指数函数求定义域,值域,单调性

合集下载

指数函数定义域,值域,复合函数单调性,平移,轴对称

指数函数定义域,值域,复合函数单调性,平移,轴对称

指数函数定义域,值域,复合函数单调性,平移,轴对称对你有一定的帮助!1.若函数1.若函数f ( x) = 2 x 3 + 3 的图像恒过定试求P的坐标。

点P,试求P的坐标。

2. 函数y=a x-1+4 恒过定点_____. 恒过定点_____ _____. = -3.方程2 3(2 ) 4 = 0的解为:____2x x对你有一定的帮助!一.求指数型复合函数的定义域、值域:求指数型复合函数的定义域、值域:(1) y = 0.4x1 x 1(2) y = 35 x 1(3) y = 2 + 1(4) y = 4 + 2xx+1+1对你有一定的帮助!二.求下列函数的定义域、值域:求下列函数的定义域、值域:(1) y = 31 2 x1 (2) y = ( ) 2x 11 x2 4x x (3) y = ( ) (4) y =3 + 1 4对你有一定的帮助!复合函数单调性复合函数的单调性,同增异减” 复合函数的单调性,根据“同增异减”的原则处理.u = g (x)增减增减f ( x) = a增减减增uf ( x) = a增增减减g ( x)对你有一定的帮助!练习讨论下列函数的定义域、值域、1、讨论下列函数的定义域、值域、单调区间(1) y = 2x 1(2) y = 3x2 2 x( 3) y = 3x1 ( 4) y = 3x2 2 x对你有一定的帮助!作业1、求函数的定义域、值域和单调区间. 求函数的定义域、值域和单调区间.(1) y = 0.5 (2) y = 21 2 x + x22x + 2 x +1对你有一定的帮助!求下列函数的的定义域、值域、求下列函数的的定义域、值域、单调区间(1) y = log2 ( x + 2x + 5)2(2) y = log 1 ( x + 4x + 5)2 3对你有一定的帮助!2 1 例已知函数f (x) = x 2 +1x(1)确定f(x)的奇偶性;(1)确定f(x)的奇偶性;奇函数确定f(x)的奇偶性(2)判断f(x)的单调性;(2)判断f(x)的单调性;R上是单调递增判断f(x)的单调性在(3)求f(x)的值域. (3)求f(x)的值域. 的值域值域( 值域(-1,1)对你有一定的帮助!练习: 练习:解下列不等式(1) 6x2 + x 211 x2 8 2x (2) ( )3 3 1 x2 x2 2 x (3) a ( ) ( a 0且a ≠ 1) a对你有一定的帮助!一、指数函数图象的变换1.说明下列函数图象与指数函数=2x的说明下列函数图象与指数函数y= 说明下列函数图象与指数函数图象关系,并画出它们的图象: 图象关系,并画出它们的图象(1) y = 2xx+1, y=2x+2;(2) y = 2x 1, y=2x 2;(3) y = 2 + 1, y = 2 1.x对你有一定的帮助!(1) y = 2xx+1, y=2-2x+2作出图象,显示出函数数据表作出图象,-3x -11 2 42 43 8y=20.125 0.25 0.5 1 0.25 0.5 0.5 1 1 2 2 4y=2y=2x+18 16x+28 16 32对你有一定的帮助!比较函数y=2xy9 8 7 6 5 4 3 2 1 -4 -2 O 2 4y=2x+1x+2y=2. 的图象关系x对你有一定的帮助!比较函数y=2xy9 8 7 6 5 4 3 2 1 -4 -2 O 2 4 y=2x+1x+2y=2. 的图象关系x对你有一定的帮助!比较函数y=2xy9 8 7 6 5 4 3 2 1 -4 -2 O 2 4 y=2x+1x+2y=2. 的图象关系x对你有一定的帮助!(2) y = 2xx 1, y=2x 2作出图象,显示出函数数据表作出图象,-3x -2 0.25 0.125-1 0.5 0.250 1 0.51 2 12 3 4 8 2 4y=2y=20.125 0.0625x 1y=2x 20.03125 0.0625 0.125 0.25 0.5 1 2对你有一定的帮助!比较函数y=2y=2__ 1y9 8 7 6 5 4 3 2 1 -4 -2 O 2 4y=2x 2. 的图象关系x对你有一定的帮助!比较函数y=2y=2__ 1y9 8 7 6 5 4 3 2 1 -4 -2 O 2 4 y=2x 2. 的图象关系x对你有一定的帮助!比较函数y=2y=2__ 1y9 8 7 6 5 4 3 2 1 -4 -2 O 2 4 y=2x 2. 的图象关系x对你有一定的帮助!。

指数函数经典例题(问题详细讲解)

指数函数经典例题(问题详细讲解)

指数函数1.指数函数の定义:函数)1(≠>=aaay x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质:在同一坐标系中分别作出函数y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101の图象.我们观察y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101图象特征,就可以得到)1(≠>=aaay x且の图象和性质。

a>1 0<a<1图象00性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0时,y=1(4)在 R上是增函数(4)在R上是减函数指数函数是高中数学中の一个基本初等函数,有关指数函数の图象与性质の题目类型较多,同时也是学习后续数学容の基础和高考考查の重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小例1 已知函数2()f x x bx c=-+满足(1)(1)f x f x+=-,且(0)3f=,则()xf b与()x f c の大小关系是_____.分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥.评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数,∴31x x >-,解得14x >.∴x の取值围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题例3 求函数y = 解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-,∞.令26x t -=,则y =,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.∴函数の值域是[)01,.评注:利用指数函数の单调性求值域时,要注意定义域对它の影响. 4.最值问题例4 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a の值是_______.分析:令x t a =可将问题转化成二次函数の最值问题,需注意换元后t の取值围.解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤. ∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a≤≤,∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭, 解得13a =或15a =-(舍去),∴a の值是3或13.评注:利用指数函数の单调性求最值时注意一些方法の运用,比如:换元法,整体代入等. 5.解指数方程例5 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程の解是2x =.评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题例6 为了得到函数935x y =⨯+の图象,可以把函数3x y =の图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象の平移规律进解:∵293535x x y +=⨯+=+,∴把函数3x y =の图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935x y =⨯+の图象,故选(C ). 评注:用函数图象解决问题是中学数学の重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数の图象,并掌握图象の变化规律,比如:平移、伸缩、对称等. 习题1、比较下列各组数の大小: (1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较 与 ;(4)若 ,且 ,比较a 与b ; (5)若 ,且 ,比较a 与b . 解:(1)由 ,故 ,此时函数 为减函数.由 ,故 . (2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故 .从而 ,这与已知 矛盾.(5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且 ,故 .从而 ,这与已知 矛盾.小结:比较通常借助相应函数の单调性、奇偶性、图象来求解.2,曲线 分别是指数函数 , 和 の图象,则 与1の大小关系是 ( ). (分析:首先可以根据指数函数单调性,确定 ,在 轴右侧令 ,对应の函数值由小到大依次为 ,故应选 .小结:这种类型题目是比较典型の数形结合の题目,第(1)题是由数到形の转化,第(2)题则是由图到数の翻译,它の主要目の是提高学生识图,用图の意识.3,求下列函数の定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x の定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1,∴y =231-x の值域为{y |y>0且y ≠1}.(2)y =4x +2x+1+1の定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1の值域为{y |y>1}.4,已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x の最大值和最小值解:设t=3x ,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。

