,f(r0)=0,因此可得拉普拉斯 方程第一边值问题的解
因此,我们可设想一个等效的点电荷,它位 于球外M1处,且在球面产生的电势与球内点电荷 在球面产生的电势相反。由物理学知识可知,该 设想的点电荷必位于OM0处的延长线上,如图所 示,并记:
OM r, OM0 r0
在∑ε 上的解,该解表示位于球心r=r0处的电量为ε0的 点电荷在半径为ε的球面上产生的电势,根据电磁学 知识,该电势为:
1
G(r, r0 ) 4
因此我们可得∑ε面上的积分
Ò
u(r)
G n
G
u(r) n
dS
Ò
u(r
)
n
(1
4
)
1
4
u(r) n
dS
Ò
u(
r
)
n
(1
4
)
1
4
u(r n
)
2d
(r r0 ) (x x0) ( y y0) (z z0)
格林函数的物理意义:在物体内部(T内)处放置 一个单位点电荷(或热源),而该物体的界面保持 电位为零(或温度为零), 那么该点电荷(或该点 热源)在物体内产生的电势分布(或稳定温度分 布),就是上述定解问题的解――格林函数。
格林函数互易定理: 格林函数代表r0处的点源在r处 所产生的影响,系统不变,则该影响等同于将移至r 处的该点源在r0处产生影响。故格林函数遵守如下 的互易定理:
格林函数.pdf

第4章 格林函数在这一章里,我们介绍数学物理方程中另外一种常用的方法—格林函数法.从物理上看,一个数学物理方程是表示一种特定的“场”和产生这种场的“源”之间的关系.例如,热传导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等.这样,当源被分解成很多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场,这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数.4.1δ函数几何学中的点是没有大小的,它仅仅表示空间的一个位置,因此物理学中的质点、点电荷等点源无法用几何中的点来表示.那么,我们用数学语言如何描述这类具有实际背景的点源呢?考虑一根长为l 的直线,其上任一点的坐标⎦⎤⎢⎣⎡−∈2,2l l x .若总电量为Q 的电荷均匀分布在直线上,则直线上的电荷分布的线密度)(x ρ是⎪⎪⎩⎪⎪⎨⎧≤>=2,2,0)(l x lQ lx x ρ (4.1.1) 由定积分的性质可知x x Q d )(∫+∞∞−=ρ (4.1.2)若将上述线段无限缩小,或者说令0→l ,则我们得到了一个物理上常用的点源—点电荷.此时,电荷分布密度用)(0x ρ表示,同时式(4.1.1)变为⎩⎨⎧=∞≠=0,,0)(0x x x ρ (4.1.3) 而此时,电量仍为Q ,则式(4.1.2)仍然成立.为了理解上的方便,我们修改一下问题的叙述:去电量1=Q ,线段长度为ε2,则密度分布函数为⎪⎩⎪⎨⎧≤>=εεεδεx x x ,21,0)(且1d )(d )(===∫∫−+∞∞−εεεεδδx x x x Q由此可见)(x εδ是偶函数,则由积分第一中值定理可得)()(d )()(d )()(εξεξδξδεε<<−==∫∫+∞∞−+∞∞−f x x f x x f x当0→ε时,我们有了新的结果,我们将它定义为δ函数. 我们称符合下述2个条件的函数为δ函数⎩⎨⎧≠=∞=0,00,)(x x x δ (4.1.4)且∫+∞∞−=1d )(x x δ (4.1.5)由极限理论可知,)(x δ是偶函数.∫∫+∞∞−+∞∞−→→===)0(d )()(d )()(lim )(lim 00f x x f x x x f x f δδξεεε (4.1.6))(x δ不是通常意义下的函数,它用来描述集中分布这种常见而又特殊的一类现象的数学工具.δ函数不局限于描述点电荷的分布密度,它可以用来描述任意点量的密度.借助于δ函数,我们可以方便地描述各类点源的分布情况.如电量Q 的点电荷的分布函数为)()(0x Q x δρ=.例1 设有一条张紧静止的无穷长的细弦,其线密度为1=ρ若在0=x 点,在很短的时间内,用大小为F 的力敲一下,使获得的冲量1=∆⋅t F .问弦上的初始速度v 是怎样的?解 若0≠x ,由于时间非常短,扰动尚未传动,所以0=v ;而在0=x 上有∞=v .此外,由于敲打前弦是静止的,所以弦上的动量是1=∆⋅t F ,即∫∫+∞∞−+∞∞−==⋅1d )()(d x x v x v x ρ故初速度)()(x x v δ=.例2 设有一根温度为C 0o度的导热杆,其线密度为ρ,比热为c ,现用火焰在0=x 处以极短的时间烤一下,传给杆的热量为Q ,请分析一下开始一瞬间杆上的温度)(x T 的分布?解 在刚开始一瞬间,我们有⎩⎨⎧=∞≠=0,,0)(x x x T且∫+∞∞−=Q x x T c d )(ρ所以有)()(x c Qx T δρ=通过以上两个例题,我们对)(x δ有了进一步的认识.