4.2.2.1 指数函数的图象和性质

4.2.2.1 指数函数的图象和性质

课堂检测·素养达标
1.函数y=10x-1的图象大致是 ( )
【解析】选C.函数y=10x-1的图象可以看作函数y=10x的图象向下平移1个单位 长度得到的,结合指数函数的图象与性质,即可得出函数的大致图象是C选项.
2.函数f(x)=3-ax+1(a>0,且a≠1)的图象恒过定点
第1课时 指数函数的图象和性质
必备知识·自主学习
导 思
1.怎样作出指数函数的图象?不同底数的 指数函数有何特征? 2.指数函数有哪些性质?
指数函数的图象和性质 (1)图象和性质
图象 定义域 值域 性质
0<a<1
a>1
R _(_0_,__+_∞__)_ 过定点_(_0_,__1_)_
在R上是减函数
【解题策略】
与指数函数相关的图象问题
(1)定点问题:令函数解析式中的指数为0,即可求出横坐标,再求纵坐标即可.
(2)平移问题:对于横坐标x满足“加左减右”.
(3)底数大小:对于y=
a1x
,y=
a
x 2
,y=
a

x 3
,y=
a
x 4
,如图,0<a4<a3<1<a2<a1.
【跟踪训练】(2020·榆林高一检测)函数y= xax(a>1)的图象的大致形状是 ( )
关键能力·合作学习
类型一 与指数函数相关的定义域问题(数学抽象)
【题组训练】
求下列函数的定义域
(1)y= (3)y=
1 .(2)y=
2 . x2-x-6
2x1 8. .
(1) . x22x-8 3
【解析】(1)函数有意义当且仅当x2-x-6≠0,解得x≠-2且x≠3,所以函数的 定义域为{x|x∈R,x≠-2且x≠3}. (2)函数有意义当且仅当x2+2x-8≥0,解得x≤-4或x≥2,所以函数的定义域为 {x|x≤-4或x≥2}. (3)函数有意义当且仅当2x-1-8≥0,即2x-1≥8,解得x≥4,所以函数的定义域 为[4,+∞).

4.2.2指数函数的图象与性质(课件)高一数学(湘教版2019必修第一册)

4.2.2指数函数的图象与性质(课件)高一数学(湘教版2019必修第一册)

(3)函数是区间(−∞, +∞)上的减函数.
当然,作出来的图象是有限的,接下来我们借助“网络画板”,来看一下底
数对指数函数图象走势的影响吧!
新知探索
从动画中看指数函数 = ( > 0且 ≠ 1)的性质,和理性认识相符.
新知探索
1

如果底数 ∈ (0,1),则它的倒数 > 1.若点(, )在函数 = (0 < < 1)的
(4)课本P110的习题4.2的10、11、12、13、14、15题.
谢谢学习
Thank you for learning
新知探索
活动1(例3):作出指数函数 = 2 和 = 10 的图象.
通过列表、描点连线(也可借助信息技术在计算机上作图),得图以下.


−2
−1
0
1
2

= 2

0.25
0.5
1
2
4


= 10


−1
0.1
−0.5
0.32
0
1
0.5
3.16
1
10


新知探索
活动(例3):作出指数函数 = 2 和 = 10 的图象.
1
73
=
1

343
例析
例 6
一种放射性物质不断衰变为其他物质,每经过1年剩余的量是原来的84%,画
出这种物质的剩余量随时间变化的图象,并从图象上观察大约要经过多少年,剩余
量是原来的50%.
解 可设原来的量是1个单位,经过年后,剩余量是个单位.
可得函数解析式为 = 0.84 .列表如下:

指数函数知识点

指数函数知识点

指数函数一、课程标准1. 理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象。

2. 探索并理解指数函数的单调性与特殊点.3.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型.二、基础知识回顾 指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. 形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数,不是指数函数. 3.指数函数y =a x (a >0,且a ≠1)的图象与性质[常用结论]1.指数函数图象的画法画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a .2.指数函数的图象与底数大小的比较如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大.3.指数函数y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究.三、自主热身、归纳总结1、 设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <cD .b <c <a2、函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <03、若函数y =(a 2-1)x 是R 上的减函数,则实数a 的取值范围是( ) A. 1<a <2 B. -2<a <-1C. 1<a <2,或-2<a <-1D. 22<a <1,或1<a <24、(2019·山东济宁二中期末)若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]5、已知函数f(x)=a x -3+2的图像恒过定点A ,则A 的坐标为 . 6. [课本题改编]若不等式223ax axx>13对一切实数x 恒成立,则实数a 的取值范围是 .四、例题选讲考点一 指数函数的性质与应用例1、已知f (x )=2x-2-x ,a =⎝⎛⎭⎫79-14,b =⎝⎛⎭⎫9715,c =log 279,则f (a ),f (b ),f (c )的大小关系为( ) A .f (b )<f (a )<f (c ) B .f (c )<f (b )<f (a ) C .f (c )<f (a )<f (b )D .f (b )<f (c )<f (a )变式1、(2019·广东韶关一中期末)设x >0,且1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b变式2、已知函数f (x )=()x ,若a =f (20.3),b =f (2),c =f (log 25),则a ,b ,c 的大小关系为( ) A .c >b >aB .a >b >cC .c >a >bD .b >c >a例2、设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x<0,x ,x≥0,若f(a)<1,则实数a 的取值范围是 ;变式、(2020·包头模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为______.例3、(1)函数f(x)=22112x x -++⎛⎫⎪⎝⎭的单调减区间为 .(2)(一题两空)已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则a 的取值范围为________,f (-4)与f (1)的大小关系是________.(3)(2019·福建泉州五中模拟)设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________.方法总结 指数函数的性质有着广泛的应用,常见的有:比较大小,解不等式,求函数的单调区间和值域、最值等等.(1)比较两个幂值的大小问题是常见问题,解决这类问题首先要分清底数是否相同;若底数相同,则可利用函数的单调性解决;若底数不同,则要利用中间变量进行比较.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性问题,常常需要借助换元等手段将其化归于指数函数来解,体现化归与转化思想的运用.(3)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a 的取值范围,并在必要时须分底数0<a <1和a >1两种情形进行分类讨论,防止错解.考点二 指数函数的图像与性质例4、(2019·广西北海一中月考)函数y =a x-1a (a >0,且a ≠1)的图象可能是( )变式1、 (2019·山西平遥中学模拟)已知f (x )=|2x -1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( ) A .a <0,b <0,c <0 B .a <0,b >0,c >0 C .2-a <2cD .1<2a +2c <2变式2、已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,则实数a 的取值范围是________. 变式3、 已知f(x)=|2x -1|. (1)求f(x)的单调区间; (2)比较f(x +1)与f(x)的大小;(3)试确定函数g(x)=f(x)-x 2的零点的个数.方法总结:指数函数的图像直观的刻画了指数函数的性质,在解题中有着十分广泛的应用. (1)已知函数解析式判断其图像一般是取特殊点,判断所给的图像是否过这些点,若不满足则排除; (2)对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论;(3)有关指数方程、不等式问题的求解,往往利用相应的指数函数图像,数形结合求解.考点三 指数函数的综合运用例5 已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数. (1) 求a ,b 的值;(2) 若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.变式1、设a 是实数,f (x )=a -22x+1(x ∈R ).(1) 试证明对于任意a ,f (x )都为增函数; (2) 试确定a 的值,使f (x )为奇函数.变式2、 已知函数f(x)=24313ax x -+⎛⎫ ⎪⎝⎭.(1)若a =-1,求f(x)的单调区间; (2)若f(x)有最大值3,求a 的值; (3)若f(x)的值域是(0,+∞),求a 的值.方法总结:是指数函数性质的综合应用,其方法是:首先判断指数型函数的性质,再利用其性质求解以上问题都是指数型函数问题,关键应判断其单调性,对于形如y =a f (x )的函数的单调性,它的单调区间与f (x )的单调区间有关:若a >1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调增(减)区间;若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间五、优化提升与真题演练 1、函数的值域为( )A .B .C .(0,]D .(0,2]2、2017·北京卷)已知函数f (x )=3x-⎝⎛⎭⎫13x,则f (x )( )A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数3、.函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( ) A.y =1-x B.y =|x -2| C.y =2x -1D.y =log 2(2x )4、(2018·上海卷)已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P ⎝⎛⎭⎫p ,65、Q ⎝⎛⎭⎫q ,-15.若2p +q =36pq ,则a =________.5、(2020·河南商丘模拟)已知函数f (x )=(a 2-2a -2)a x 是指数函数. (1)求f (x )的表达式;(2)判断F (x )=f (x )+1f (x )的奇偶性,并加以证明.6、已知函数f(x)=a|x+b|(a>0,b∈R).(1)若f(x)为偶函数,求实数b的值;(2)若f(x)在区间[2,+∞)上是增函数,试求实数a,b应满足的条件.7、设函数f(x)=ka x-a-x(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.(1)求k的值,(2)判断并证明..当a>1时,函数f(x)在R上的单调性;(3)已知a=3,若f(3x)≥λ·f(x)对于x∈[1,2]时恒成立.请求出最大的整数.....λ..8、(2019·山东烟台二中模拟)已知函数f(x)=1-42a x+a(a>0,a≠1)且f(0)=0.(1)求a的值;(2)若函数g(x)=(2x+1)·f(x)+k有零点,求实数k的取值范围;(3)当x∈(0,1)时,f(x)>m·2x-2恒成立,求实数m的取值范围.参考答案1、设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<a【答案】C【解析】因为函数y=0.6x在R上单调递减,所以b=0.61.5<a=0.60.6<1.又c=1.50.6>1,所以b<a<c.2、函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0【答案】D【解析】由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1. 函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0. 3、若函数y =(a 2-1)x 是R 上的减函数,则实数a 的取值范围是( ) A. 1<a <2 B. -2<a <-1C. 1<a <2,或-2<a <-1D. 22<a <1,或1<a <2 【答案】C【解析】 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.∴数a 的取值范围是1<a <2或-2<a <-1.故选C. 4、(2019·山东济宁二中期末)若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]【答案】B【解析】由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝⎛⎭⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 5、已知函数f(x)=a x -3+2的图像恒过定点A ,则A 的坐标为 . 【答案】(3,3)【解析】 由a 0=1知,当x -3=0,即x =3时,f(3)=3,即图像必过定点(3,3). 6. [课本题改编]若不等式223ax ax-x>13对一切实数x 恒成立,则实数a 的取值范围是 .【答案】[0,1)【解析】 原不等式即为223axax->3-1,则有ax 2-2ax>-1,即ax 2-2ax +1>0对一切实数恒成立.当a =0时,满足题意;当a>0时,Δ=(-2a)2-4a<0,即a 2-a<0,解得0<a<1. ∴实数a 的取值范围是[0,1). 五、 六、例题选讲考点一 指数函数的性质与应用例1、已知f (x )=2x-2-x ,a =⎝⎛⎭⎫79-14,b =⎝⎛⎭⎫9715,c =log 279,则f (a ),f (b ),f (c )的大小关系为( ) A .f (b )<f (a )<f (c ) B .f (c )<f (b )<f (a ) C .f (c )<f (a )<f (b ) D .f (b )<f (c )<f (a )【答案】 B【解析】 易知f (x )=2x-2-x 在R 上为增函数,又a =⎝⎛⎭⎫79-14=⎝⎛⎭⎫9714>⎝⎛⎭⎫9715=b >0,c =log 279<0,则a >b >c ,所以f (c )<f (b )<f (a ).变式1、(2019·广东韶关一中期末)设x >0,且1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <a D .1<a <b 【答案】C【解析】因为x >0时,1<b x ,所以b >1.因为x >0时,b x <a x,所以x >0时,⎝⎛⎭⎫a b x>1.所以ab >1,所以a >b ,所以1<b <a .变式2、已知函数f (x )=()x ,若a =f (20.3),b =f (2),c =f (log 25),则a ,b ,c 的大小关系为( ) A .c >b >a B .a >b >cC .c >a >bD .b >c >a【答案】B .【解析】根据题意,函数f (x )=()x ,则f (x )在R 上为减函数, 又由20.3<21<2<log 25, 则a >b >c ;故选:B .例2、设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x<0,x ,x≥0,若f(a)<1,则实数a 的取值范围是 ; 【答案】(-3,1)【解析】当a <0时,不等式f (a )<1可化为12a ⎛⎫ ⎪⎝⎭-7<1,即12a ⎛⎫ ⎪⎝⎭<8,即12a ⎛⎫ ⎪⎝⎭<312-⎛⎫ ⎪⎝⎭,∴a >-3.又a <0,∴-3<a <0.当a ≥0时,不等式f (a )<1可化为a <1.∴0≤a <1, 综上,a 的取值范围为(-3,1).变式、(2020·包头模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x,x ≥0,2a -x,x <0,若f (1-a )=f (a -1),则a 的值为______. 【答案】12.【解析】(1)当a <1时,41-a=21,解得a =12;当a >1时,代入不成立.故a 的值为12. 例3、(1)函数f(x)=22112x x -++⎛⎫⎪⎝⎭的单调减区间为 .(2)(一题两空)已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则a 的取值范围为________,f (-4)与f (1)的大小关系是________.(3)(2019·福建泉州五中模拟)设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________.【答案】(1) (-∞,1] (2)(1,+∞) f (-4)>f (1)(3)13或3 【解析】(1)设u =-x 2+2x +1,∵y =12a⎛⎫⎪⎝⎭在R 上为减函数,∴函数f (x )=22112x x -++⎛⎫⎪⎝⎭的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1],∴f (x )的减区间为(-∞,1]. (2)因为|x +1|≥0,函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),所以a >1.由于函数f (x )=a |x +1|在(-1,+∞)上是增函数,且它的图象关于直线x =-1对称,则函数f (x )在(-∞,-1)上是减函数,故f (1)=f (-3),f (-4)>f (1).(3)令t =a x (a >0,且a ≠1),则原函数化为y =f (t )=(t +1)2-2(t >0).①当0<a <1,x ∈[-1,1]时,t =a x∈⎣⎡⎦⎤a ,1a , 此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数.所以f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14.所以⎝⎛⎭⎫1a +12=16,解得a =-15(舍去)或a =13.②当a >1时,x ∈[-1,1],t =a x∈⎣⎡⎦⎤1a ,a , 此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3或a =-5(舍去).综上得a =13或3.方法总结 指数函数的性质有着广泛的应用,常见的有:比较大小,解不等式,求函数的单调区间和值域、最值等等.(1)比较两个幂值的大小问题是常见问题,解决这类问题首先要分清底数是否相同;若底数相同,则可利用函数的单调性解决;若底数不同,则要利用中间变量进行比较.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性问题,常常需要借助换元等手段将其化归于指数函数来解,体现化归与转化思想的运用.(3)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a 的取值范围,并在必要时须分底数0<a <1和a >1两种情形进行分类讨论,防止错解.考点二 指数函数的图像与性质例4、(2019·广西北海一中月考)函数y =a x-1a (a >0,且a ≠1)的图象可能是( )【答案】D【解析】当a >1时,y =a x-1a 是增函数. 当x =0时,y =1-1a ∈(0,1),A ,B 不满足.当0<a <1时,y =a x-1a 在R 上是减函数. 当x =0时,y =1-1a <0,C 错,D 项满足.变式1、 (2019·山西平遥中学模拟)已知f (x )=|2x -1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( ) A .a <0,b <0,c <0B .a <0,b >0,c >0C .2-a <2cD .1<2a +2c <2【答案】D【解析】作出函数f (x )=|2x -1|的图象如图所示,因为a <b <c ,且有f (a )>f (c )>f (b ),所以必有a <0,0<c <1,且|2a -1|>|2c -1|,所以1-2a >2c -1,则2a +2c <2,且2a +2c >1,故选D 。