如果将坐标平移0x ,即集中量出现在点0x x =处,则有⎩⎨⎧=∞≠=−000,,0)(x x x x x x δ且∫+∞∞−=−1d )(0x x x δ这样,我们可以得到δ函数的一个重要性质)(d )(00x f x x x ∫+∞∞−=−δ或者说⎩⎨⎧><<<=−∫bx a x bx a x x x ba0000,0,1d )(或δ⎩⎨⎧><<<=−∫b x a x bx a x f x x x x f b a00000,0),(d )()(或δ4.2 无界域中的格林函数在第1章中,我们推导出了静电场的电势分布u 满足泊松方程ρε1222222−=∂∂+∂∂+∂∂=∆zu y u x u u (4.2.1)式中,ρ是电荷密度,所占区域为Ω,0r 是Ω中任意一个点.如果不考虑其他因素的影响,对于无界空间中的电势u ,可以利用定积分中的微元法的思想求出来.有库仑定律知,位于0r 点的一个正的单位电荷,在无界空间中点r 处产生的电势是041),(r r r r G −=π (4.2.2)则以0r 为中心的小体积Ωd 在r 处产生的电势为Ω=d )(),(d 00r r r G u ρ因此,在r 处产生的电势为∫∫ΩΩΩ−==d 4)(d )(00r r r u r u πρ为了表述上的方便, 0r 处的体积微元Ωd 以后用0d r 表示,则有∫Ω−=000d 4)()(r r r r r u πρ这样,我们没有直接求解方程,而是通过寻找微元,利用积分的方式求出了方程的解.而点源产生的电势),(0r r G 称为泊松方程式(4.2.1)在无界空间中的格林函数,利用它,我们求出了泊松方程在无界空间的解.无界空间中的格林函数又叫做方程的基本解,因此式(4.2.2)又称为泊松方程的基本解.有时也称它为相应的齐次方程(即拉普拉斯方程)的基本解,记为).,(00r r G基本解式(4.2.2)是密度为0ρ的点源在空间产生的电势,因此它在空间除了0r r =点以外,满足方程001ρε−=∆G而在0r r =点有奇异性.由于格林函数是点源函数,因此在空间某一点有奇异性. 在一般的数学物理方程中,我们需要考虑的是满足一定边界条件和初始条件的解,因此相应的格林函数就比刚才所提到的要复杂.在这种情况下,一个点源所产生的场,同时要受到边界条件及初始条件的影响,而这些影响的本身也是待定的. 例如,在一个接地的导体空腔内的点0P 处放置一个正的单位点电荷(如图4-1),则在点P 处的电势不仅是点电荷本身所产生的场41r r −π,并且还要加上这个点电荷在导体内壁上感应电荷所产生的场.而感应电荷在导体内壁上的分布是未知的,我们只知道在边界上电势为零(接地).因此,在一般情况下,格林函数是一个点源在一定的边界条件和(或)初始条件下所产生的场.通过格林函数,我们可以求得任意分布的源所产生的场.4.3 格林公式 有界域上的格林函数为了进一步探讨利用格林公式函数求解数学物理方程,我们先来推出一个重要工具—格林公式,它是曲面积分中高斯公式的直接推论.设Ω是以足够光滑的曲面Γ为边界的有界域,),,(),,,(),,,(z y x R z y x Q z y x P 在Γ+Ω上是连续的,在Ω内具有一阶连续偏导数,则有如下的高斯公式∫∫∑++=Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂ΩS z n R y n Q x n P z R y Q x P d )],cos(),cos(),cos([d (4.3.1) 式中,Ωd 是体积元素;n 是曲面Γ的外法向量;S d 是Γ上的面积元素.设函数),,(),,,(z y x v z y x u 在Γ+Ω上一阶偏导数连续,在Ω内二阶偏导数连续,则在式(4.3.1)中,令z vR yv u Q x v uP ∂∂=∂∂=∂∂=,,则有∫∫∫∫∫∫ΓΩΩΩΩΩ∂∂=Ω⋅+Ω∆=Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+Ω∆=Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂S nvuv u v u z v z u y v y u x v x u v u z R y Q x P d d grad grad d )(d d )(d 或表示为Ω⋅−∂∂=Ω∆∫∫∫ΩΓΩd grad grad d d )(v u S nvuv u (4.3.2)式(4.3.2)称为格林第一公式.在式(4.3.2)中,交换v u ,的位置,则有Ω⋅−∂∂=Ω∆∫∫∫ΩΓΩd grad grad d d )(v u S nuvu v (4.3.3)式(4.3.2)减式(4.3.3)得∫∫ΓΩ⎟⎠⎞⎜⎝⎛∂∂−∂∂=Ω∆−∆S n u v n vu u v v u d d ][ (4.3.4) 式(4.3.4)称为格林第二公式.