4.2-指数函数

4.2-指数函数
(3)0.8 3与0.82 y 0.8x是R上的减函数, 3 2,0.8 3 0.82.
(4)a2与a3(a 0,且a 1)
①0 a 1时, y ax是R上的减函数,2 3,a2 a3. ②a 1时, y ax是R上的增函数,2 3,a2 a3.
[变式]若1.52m 1.54,则m的范围是__m_<_2___.
4.2 指数函数
4.2.1指数函数的概念
指数的故事
与百万富翁的交易
杰米是百万富翁。一天,他碰到上一件奇怪的事。一个叫韦伯的人对他说:“我想和你
订个合同,我将在整整一个月中每天给你10万元,而你第一天只需给我1分钱,以后你
每天给我的钱是前一天的两倍。”杰米说:“真的?你说话算数?”合同开始生效了,
杰米欣喜若狂。 第1天,杰米支出1分钱,收入10万元。1 第2天,杰米支出2分钱,收入10万元。1×2 第3天,杰米支出4分钱,收入10万元。1×2×2
(1) y 3x 1, x [1,2] 析 : x [1,2],3x [1 ,9],值域为[ 2 ,8].
3
3
(2) y 22x3 析 : x R,2x 3 R, y 0. 值域为(0,)
4 (1)x 2
由4
1 x
2
0得
1 x
2
4,
2x
22,
解指数不等式: 化同底+单调

x 2,x 2. 定义域为[2,).
[例7]求不等式
1
12
x
27的解集.
[变]求不等式232x 0.53x4的解集.
3
指数函数的应用五:求值域
(定义域)→指数范围 →单调性
[例8]求下列函数的值域.
解 : 设f (x) ax (a 0, a 1).a2 9,a 3(3舍去). f (x) 3x. f (2) 32 1 . 9

高一数学指数函数的概念、图象与性质(解析版)

高一数学指数函数的概念、图象与性质(解析版)

专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x [解析]由指数函数的定义知a >0且a ≠1,故选D. 2.下列函数一定是指数函数的是( )A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x[解析]由指数函数的定义可知D 正确. 3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个[解析]由指数函数的定义可判定,只有②正确.[答案] B 4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3[解析]形如“y =a x (a >0,且a ≠1)”的函数为指数函数,只有③符合,选B. 5.下列函数中,是指数函数的个数是( )①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0[解析] (1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数; ③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D. 6.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1. [解析] (2)是四次函数;(3)是-1与4x 的乘积;(4)中底数-4<0;(6)是二次函数;(7)中底数x 不是常数. 它们都不符合指数函数的定义,故不是指数函数.综上可知,(1)(5)(8)是指数函数. 7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.[解析]由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1[解析]由指数函数的概念可知,⎩⎪⎨⎪⎧(a -2)2=1,a >0,a ≠1,得a =3.9.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________. [解析]∵函数f (x )=(m 2-m +1)a x 是指数函数,∴m 2-m +1=1,解得m =0或1. 10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .1或3C .3D .1[解析]由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.11.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________. [解析]由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________. [解析]由题意知4=a 2,所以a =2,因此f (x )=2x ,故f (-3)=2-3=18.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.[解析]由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7. 14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. [解析]设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2, 所以f (-2)=3-2=19.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________. [解析]设f (x )=a x (a >0,且a ≠1),∵f (2)=9,∴a 2=9,a =3,即f (x )=3x . ∴f (-2)=3-2=19,f (1)=3.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2D .0[解析]选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a , 即33=3a 2,∴a2=3,解得a =6,∴a = 6.故选A.17.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.[解析]因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a=2,所以a =1,所以f (x )=⎝⎛⎭⎫12x , g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1. 18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.[解析]因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009[解析]不妨设f (x )=2x ,则f (2)f (1)=f (4)f (3)=…=f (2020)f (2019)=2,所以原式=1010×2=2020.题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )[解析]0<34<1且过点(0,1),故选C.2.函数y =3-x 的图象是( )A B C D[解析]∵y =3-x=⎝⎛⎭⎫13x,∴B 选项正确.3.函数y =2-|x |的大致图象是( )[解析]y =2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0.2x ,x <0,画出图象,可知选C. 4.函数y =a -|x |(0<a <1)的图象是( )A B C D[解析]y =a-|x |=⎝⎛⎭⎫1a |x|,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A. 5.函数y =-2-x 的图象一定过第________象限.[解析]y =-2-x =-⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫12x 关于x 轴对称,一定过第三、四象限. 6.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0[解析]从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看, 是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 7.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( )[解析]由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交, 交点在下面的是函数y =m x 的图象,故选C.8.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限[解析]A,∵a >1,且-1<b <0,故其图象如图所示.]9.若函数y =a x +b -1(a >0,且a ≠1)的图象经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <0[解析]函数y =a x +b -1(a >0,且a ≠1)的图象是由函数y =a x 的图象经过向上或向下平移而得到的,因其图象不经过第一象限,所以a ∈(0,1).若经过第二、三、四象限,则需将函数y =a x (0<a <1)的图象向下平移至少大于1个单位长度,即b -1<-1⇒b <0.故选C.10.若函数y =a x +m -1(a >0)的图象经过第一、第三和第四象限,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析]选B,y =a x (a >0)的图象在第一、二象限内,欲使y =a x +m -1的图象经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图象向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图象向下移动才可能经过第一、三、四象限.当a >1时,图象向下移动不超过一个单位时,图象经过第一、二、三象限,向下移动一个单位时,图象恰好经过原点和第一、三象限,欲使图象经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B. 11.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )[解析]当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A. 12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )[解析]二次函数y =a ⎝⎛⎭⎫x +b 2a 2-b 24a ,其图象的顶点坐标为⎝⎛⎭⎫-b 2a ,-b 24a ,由指数函数的图象知0<ba<1, 所以-12<-b 2a <0,再观察四个选项,只有A 中的抛物线的顶点的横坐标在-12和0之间.13.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()[解析]由函数f(x)=(x-a)(x-b)(其中a>b)的图象可知0<a<1,b<-1,所以函数g(x)=a x+b是减函数,排除选项C、D;又因为函数图象过点(0,1+b)(1+b<0),故选A.14.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c[解析](1)解法一:由图象可知③④的底数必大于1,①②的底数必小于1.作直线x=1,在第一象限内直线x=1与各曲线的交点的纵坐标即各指数函数的底数,则1<d<c,b<a<1,从而可知a,b,c,d与1的大小关系为b<a<1<d<c.解法二:根据图象可以先分两类:③④的底数大于1,①②的底数小于1,再由③④比较c,d的大小,由①②比较a,b的大小.当指数函数的底数大于1时,图象上升,且底数越大时图象向上越靠近y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近x轴.15.方程|2x-1|=a有唯一实数解,则a的取值范围是________.[解析]作出y=|2x-1|的图象,如图,要使直线y=a与图象的交点只有一个,∴a≥1或a=0.16.函数y=a x-3+3(a>0,且a≠1)的图象过定点________.[解析]因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).17.函数y=2a x+3+2(a>0,且a≠1)的图象过定点________.[解析]令x+3=0得x=-3,此时y=2a0+2=2+2=4.即函数y=2a x+3+2(a>0,且a≠1)的图象过定点(-3,4).18.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()A.(0,1) B.(0,-1)C .(-1,0)D .(1,0)[解析] 当x =-1时,显然f (x )=0,因此图象必过点(-1,0).19.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2[解析]选C,由题意知,当x =1时,y =3,故A (1,3),m +n =4. 20.函数y =a 2x +1+1(a >0,且a ≠1)的图象过定点________. [解析]令2x +1=0得x =-12,y =2,所以函数图象恒过点⎝⎛⎭⎫-12,2. 21.若函数y =2-|x |-m 的图象与x 轴有交点,则( )A .-1≤m <0B .0≤m ≤1C .0<m ≤1D .m ≥0[解析]易知y =2-|x |-m =⎝⎛⎭⎫12|x |-m .若函数y =2-|x |-m 的图象与x 轴有交点,则方程⎝⎛⎭⎫12|x |-m =0有解, 即m =⎝⎛⎭⎫12|x |有解.∵0<⎝⎛⎭⎫12|x |≤1,∴0<m ≤1. 22.已知f (x )=2x 的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到:(1)y =2x +1;(2)y =2x -1;(3)y =2x +1;(4)y =2-x ;(5)y =2|x |. [解析] (1)y =2x +1的图象是由y =2x 的图象向左平移1个单位得到.(2)y =2x-1的图象是由y =2x 的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x 的图象向上平移1个单位得到.(4)∵y =2-x 与y =2x 的图象关于y 轴对称,∴作y =2x 的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x 的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.23.已知函数f (x )=a x +b (a >0,且a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数根,求m 的取值范围.[解析] (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,又因为a >0,且a ≠1,所以a =3,b =-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0.即a 0+b <0,所以b <-1. 故a 的取值范围为(0,1),b 的取值范围为(-∞,-1).(3)画出|f (x )|=|(3)x -3|的图象如图所示,要使|f (x )|=m 有且仅有一个实数根, 则m =0或m ≥3.故m 的取值范围为[3,+∞)∪{0}.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2. [解析] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1, 所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4. 所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4 ≠1,即函数y =21x -4 的值域为{y |y >0,且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0.所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x | =⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}. (4)定义域为R.∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (5)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R. 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞). 2.(1)求函数y =⎝⎛⎭⎫132x -的定义域与值域;(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值. [解析] (1)由x -2≥0,得x ≥2,所以定义域为{x |x ≥2}.当x ≥2时,x -2≥0, 又因为0<13<1,所以y =⎝⎛⎭⎫13x -2的值域为{y |0<y ≤1}.(2)∵y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,∴y =4·⎝⎛⎭⎫14x -4·⎝⎛⎭⎫12x +2.令m =⎝⎛⎭⎫12x ,则⎝⎛⎭⎫14x =m 2. 由0≤x ≤2,知14≤m ≤1.∴f (m )=4m 2-4m +2=4⎝⎛⎭⎫m -122+1. ∴当m =12,即当x =1时,f (m )有最小值1;当m =1,即x =0时,f (m )有最大值2.故函数的最大值是2,此时x =0,函数的最小值为1,此时x =1. 3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)[解析]由2x -1≥0,得2x ≥20,∴x ≥0.[答案] C 4.函数y =1-⎝⎛⎭⎫12x的定义域是________.[解析]由1-⎝⎛⎭⎫12x≥0得⎝⎛⎭⎫12x ≤1=⎝⎛⎭⎫120,∴x ≥0,∴函数y =1-⎝⎛⎭⎫12x的定义域为[0,+∞).5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .a <1C .0<a <1D .a ≠1[解析]由a x -1≥0,得a x ≥a 0.∵函数的定义域为(-∞,0],∴0<a <1.6.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( ) A .[0,1)∪(1,+∞) B .(1,+∞) C .(0,1)D .(2,+∞)[解析]∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1. 7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)[解析]y =2x 在R 上是增函数,且21=2,故选B. 8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)[解析]要使函数有意义,须满足16-4x ≥0.又因为4x >0,所以0≤16-4x <16, 即函数y =16-4x 的值域为[0,4).9.函数y =⎝⎛⎭⎫12x(x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞[解析]因为y =⎝⎛⎭⎫12x 在[8,+∞)上单调递减,所以0<⎝⎛⎭⎫12x≤⎝⎛⎭⎫128=1256. 10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,0 [解析]∵0≤x ≤1,∴1≤2x ≤2,∴-1≤1-2x ≤0,选B.11.已知函数y =⎝⎛⎭⎫13x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.[解析]∵y =⎝⎛⎭⎫13x 在R 上为减函数,∴m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,故m +n =12. 12.函数y =⎝⎛⎭⎫1222x x -+的值域是________. [解析]设t =-x 2+2x =-(x 2-2x )=-(x -1)2+1≤1,∴t ≤1.∵⎝⎛⎭⎫12t ≥⎝⎛⎭⎫121=12,∴函数值域为⎣⎡⎭⎫12,+∞. 13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.[解析]∵x 2-1≥-1,∴y =⎝⎛⎭⎫12x 2-1≤⎝⎛⎭⎫12-1=2,又y >0,∴函数值域为(0,2].14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________. [解析]由x <0,得0<2x <1;由x >0,∴-x <0,0<2-x <1,∴-1<-2-x <0,∴函数f (x )的值域为(-1,0)∪(0,1).15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析](1)∵f (x )的图象过点⎝⎛⎭⎫2,12,∴a 2-1=12,则a =12. (2)由(1)知,f (x )=⎝⎛⎭⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2, 所以函数y =f (x )(x ≥0)的值域为(0,2].16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________. [解析]当x >0时,3x >3-x, f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1; 当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上, f (x )的值域是(0,1].17.函数f (x )=3x 3x +1的值域是________.[解析]数y =f (x )=3x 3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得0<y <1,值域为(0,1). 18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.[解析]当0<a <1时,函数f (x )=a x -1(a >0,且a ≠1)为减函数,所以⎩⎪⎨⎪⎧ a 0-1=2,a 2-1=0无解. 当a >1时,函数f (x )=a x -1(a >0,且a ≠1)为增函数,所以⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2,解得a = 3. 综上,a 的值为 3.19.已知f (x )=9x -2×3x +4,x ∈[-1,2].(1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值;(2)求f (x )的最大值与最小值.[解析](1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9, 故t 的最大值为9,t 的最小值为13. (2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.。