下面,我们以泊松方程第一类边值问题为例,进一步阐明格林函数的概念.⎪⎩⎪⎨⎧=−=∆Γ)6.3.4()5.3.4(1f u u ε式中, f 是在区域Ω上的边界Γ上给定的函数.在介绍格林函数之前,我们要引进空间的δ函数来表示点源的密度分布,有)()()()(0000z z y y x x r r −−−=−δδδδ⎩⎨⎧=∞≠=−000,,0)(r r r r r r δ )),,((1d )(00000Ω∈=−∫Ωz y x r r r r δ∫Ω=−)(d )()(00r f r r f r r δ用),(0r r G 表示位于0r 点的单位强度的正点源在第一类边界条件下产生的场,则),(0r r G 作为r 的函数满足⎪⎩⎪⎨⎧=−−=∆Γ)8.3.4(0)7.3.4()(1),(00G r r r r G δε以),(0r r G 乘式(4.3.5),)(r u 乘式(4.3.7),二式相减后在Ω上对r 积分,以r d 表示r 点处的体积微元,有∫∫∫ΩΩΩ−+−=∆−∆r r r r u r G r G u u G d )()(1d 1d )(0δερε利用格林第二公式及δ函数的性质,有)9.3.4(d ),()(d )(),(d ),()(d )(),(d ),()()(),(d )(),()(00000000∫∫∫∫∫∫ΓΩΓΩΓΩ∂∂−=∂∂−=⎦⎤⎢⎣⎡∂∂−∂∂+=S nr r G r f r r r r G S nr r G r u r r r r G S n r r G r u n r u r r G r r r r G r u ερερερ但这个表达式中所表示的意义与我们的初衷相矛盾.),(0r r G 表示的是位于0r 点的点源在r 点产生的场.但我们能证明),(),(00r r G r r G =,这样,式(4.3.9)可以改写成)10.3.4(d ),()(d )(),(d ),()(d )(),()(0000000000∫∫∫∫ΓΩΓΩ∂∂−=∂∂−=S nr r G r f r r r r G Snr r G r f r r r r G r u ερερ这样,式(4.3.1)的物理诠释就很清楚了:右方第一个体积分代表在区域Ω中体分布源)(0r ρ在r 点产生的场的总和,第二个面积分则表示了在边界上的源所产生的场. 下面我们来证明),(),(00r r G r r G =,由式(4.3.7)及式(4.3.8),我们有⎪⎩⎪⎨⎧=−−=∆Γ)12.3.4(0),()11.3.4()(1),(111r r G r r r r G δε⎪⎩⎪⎨⎧=−−=∆Γ)14.3.4(0),()13.3.4()(1),(222r r G r r r r G δε×),(2r r G 是式(4.3.11)—×),(1r r G 式(4.3.13),有)(),()(),()],(),(),(),([21122112r r r r G r r r r G r r G r r G r r G r r G −−−==∆−∆δδε两侧同时对r 积分,有∫∫ΩΩ−−−=∆−∆rr r r r G r r r r G r r r G r r G r r G r r G d )(),()(),(d )],(),(),(),([21122112δδε根据格林公式第二公式及δ函数的性质,有),(),(d ),(),(),(),(12212112r r G r r G S n r r G r r G n r r G r r G −=⎥⎦⎤⎢⎣⎡∂∂−∂∂∫Γε 则根据式(4.3.12)及式(4.3.14),有0),(),(),(),(2112=∂∂−∂∂Γnr r G r r G nr r G r r G 所以),(),(1221r r G r r G =这种性质在物理学中称为倒易性,如图4-2所示,即位于1r 点的点源,在一定的边界情况下,在2r 点产生的场等于位于2r 点的同样强度的点源,在相同的边界情况下在1r 点产生的场.我们称这种现象为格林函数的对称性.应当说明,在得式(4.3.9)时,我们利用格林公式把重积分化为曲面积分时,这要求G ∆(及u ∆)在积分区域Ω内连续为前提,由式(4.3.7)可明显看到G ∆不连续,这样的推导请参阅谷超豪等著《数学物理方程》(第二版).4.4 格林函数的应用在第1章里,我们从无源静电场的电位分布及稳恒温度场的温度分布推出了三维拉普拉斯方程0222222=∂∂+∂∂+∂∂=∆zu y u x u u作为描述稳定或平衡等状态的方程,它与初始状态无关,因而不能提初始条件.对于边界条件,常见的是如下两种现象.第一边值问题 在空间),,(z y x 中某一区域Ω的边界Γ上给定了连续函数f ,要找这样的函数),,(z y x u ,它在闭区域Γ+Ω上连续,且满足⎩⎨⎧==∆Γf u u 0第一边值问题也称为狄利克莱(Dirichlet)问题,或简称为狄氏问题.拉普拉斯方程的连续解,即具有二阶连续偏导数,并且满足拉普拉斯方程的连续函数,称为调和函数.因此, 狄氏问题也可以这样叙述:在区域Ω内找一个调和函数,它在边界Γ上的值是已知的.第二边值问题 在空间在空间),,(z y x 中某一区域Ω的边界Γ上给定了连续函数f ,要找这样的函数),,(z y x u ,它在闭区域Γ+Ω上连续,且满足⎪⎩⎪⎨⎧=∂∂=∆Γf nuu 0 式中,n 是曲面Γ的外法向矢量.第二边值问题也称为诺依曼(Neumann)问题.以上两个边值问题都是在边界Γ上给定某些条件,在区域内部求解拉普拉斯方程,这样的问题称为内问题.在应用中,我们还会碰上另一类现象,如确定某物体外部的稳恒温度场时,就归结为在区域Ω的外部求调和函数u 使之满足边界条件f u =Γ,这里Γ是区域Ω的边界,f 表示物体表面的温度分布.这样的问题称为拉普拉斯方程的外问题. 限于篇幅,本书仅讨论如何利用格林函数求解狄利克莱问题⎩⎨⎧==∆Γ)2.4.4()1.4.4(0fu u至于其他的问题,求解的思考方法是想像的,可查阅相关的书籍.由式(4.4.1)知源的分布密度函数0=ρ,所以上节给出的求解公式就变为∫Τ∂∂−=S nr r G r f r u d ),()()(00 (r 在曲面Γ上) 或∫Τ∂∂−=S nr r G r f r u d ),()()(00 (0r 在曲面Γ上) (4.4.3) 此处介电常数1=ε. 这样,对一个由曲面Γ围成的区域Ω来说,只要求出了格林函数),(0r r G ,则这个区域内狄氏问题的解就可以由式(4.4.3)求出.实际上,求解边值问题式(4.3.7)—式(4.3.8)是很困难的,因此有必要对格林函数),(0r r G 作进一步的剖析.在本章中,我们定义了方程的基本解),(00r r G ,它满足方程式(4.3.7))(),(000r r r r G −−=∆δ但不满足边界条件式(4.3.8).于是我们设)(),(),(000r V r r G r r G +=代入式(4.3.7)及边界条件式(4.3.8),则有⎩⎨⎧−==∆ΓΓ00G V V这样,只要找到满足边界条件ΓΓ−=0G V的调和函数V ,那么就可以由基本解得到格林函数),(0r r G .事实上,当区域的边界具有特殊的对称性时,格林函数是用镜像法(静电源像法)求得的.所谓静像法,就是在区域Ω外找出点0M 关于边界Γ的像点(对称点)1M ,然后在1M 上放置适当的负电荷,由它所产生的负电位与点0M 处单位电荷产生的电位在曲面Γ上相互抵消.此时,放置在0M ,1M 两点处的电荷所形成的电场在Ω内的电位就是所要求的格林函数.下面,我们以寻求半空间、球域的格林函数为例来说明镜像法的具体应用.例3 求解上半空间0>z 内的狄利克莱问题⎪⎩⎪⎨⎧+∞<<−∞=>=∂∂+∂∂+∂∂=)5.4.4(),(0)4.4.4()0(00222222y x u z z uy u xu z解 先求出格林函数),(0r r G .为此在上半空间0>z 中任意一点),,(0000z y x r 处置一单位正电荷,在点0x 关于平面0=z 的对称点),,(0001z y x r −处置一单位负电荷,如图4-3所示.由它们所形成的静电场的电势在平面0=z 上恰好为零.因此上半空间的格林函数为⎟⎟⎠⎞⎜⎜⎝⎛−−−=1001141),(r r r r r r G π(4.4.6)为了利用式(4.4.3)求解问题式(4.4.4),式(4.4.5)需要计算边界曲面上的nG∂∂值.由于在平面0=z 上的外法线方向是Oz 轴的负向,所以)7.4.4(])()[(210])()()[(])()()[(4123220200232020200232020200000z y y x x z z z z y y x x z z z z y y x x z z z G nG z z +−+−−==⎪⎭⎪⎬⎫++++++−⎪⎩⎪⎨⎧−+−+−−=∂∂−=∂∂=ππ则定解问题式(4.4.4),式(4.4.5)的解为∫∫+∞∞−+∞∞−+−+−=ηξηξηξπd d ])()[(),(21),,(23222z y x zf z y x u (4.4.8)用同样的方法,我们可以求出球域上的格林函数,并给出球域内的狄利克莱问题的解.设有一球心在原点,半径为R 的球面Γ.在球内任取一点),,(0000z y x r ,在0Or 的延长线上截取线段1Or ,令00ρ=Or ,11ρ=Or ,使210R =⋅ρρ,这样的点1r 称为点0r 关于球面Γ的反演点(或对称点),如图4-4所示.我们在点0r 处放置一单位正电荷,在点1r 处放置一q 单位的负电荷,通过选择恰当的q 值,使得这两个点电荷所产生的电势在球面Γ为零.即P r qP r 10441ππ=或 Pr P r q 01=式中,P 为球面Γ上任意一点.由于三角形△P Or 1与△P Or 0在点O 处有公共角,且夹这个角的两条边成比例1ρρRR=,因此这两个三角形相似.