指数函数的图像及性质

指数函数的图像及性质

∴1-3c>3a-1,即3c+3a<2. 【答案】 D
求与指数函数有关的函数的定义域与值域
求下列函数的定义域和值域:
(1) y=( 1 )2x-x2;(2)y=9x+2×3x-1.
2
思路点拨:这是与指数函数有关的复合函数,可以利 用指数函数的概念和性质来求函数的定义域、值域,对于 形式较为复杂的可以考虑利用换元法(如(2)).
素材2.1 设函数f x =a- (a 0且a 1),
x
若f 2 = 4,则a = f (2)与f 1的大小关系 是 ;

xa x 2 函数y = 0 a 1的 | x| 图象的大致形状是

解析:
1由f 2 4,得a
-2
1 4,所以a , 2
另一部分是:y=3x
(x<0)
向左平移
1个单位
y=3x+1 (x<-1).
图象如图:
(2)由图象知函数在(-∞,-1]上是增函数,
在(-1,+∞)上是减函数. (3)由图象知当x=-1时,函数有最大值1,无最小值. 探究提高
在作函数图象时,首先要研究函数与某一
基本函数的关系.然后通过平移或伸缩来完成.
考点探究
点评: 利用单调性可以解决与指数函数有关的值域 问题.指数函数本身是非奇非偶函数,但是与指数函数有
关的一些函数则可能是奇函数或偶函数.要注意使用相关
的概念和性质解决问题.
考点探究
2 2.已知 f(x)是定义在 R 上的奇函数,且当 x∈(0,1)时,f(x)= x . 4 +1 (1)求 f(x)在(-1,1)上的解析式; (2)证明:f(x)在(0,1)上是减函数.

指数函数有什么性质?如何证明指数函数的单调性?

指数函数有什么性质?如何证明指数函数的单调性?

指数函数有什么性质?如何证明指数函数的单调性? 指数函数是数学中重要的函数。

应用到值e上的这个函数写为exp(x)。

还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。

在高中数学中占有一定位置。

那幺指数函数有什幺性质?如何证明指数函数的单调性? 指数函数有什幺性质? 指数函数一般具有以下性质:(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0函数无意义一般也不考虑。

(2) 指数函数的值域为大于0的实数集合。

(3) 函数图形都是下凹的。

(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

小编推荐:《2018年高考数学备考计划好的复习计划是成功的开始》(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。

(7) 函数总是通过(0,1)这点,(若Y=Ax+B,则函数定过点(0,1+b) (8) 显然指数函数无界。

(9) 指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

指数函数、单调性、奇偶性

指数函数、单调性、奇偶性

书香教育教师教案学生姓名:张力引年级:高一 科目:数学 辅导方式:一对一 教师:左秀国教学内容:指数函数、单调性、奇偶性教学时间:2014-10--26 教学目标:指数函数性质、单调性、奇偶性教学重难点:指数函数性质、单调性、奇偶性一、指数函数1.设1221)(+-=x x f ,f (x )的值域是 2.已知函数f(x)=11+-x x a a (a>0且a≠1).(1)求f(x)的定义域和值域;(2)讨论f(x)的单调性。

3.已知函数f (x )=a ·2x +a -12x +1.(1)求证:不论a 为何实数,f (x )总是为增函数;(2)确定a 的值,使f (x )为奇函数; (3)当f (x )为奇函数时,求f (x )的值域.4. (1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3x -1|=k 无解?有一解?有两解?5.若函数)(x f 是定义在[]1,1-上的奇函数,当)1,0(∈x 时,142)(+=x xx f ,且)1()1(f f =-.求)(x f 在[]1,1-上的解析式;二、函数单调性与奇偶性1.已知函数b a bx ax x f +++=3)(2,其定义域为[]a a 2,1-,则a=_____b=2.已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,3()(1)f x x x =+,则()f x 的解析式为____________________.3.若函数x xk k x f 212)(⋅+-=是奇函数,则=k ___________.4.判断下列各函数的奇偶性(1)1()(1)1x f x x x +=--;(2)22lg(1)()|2|2x f x x -=--;(3)22(0)()(0)x x x f x x xx ⎧+<⎪=⎨-+>⎪⎩5.函数2y x x =-+的单调减区间是________________.6..已知函数()f x 是定义在[1,1]-上的增函数,且(1)(13)f x f x -<-,则实数x 的取值范围是7.函数1()12f x x=-的单调区间是 8.函数2()1x f x x =+在区间[1,)+∞上是减函数.课后作业1.函数y =a |x |(a >1)的图象是( )A B C D2.下列选项中,函数y =|2x -2|的图象是( )3.(2014年四川泸州二模)已知在同一直角坐标系中,指数函数y =a x 和y =b x的图象如图,则下列关系中正确的是( )A .a <b <1B .b <a <1C .a >b >1D .b >a >14.求函数y =16-4x 的值域 5.函数f (x )=2213x x-⎛⎫ ⎪⎝⎭的值域为__________.6.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)·f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2);③f (x 1)-f (x 2)x 1-x 2<0;④f (x 1)-1x 1<0(x 1≠0);⑤f (-x 1)=1f (x 1). 当f (x )=⎝⎛⎭⎫12x 时,上述结论中,正确结论的序号是____________.7.(1)若f (log 2x )=x ,求f ⎝⎛⎭⎫12的值;(2)若log 2[log 3(log 4x )]=0,log 3[log 4(log 2y )]=0,求x +y 的值.。