于是得到01ρRP r P r =因此ρRq =即只要在点1r 处放ρR单位的负电荷,则由0r 及1r 处点源产生的电势在球面上为零,这样,球域内的格林函数为⎟⎟⎠⎞⎜⎜⎝⎛−−−=10001141),(r r R r r r r G ρπ(4.4.9) 式中,r 为球域内任意一点,记0ρ=Or .下面,我们利用格林函数来求解球域内的狄利克莱问题⎩⎨⎧==∆Γf u u 0Ω∈),,(z y x 由式(4.3.9)得(介电常数)1=εS nr r G r f r u d ),()()(00∫Γ∂∂−=因此,我们要计算Γ∂∂n G,由 γρρρρcos 21102200−+=−r rγρρρρcos 21112211−+=−r r012ρρ⋅=R式中,γ是向量0Or 与Or 的夹角.所以⎥⎥⎦⎤⎢⎢⎣⎡+−−−+=40222002200cos 21cos 2141),(R M M G γρρρρργρρρρπ在球面Γ上 2302022022340222002202302020)cos 2(41)cos 2()cos ()cos 2(cos 41γρρρπργρρρργρργρρρργρρπρρR R R R RR R R R RG G −+−−==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−+−−==∂∂=ΓΓ∂∂ 所以狄氏问题的解为S f R R R R r u d )cos 2(41)(23022220∫∫Γ−+−=γρρρπ (4.4.10)为了方便解释物理现象,我们也可以利用格林函数的倒易性,求出球内任一点r 处的电势)(r u .在球面上应用球坐标系,上式变为∫∫−+−=ππθϕϕγρρρθϕπθϕρ202302222000d d sin )cos 2(),,(4),(R R R R f Ru (4.4.11)式中, ),(000θϕρ是点0r 的坐标;),,(θϕR 是球面Γ上点P 的坐标;γcos 是向量0Or 与OP 的余弦.因为向量0Or 与Or 的方向余弦分别是)cos ,sin sin ,sin (cos )cos ,sin sin ,sin (cos 00000ϕϕθϕθϕϕθϕθi所以可得)cos(sin sin cos cos )cos cos sin (sin sin sin cos cos cos 0000000θθϕϕϕϕθϕθθϕϕϕϕγ−+=++=式(4.4.10)及式(4.4.11)称为球的泊松公式.例4 设有一半径为R 的均匀球,球心在坐标原点,上半球面的温度保持为C o0,下半球面的温度保持为C o2,求:(1) 球内温度的稳定分布; (2) 球内z 轴上温度的分布; (3) 球心的温度.解 这个问题的数学描述为⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧<<<<=<=∆=πϕππϕρρ2,220,0)(0R u R u由泊松公式,球内任一点),(0θϕρ处的温度为∫∫∫∫−+−=−+−=ππππθϕϕγρρρπθϕϕγρρρθϕπθϕρ2023020220220023020222000d d sin )cos 2(2d d sin )cos 2(),,(4),(R R R R R R R R f Ru若只考虑z 轴上的温度,即00=ϕ(上半轴)或πϕ=1(下半轴), 可知:当00=ϕ时,ϕγcos cos =,则⎟⎟⎠⎞⎜⎜⎝⎛+−+−===⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−+−−=−+−=∫∫2020202210202022202230222200112)cos 2(d d sin )cos 2(2),0,(ρρρρπϕπϕϕρρρρθϕϕϕρρρρπθρπππR R R R R R R R R R R Ru当πϕ=0时ϕγcos cos −=,故⎟⎟⎠⎞⎜⎜⎝⎛+−−−=202002020011),,(ρρρρθπρR R R u 当00→ρ时,应用洛必达法则有1),,(lim )0,0,0(00000==→θϕρρu u即球心温度为C o1。
第三章格林函数法

r
r0
0
1
ln
R
1
2 r0 r2 r12 2rr1 cos 0
1 ln
1
2 r2 r02 2rr0 cos 0
1
ln
R
2 r2r02 R4 2R2rr0 cos 0
G
= G
1
ln
R
n r0 R r0 r0 R 2 r0 r 2r02 R4 2R2rr0 cos 0
2
r0
注意:这只是二维空间中圆形区域的格林函数表达式
例4 求解圆内拉普拉斯方程狄利克雷问题 2u 0 r R
u
rR
解:由例3,圆内泊松方程狄利克雷问题的格林函数为:
G= 1
2
ln
1 r r0
1
2
ln
R r0
1 r r1
= -1 ln
1
2 r2 r02 2rr0 cos 0
G
r;r0
f
r0
dS0
G0
4
1 r r0
G0
1
2
ln
1 r r0
c0
G1 0 G1 G0
例2 试求解球内的泊松方程的狄利克雷问题
P
3u 0 r R
u rR f ,
R
O r0
r
M0
M1
M
解:设 M0 r0 , M r 的球坐标为 r0,0,0 ,r,, r1 OM1
积分得到
任意源在相同初 始和边界条件下 产生的场
格林函数 :代表一个点源在一定的边界条件和初 始条件下所产生的场
§5.1 泊松方程的格林函数法
1. 边值问题的提法
① 第一边值问题(狄里希利问题) 求一函数,使之在区域内满足泊松方程或拉普拉斯方程,
数学物理方法格林函数

演化问题的格林函数
演化问题的格林函数也可以用冲量定理法得到 问题 等价问题
Gt a 2 G 0 G |x 0 G |x L 0 G | t 0 ( x )
Gtt a 2 G 0 G |x 0 G |x L 0 G |t 0 0 G | t t 0 ( x )
演化问题的基本解
无界输运问题的求解
2 ut a u xx f ( x, t ) u |t 0 0
f ( x, t ) d d f ( , ) ( x ) (t )
0
t
2 Gt a G ( x ) (t ) G |t 0 0
2 ( x ) t exp 2 4a (t ) u d d f ( , ) 2a ( t ) 0
u( x, t ) d d f ( , )G( x, ; t, )
0
t
( x ) 2 exp 2 4 a ( t ) G 2a ( t )
应用(求解数学物理方程的格林函数法)
稳定问题的基本解
稳定问题的基本解可以利用静电场类比法得到 原问题 方程
u f ( r )
点源问题
G ( r r ' )
点电荷电场
V q (r r ' ) / 0
解
u
f (r ' )d ' 1 q G V 4 | r r ' | 4 | r r ' | 4 0 | r r ' |
数学物理方程第10讲 格林函数法 叶葱

M(x,y,z)
v u (u v u)dV (u n v n )ds
现在的问题是, V(x,y,z)不包含M0这一点!!!! 所以运用公式时我们要挖去M0点(奇异点)
如何去除M0点??
最简单的,以M0为中心, ɛ 为半径作一个球面, 球面为Ƭɛ,球体积为Kɛ,挖去这样一个球。
1 u(M 0 ) 4 1 rMM 0 n 1 u ( M ) )ds rMM 0 n
(u(M )
我们要求区域内一点M0处的u, 要知道这个函数在区域边界Ƭ上的值 以及在Ƭ上的法向导数的值
1 r 1 u )ds 4u 4 ( u ) 0 根据 (u n r n n
0, lim u u(M 0 )
1 u(M 0 ) 4 1 rMM 0 n 1 u ( M ) )ds rMM 0 n
(u(M )
调和函数的积分表达式
M0(x0,y0,z0)
M(x,y,z)
考虑球面Ƭɛ上,即M点在球面,此时r=ɛ
1 1 r r 1 1 n r r2 2
1 r ds 1 u n 2
uds r 1 u )ds ? (u n r n
2 2
第二格林公式
现在我们求解u(x,y,z)
u0
2
Dirichlet 问题
u
f ( x, y , z )
求出调和函数 的积分表达式
首先构造一个辅助函数
M0(x0,y0,z0) r
M(X,Y,Z)
1 1 v( x, y, z) 2 2 2 r ( x x0 ) ( y y0 ) ( z z0 )
数学物理方法--格林函数法

G(r , r0)r(r )dV T
1
4
f
G(r , r0 ) dS. n
第二边值问题(诺依曼问题)
u(r , r ')
u n
f
第二边值问 题格林函数
G(r , r ')ห้องสมุดไป่ตู้n
0
u(r0 )
1
4
G(r , r0)(r )dV T
(u
v n
v
u )dS n
T
(uv
vu)dV
法向导数
5
3. 边值问题 边界条件
泊松方程
u
[
u n
u]
()
() 定义在
0, 0 0, 0
第一类边界条件 第二类边界条件
0, 0 第三类边界条件
3
感应电荷 是边界问题
2. 格林公式
第一格林公式:
区域 T,边界
定解=通解+边界条件 求通解=积分
定解=积分+边界条件 (格林函数法)
T
设 u(r ) 和 v(r ) 在 T 中具有连续二阶导数,
在 上有连续一阶导数。由高斯定理
uv dS (uv)dV
p
M (r)
o
M0 (r0 )
如右图,当导体外 M1 处有电荷 40q 时,镜像电荷
将在球内M0 处。
M1(r1)
像电荷的大小以及位置:
4 0 q
a r1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α
∫∫ ϕ (r )G (r , r0 )dS .