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)
4.2 指数函数
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质
1.理解指数函数的概念. 2.探索指数函数的单调性与图象的特殊点,并掌握指数函数图象的性质. 3.体会直观想象的过程,加强数学抽象、数学运算素养的培养.
指数函数 一般地,函数① y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是② R .
解下列方程:
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
思路点拨
(1)两边化为同底数幂 利用指数相等求解.
(2)令2x=t(t>0),将原方程化为4t2+3t-1=0 求出t的值
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),
∴2x+4=-2(x+2),解得x=-2.
与指数函数有关的复合函数的定义域、值域问题
大家对“水痘”应该不陌生,它与其他的传染病一样,有一定的潜伏期,这段时 间里病原体在机体内不断地繁殖.病原体的繁殖方式有很多种,分裂就是其中的一 种.我们来看某种球菌的分裂过程:由1个分裂成2个,2个分裂成4个,4个分裂成8个, …… 问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的关系式是什么? 提示:y=2x+1. 2.上述求出的关系式中x的范围是什么? 函数的值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
比较指数幂大小
1.01365 37.8, 0.99365 0.03,
1.02365 1 377.4, 0.98365 0.000 6.
问题 1.上面的式子告诉我们一个什么道理? 提示:积跬步以致千里,积怠惰以致深渊. 2.如果不计算出结果,如何比较上式中各指数幂的大小? 提示:利用函数单调性进行比较.

指数函数

指数函数

【思考探究】
【探究2】已知 f ( x) 是定义在 1,1上的奇函
2x 数.当 x (0,1) 时,f ( x) x . 4 1
(1)求 f ( x) 的解析式. (2)判断 f ( x) 的单调性,并证明.
【作业布置】
必做题:《作业》P97 3—14,16 选做题: P97 20
2 1
【典例分析】
2x x y a 2 a 1(a 0且 【典例1】已知函数 . a 1)
当 x 0 时,求 y 的范围.
【典例分析】
2 f ( x ) x bx c 满足 【典例2】已知函数 x x , 则 f (b ) 与 f (c )
yc
x
y b
x
yd
x
ya
x
【尝试练习】
x 2 y 2 y x 1.函数 与 的图象的公共点个数
为 3 个
1 ( , ) 1 x2 x2 2.函数 y ( ) 的单调增区间是 2 . 2 1 [ ,1] 1 3.函数 y x (1 x 2) 的值域为 3 .
指数函数
一、定义
一般地,形如 y a (a 0且a 1) 的函数叫作指数函数, 其中x是自变量,函数定义域是 R 。
x
二、图象与性质
函数
y a x (a 0且a 1)
0<a<1 a>1
图象
图象特征 定义域 值域 单调性
(0,1) 与x轴无交点,过定点 . 当 x 轴逐渐增大时, 当 x 轴逐渐增大时, 图象逐渐 下降 . 图象逐渐 上升.
的大小关系为( x x A. f (b ) f (c ) x x C. f (b ) f (c )

指数函数图像及性质(一)

指数函数图像及性质(一)

应用一
(1) 求使不等式 4 32 成立的 x 的集合;
x
(2) 已知 a a
4 5
2
,求数 a 的取值范围.
解: (1) 4 32, 即 2
x
x
2x
25 .
5 因为 y=2 是 R 上的增函数,所以 2x>5,即 x 2 5 x 满足 4 32 的 x 的集合是 ( , ) ; 化为同底 2 的指数幂 4 x (2)由于 2 ,则 y a 是减函数, 5
0.3
0.9
3.1
解:根据指数函数的性质,得:
1.70.3 1.70 1 且 0.93.1 0.90 1
从而有
3.2
3.2
1.7
0.3
0.9
3.1
3
3
2.8
2.8
2.6
2.6
2.4
2.4
2.2
2.2
2
2
1.8
fx = 1.7x
1.8
fx = 0.9x
1.6
1.6
1.4
1.4
0.8
0.1
0.8
0.2
1.8
fx = 0.8x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-1.5
-1
-0.5
0.5
1
应用一
比较下列各题中两个值的大小: (1) 30.8与30.7 方法总结: 对同底数幂大小的比较用的是指数函数的 单调性,必须要明确所给的两个值是哪个指数 函数的两个函数值;对不同底数幂的大小的比 较可以与中间值进行比较. (2) 0.75-0.1与0.750.1

指数函数单调区间

指数函数单调区间

指数函数单调区间指数函数单调区间指数函数是一类常见的函数,其形式为f(x) = a^x,其中a为一个正实数且不等于1。

在指数函数中,a被称为底数,x被称为指数。

指数函数在数学、物理、化学等领域都有广泛的应用。

本文将介绍指数函数的单调性及其单调区间。

一、定义与基本性质1. 定义指数函数是以常数e为底的幂函数,即f(x) = e^x。

2. 基本性质(1)定义域:实数集R。

(2)值域:(0,+∞)。

(3)单调性:当x1<x2时,e^x1<e^x2,即指数函数在整个定义域上是严格增加的。

(4)连续性:e^x在整个定义域上连续。

二、单调性指数函数在整个定义域上是严格增加的。

这意味着对于任意两个实数x1和x2,如果满足x1<x2,则有e^x1<e^x2。

这一特点可以通过求导来证明。

三、单调区间根据上述结论,我们可以得到指数函数的单调区间。

由于其在整个定义域上都是严格增加的,因此不存在下降的区间。

因此,指数函数的单调区间为整个定义域,即(-∞,+∞)。

四、例题解析下面通过一道例题来进一步理解指数函数的单调性及其单调区间。

例题:求指数函数y=2^x的单调区间。

解析:根据指数函数的定义和基本性质,我们可以知道2^x在整个定义域上是严格增加的。

因此,其单调区间为整个定义域,即(-∞,+∞)。

五、总结本文介绍了指数函数的定义、基本性质、单调性及其单调区间。

通过对指数函数的学习,我们可以更好地理解和应用这一类常见的函数。

指数函数的一般表达式

指数函数的一般表达式

指数函数的一般表达式指数函数是数学中常见的一类函数,其一般形式可以表示为$f(x)=a^x$,其中$a$是常数为底数,$x$是函数的自变量。

1.定义域和值域2.单调性当底数$a>1$时,指数函数是递增的,即随着自变量的增大,函数值也随之增大。

当底数$a<1$时,指数函数是递减的,即随着自变量的增大,函数值却减小。

3.交点与极限指数函数与$x$轴交于点$(0,1)$,即当$x=0$时,函数的值始终为1、此外,指数函数具有一个特殊的极限性质:当$x$趋于负无穷时,函数的值趋近于0;当$x$趋于正无穷时,函数的值趋近于正无穷。

4.对称性指数函数具有对称性。

以$a>1$为例,当$x$取正数时,函数值逐渐增大,当$x$取负数时,函数值逐渐减小。

两者关于$x=0$对称。

5.运算性质指数函数具有一些重要的运算性质。

当底数相同时,两个指数函数的乘积等于以相同底数,指数为两个函数指数之和的新指数函数。

即$f(x)\cdot g(x) = a^{x+y}$。

此外,指数函数的幂运算规律也适用于指数函数的运算。

指数函数在自然科学中的应用广泛。

在生物学中,指数增长函数可以用于描述生物种群的增长。

在化学动力学中,指数函数被用来表示反应速率与浓度的关系。

在经济学中,指数函数被用于描述复利计算。

总结来说,指数函数是一类常见的数学函数,其一般形式为$f(x)=a^x$,可以用于描述各种增长或衰减规律。

指数函数具有一些重要的特性,如定义域、值域、单调性、交点与极限、对称性和运算性质。

指数函数在自然科学、工程技术、经济学等领域中有广泛的应用。

指数函数考点总结(精华加强版)

指数函数考点总结(精华加强版)

指数函数考点总结指数函数定义:函数)1,0(≠>=a a a y x且称指数函数,函数的定义域为R ;函数的值域为),0(+∞;(2)函数图像及性质:①指数函数的图象都经过点(0,1),且图象都在第一、二象限; ②当10<<a 时函数为减函数,当1>a 时函数为增函数。

③指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);④对于相同的)1,0(≠>a a a 且,函数xxa y a y -==与的图象关于y 轴对称。

⑤函数值的变化特征:()()()10110010y x a y x y x >>⎧⎪>==⎨⎪<<<⎩时 ()()()010011010y x a y x y x <<>⎧⎪<<==⎨⎪><⎩时一指数函数定义1.某种细菌在培养过程中,每20分钟分裂一次(一次分裂为2个),经过3小时,这种细菌由1个繁殖成( ) 个2.已知以x 为自变量的函数,其中属于指数函数的是( )A.y =(a+1)x(其中a>-1,且a ≠0) B.y =(-3)xC.y =-(-3)xD.y =3x+12(33)x y a a a =-+是指数函数,则a 的值为 .3.已知a <41,则化简42)14(-a 的结果是定点问题1..指数函数()f x 的图象过点(2,9),则(2)f -=2.函数5()26x f x -=+恒过定点求奇偶性1.当a>1时,证明函数 是奇函数。

2.函数y =xx aa 2211-+(a>0,且a ≠1)( ) f(x) 奇偶性 3.设f(x)=244+x x,若0<a<1,f(x)奇偶性4.F(x)=(1+122-x )f(x)(x ≠0)是偶函数,且f(x)不恒等于零,则f(x)奇偶性 5.判断函数xx xx 10101010)x (f +-=--的奇偶性6.试求:f(a)+f(1-a)的值,进一步求f(10011)+f(10012)+f(10013)+……+f(10011000)的值. (1)f(x)=x x 2)21(2+;判断函数的奇偶性:f(x)=xx 2)21(2+是偶函数.(2)f(x)=11+x a -21 (a>0,且a ≠1). 判断函数的奇偶性:f(x)=11+x a -21是奇函数. 7.对于解析式比较复杂的函数通常将其化简(在确定了其定义域的情况下),然后再判定函11)(-+=xx a a x f数的奇偶性.8.判断函数的奇偶性的问题,通常是根据函数奇偶性定义,也可将问题转化为证明下述结论:若f(-x)+f(x)=0,则f(x)为奇函数;若f(-x)+f(x)=2f(x),则f(x)为偶函数奇偶性解析式1.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=x x f ,求当0x <时()y f x =的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g ( x)是 m, n 上减函数,且a g x b a g ( x2 ) g ( x1 ) b. 又 f x 是 a, b 上的增函数,
f g x2 f g x1 . f g x 在 m, n 上是减函数.
-1 2 4
0 1 2
1 2 4
2 5 32
3 10 1024
u g( x ) y f (u) y f [ g( x )]
u g( x ) x 2 1 y f ( u) 2u x (0, ) x (,0)

u x 2 1 1 x 2 1 例1.2)求函数y ) 的单调区间. ( 1 u 2 y ( 2)
思考:内外函数的单调性对复合函数的单调性的影响?
u g( x ) y f (u) y f [ g( x )]
u g( x ) x 2 1 u g( x ) x 1 1 u y f ( u) 2u y f ( u) ( 2 ) x (,0) x (0, ) x (,0) x (0, )
§1.3.1单调性与最大(小)值(三) 七、复合函数单调性
例1 如果 g x 是[m,n]上的减函数,且 a g x b,f x 是[a,b]上的增函数,求证 f g x 在[m,n]上也是减函数。 证:x1 , x2 m, n , 且x1 x2 ,
指数函数的性质应用4
温故知新
复合函数如何求函数的 定义域和值域? 求函数的定义域方法: 列不等式组 求复合函数的值域方法 :换元
§1.3.1单调性与最大(小)值(三)
复合函数: f g x
判断:一个函数的函数值,作为另一个函数的自变量。 定义域: 1、若已知 f x 的定义域为[a,b],则复合函数 f g x 的 定义域由 a g x b 解出。 2、若已知 f g x 的定义域为[a,b],则函数 f x 的定义域 即为 当x a, b时,函数g x 的值域。
y f (x)
增函数 增函数 减函数 减函数
y f [ g ( x)]
增函数 减函数 减函数 增函数
小结:同增异减。研究函数的单调性,首先考虑函数的定 义域,要注意函数的单调区间是函数定义域的某个区间。
§1.3.1单调性与最大(小)值(三)
注:
1、复合函数y=f[g(x)]的单调区 间必须是其定义域的子集 2、对于复合函数y=f[g(x)]的单 调性是由函数y=f(u)及u=g(x)的 单调性确定的且规律是“同增, 异减”
拓展 : 1)判断函数 3 1 y
1 拓 展1 : 2)求 函 数 ( ) y 2
2 x 8
的单调性 .
1 2 x x 1 2
的单调区间 .
拓展 : 3)讨论函数 2a 5(a 0)的单调性 1 y .
x
例2、求函数 4 2 y
x
x 1
的定义域,值域


规律: 内外函数同增减,复合 函数单增;
内外函数异增减,复合 函数单减;
同增异减
§1.3.1单调性与最大(小)值(三)
复合函数单调性
u g (x)
增函数 减函数 增函数 减函数
对于复合函数 f [ g ( x)] y 的单调性,必须考虑 f (u)与 y u g ( x)的单调性,从而得出 f [ g ( x)] y 的单调性。
x u Y
-3 -2 10 5 1 1 1024 32

-1 2 1 4
0 1 1 2
1 2 1 4
2 5 1 32
3 10 1 1024
x (,0) u g( x ) y f (u) y f [ g( x )]
x (0, ) u g( x ) x 2 1 1 u y f ( u) ( 2 )
§1.3.1单调性与最大(小)值(三)
复合函数: 令 u=g(x) 则 y=f(u) y=f[g(x)]
y=f[g(x)] 内函数
外函数 原函数
以x为自变量 以u为自变量 以x为自变量
例1.1)求函数 2 y
x 2 1
的单调区间 .
u x 2 1 y 2u
x u y
-3 -2 10 5 1024 32
相关文档
最新文档