Σ
r
r r
r r r 在 r0 δ (r − r0 )
,在物理上是不合理的。考虑它是偶函数, 具有同一个解,可作变换: r ↔ r0
r r r r ∆v(r0 , r ) = δ (r0 − r )
r
r
r r r r r r r ∂G ( r0 , r ) u ( r ) = ∫∫∫ G ( r0 , r ) f ( r0 ) dV0 + ∫∫ ϕ ( r0 ) dS 0 . ∂n T Σ r r r r 1 u ( r ) = ∫∫∫ G ( r0 , r ) f ( r0 ) dV0 −
α = 0, β ≠ 0 α ≠ 0, β = 0 α ≠ 0, β ≠ 0
第一类边界条件 第二类边界条件 第三类边界条件
泊松方程与第一类边界条件,构成第一边值问题(狄里希利问题) 泊松方程与第二类边界条件,构成第二边值问题(诺依曼问题) 泊松方程与第三类边界条件,构成第三边值问题
4. 泊松方程的基本积分公式 基本积分公式 点源泊松方程
对两端固定的弦
t
τ =0
∫ξ
l =0
f (ξ ,τ )δ ( x − ξ )δ (t − τ )dξ dτ .
Gtt − a 2Gxx = δ ( x − ξ )δ (t − τ );
问题变成
G
x =0
=G
x =l
= 0;
G G G =G
t =0
= Gt = 0;
t =0
= 0.
Gtt − a Gxx = 0
1 a r r + 4π r − r0 r0
1 r a r 4π r − r 2 r0 r0
2
1 1 r r = 2 r − r0 r − 2rr0 cos θ + r02
在球面上
∂ ∂n
Σ
=
∂ ∂r
r =a
[
∂ 1 1 2r − 2r cos θ ]Σ =− r r ∂n r − r0 2 (r 2 − 2rr0 cos θ + r02 )3 / 2
2
r r r r r r r ∂G ( r0 , r ) u ( r ) = ∫∫∫ G ( r0 , r ) f ( r0 ) dV0 + ∫∫ ϕ ( r0 ) dS 0 . ∂n T Σ
= ∫∫
Σ 2
r f (r ) = 0
a 2 − r0 1 f (θ , ϕ ) a 2 sin θ 0 dθ 0 dϕ 0 . 4π a ( a 2 − 2 ar0 cos θ 0 + r02 ) 3 / 2
M 1 ( x1 , y1 , z1 )
r r 1 1 1 1 G (r , r0 ) = − + 4π [( x − x0 ) 2 + ( y − y0 ) 2 + ( z − z0 ) 2 ]1/ 2 4π [( x − x0 ) 2 + ( y − y0 ) 2 + ( z + z0 ) 2 ]1/ 2
r =a
=−
a − a cos θ (a 2 − 2ar0 cos θ + r02 ) 3 / 2
1 r a r r − r 2 r0 r0
2
=
1 a2 a4 r − 2r cos θ + 2 r0 r0
2
r0 − ar0 cos θ ∂ 1 [ ]Σ =− 2 2 2 2 ∂n r a r a (a − 2ar0 cos θ + r0 ) 3 / 2 r − r 2 r0 r0
r r r r ∆v(r , r0 ) = δ (r − r0 )
单位负电荷在 r0
r
∫∫∫ (v∆ u − u∆ v ) dV
T
z
r r = ∫∫∫ vfdV − ∫∫∫ u δ ( r − r0 )dV
T T
T
Kε
δ (r − r0 )
Σ
y
r r
奇异,不能化为
r r0
Σε
0
面积分。在 T 中挖掉半 r 径 ε ,在 r0 的小球 Kε 。 小球边界 Σε 。 边界条件无法带入积分之中!
Σ
∫∫∫ ∇ ⋅ (u∇ v ⋅) dV
T
T
=
∫∫∫ ∇ u ⋅∇ vdV + ∫∫∫ u ∆ vdV
T
第二格林公式:
交换 u (r ) 和
r
r v(r ) :
r ∫∫ v∇ u ⋅ d S =
Σ
∫∫∫ ∇ v ⋅∇ udV + ∫∫∫ v∆ udV
T T
与上式相减
r ∫∫ (u ∇ v − v∇ u ) ⋅ d S =
是否能一次解决
感应电荷 是边界问题 2. 格林公式 区域 T,边界 Σ
定解=通解+边界条件 求通解=积分
⇓
第一格林公式: 定解=积分+边界条件 (格林函数 格林函数法) 格林函数
r u (r ) 和 设
Tቤተ መጻሕፍቲ ባይዱ
在 Σ 上有连续一阶导数。由高斯定理
r v(r ) 在 T 中具有连续二阶导数,
Σ
r ∫∫ u∇ v ⋅ d S =
o
r M 0 (r0 )
r M 1 (r1 )
a2 r0 = r1
− 4πε 0 q
a = −ε 0 r1
4πq
a =1 r1
r0 =
a r1
2
⇒
现在,问题反过来,在 r0 处有电荷 -ε0 ,求r1,和镜像电荷。 aε aε 4πε 0 q = 20 = 0 a r0 r1
a2 r a2 r (r1 = 2 r0 ) r1 = r0 r0
a = 4π
∫∫
Σ
a 2 − r0 f (θ , ϕ ) 2 sin θ 0 dθ 0 dϕ 0 . 2 3/ 2 ( a − 2 ar0 cos θ 0 + r0 )
2
例2
( z > 0) ∆u = 0 u r = a = f ( x, y )
半空间第一边值问题 计算格林函数:
解
M ( x, y , z )
1 r a2 r 4π r − r 2 r0 r0
r r r r v(r , r0 ) = G (r , r0 )
=−
1 a + r r 4π r − r0 r0
例1
(r < a) ∆u = 0 u r =a = f (θ , ϕ )
球内第一边值问题
r r G (r , r0 ) = −
r r r r r r r ∂G ( r , r0 ) u ( r0 ) = ∫∫∫ G ( r , r0 ) f ( r ) dV + ∫∫ ϕ ( r ) dS . ∂n T Σ
第三边值问题
[α ∂u + β u ] Σ = ϕ (Σ ) ∂n
r r r r ∆v(r , r0 ) = δ (r − r0 )
这样,边界条件进入积分之中!泊松方程的基本积分公式。 基本积分公式。 基本积分公式
解 u (r ) 在区域 T 中一点 r0 的值 u (r0 ) 通过上面积分,由源项对区域的 积分(右第一项),和边值得积分(右第二项)给出。
r
r
r
格林函数: 将冲量定理法扩展到空间坐标
f ( x, t ) = ∫
3 2
r r ∂ 1 a − a cos θ a 1 r0 − ar0 cos θ − [ G (r , r0 )] Σ = 2 2 3/ 2 ∂n 4π (a − 2ar0 cos θ + r0 ) r0 4π a 2 (a 2 − 2ar0 cos θ + r0 2 )3 / 2
3 2
1 1 1 3 2 = [a − r0 cos θ − (r0 − ar0 cos θ )] 4π (a 2 − 2ar0 cos θ + r02 )3 / 2 ar0 1 a 2 − r0 = 4π a(a 2 − 2ar0 cos θ + r02 )3 / 2
M 0 ( x0 , y0 , z0 )
按电磁学思维模式, 应当引入镜像电荷 表示平面(z=0)上 的感应电荷。 镜像电荷的作用为使 平面(z=0)上的电势 为零。显然,这个电荷 位于相对于平面(z=0) 对称的几何点,且有 相反的电量。
M 1 ( x1 , y1 , z1 ) = M 1 ( x0 , y0 ,− z0 )
[α ∂v + βv] Σ = 0 ∂n
⇒
r r r r v(r , r0 ) = G (r , r0 )
第三边值问 题格林函数
G [α
∂u + βu ] Σ = Gϕ ∂n
− u [α ∂G + βG ] Σ = 0
∂n
⇒
∂u ∂G α [G − u ] Σ = Gϕ ∂n ∂n
r r r r 1 u ( r0 ) = ∫∫∫ G ( r , r0 ) f ( r ) dV −
导体球内有一个点电荷 ,导体接 地。求球内电势。 电荷的存在,在导体上感应了电荷。 球内的电势为自由电荷和感应电荷电势之和。 将感应电荷的电势由一 “电像电荷”的电势表示
− ε0
p
如右图,当导体外 M1 处有电荷
r M (r )
4πε 0 q
时,镜像电荷 − 4πε 0 q a
r1
将在球内M0 处。
2
x=0
x =l
t =τ + 0
= 0, Gt
t =τ + 0
= δ ( x − ξ ).
u ( x, t ) = ∫
t
τ =0
∫ξ
l =0