【精品练习题】52动能定理

合集下载

动能定理专项训练(含解析)

动能定理专项训练(含解析)

动能定理专项训练一、选择题1.有两个物体甲、乙,它们在同一直线上运动,两物体的质量均为m ,甲速度为v ,动能为E k ;乙速度为-v ,动能为E k ′,那么( )(A )E k ′=-E k(B )E k ′=E k(C )E k ′<E k(D )E k ′>E k2.甲、乙两个物体的质量分别为甲m 和乙m ,并且甲m =2 乙,它们与水平桌面的动摩擦因数相同,当它们以相同的初动能在桌面上滑动时,它们滑行的最大距离之比为( ). (A )1:1(B )2:1(C )1:2(D )2:13.两个物体a 和b ,其质量分别为m a 和m b ,且m a >m b ,它们的初动能相同.若它们分别受到不同的阻力F a 和F b 的作用,经过相等的时间停下来,它们的位移分别为s a 和s b ,则( ). (A )F a >F b ,s a >s b(B )F a >F b ,s a <s b (C )F a <F b ,s a >s b(D )F a <F b ,s a <s b4.一个小球从高处自由落下,则球在下落过程中的动能( ). (A )与它下落的距离成正比 (B )与它下落距离的平方成正比 (C )与它运动的时间成正比(D )与它运动的时间平方成正比5.质量为2kg 的物体以50J 的初动能在粗糙的水平面上滑行,其动能的变化与位移的关系如图所示,则物体在水平面上滑行的时间为( ). A 、5s B 、4s C 、s 22 D 、2s6.以速度v 飞行的子弹先后穿透两块由同种材料制成的平行放置的固定金属板,若子弹穿透两块金属板后的速度分别变为0.8v 和0.6v ,则两块金属板的厚度之比为( ). (A )1:1(B )9:7(C )8:6(D )16:97.质点只受的力F 作用,F 随时间变化的规律如图所示,力的方向始终在一直线上.已知t =0时质点的速度为零.在右图所示的t 1、t 2、t 3和t 4各时刻中,质点动能最大的时刻是( ). (A )t 1(B )t 2(C )t 3(D )t 48.在平直公路上,汽车由静止开始作匀加速运动,当速度达到某一值时,立即关闭发动机后滑行至停止,其v -t 图像如图5—22所示.汽车牵引力为F ,运动过程中所受的摩擦阻力恒为f ,全过程中牵引力所做的功为W 1,克服摩擦阻力所做的功为W 2,则下列关系中正确的是().(A )F :f =1:3 (B )F :f =4:1(C )W 1:W 2=1:1(D )W 1:W 2=1:39.一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为2E .若小物块冲上斜面的初动能变为2E ,则有( ). (A )返回斜面底端时的动能为E(B )返回斜面底端时的动能为23E(C )返回斜面底端时的速度大小为2v (D )克服摩擦阻力做的功仍为2E10.质量为m 的小球被系在轻绳的一端,在竖直平面内作半径为R 的圆周运动.运动过程中,小球受到空气阻力的作用,在某一时刻小球通过轨道最低点时绳子的拉力为7mg ,此后小球继续作圆周运动,转过半个圆周恰好通过最高点,则此过程中小球克服阻力所做的功为( ).(A )mgR (B )2mgR (C )3mgR (D )4mgR11.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球,考虑小球由静止开始运动到最低位置的过程().(A )小球在水平方向的速度逐渐增大 (B )小球在竖直方向的速度逐渐增大 (C )到达最低位置时小球线速度最大(D )到达最低位置时绳中的拉力等于小球重力12.如图所示,板长为L ,板的B 端静止放有质量为m 的小物体,物体与板的动摩擦因数为μ.开始时板水平,在缓慢转过一个小角度α的过程中,小物体保持与板相对静止,则在这个过程中().(A )摩擦力对小物体做功为μmgLcosα(1-cosα) (B )摩擦力对小物体做功为mgLsinα(1-cosα) (C )弹力对小物体做功为mgLcosαsinα (D )板对小物体做功为mgLsinα13.如图所示,物体自倾角为θ、长为L 的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s ,则物体与斜面间的动摩擦因数为( )(A )sLsin θ(B )θssin L (C )sLtan θ(D )θstan L二、填空题14.一个质量是2kg 的物体以3m /s 的速度匀速运动,动能等于______J .15.火车的质量是飞机质量的110倍,而飞机的速度是火车速度的12倍,动能较大的是______. 16.两个物体的质量之比为100:1,速度之比为1:100,这两个物体的动能之比为______.17.一个物体的速度从0增加到v ,再从v 增加到2v ,前后两种情况下,物体动能的增加量之比为______. 18.甲、乙两物体的质量之比为2:1m :m =乙甲,它们分别在相同力的作用下沿光滑水平面从静止开始作匀加速直线运动,当两个物体通过的路程相等时,则甲、乙两物体动能之比为______.19.自由下落的物体,下落1m 和2m 时,物体的动能之比是______;下落1s 和2s 后物体的动能之比是______.20.甲、乙两物体的质量比m 1:m 2=2:1,速度比v 1:v 2=1:2,在相同的阻力作用下滑行至停止时通过的位移大小之比为_____.21.一颗质量为10g 的子弹,射入土墙后停留在0.5m 深处,若子弹在土墙中受到的平均阻力是6400N .子弹射入土墙前的动能是______J ,它的速度是______m /s .22.质量为m 的物体,作加速度为a 的匀加速直线运动,在运动中连续通过A 、B 、C 三点,如果物体通过AB 段所用时间和通过BC 段所用的时间相等,均为T ,那么物体在BC 段的动能增量和在AB 段的动能增量之差为______.23.质量m =10kg 的物体静止在光滑水平面上,先在水平推力F 1=40N 的作用下移动距离s 1=5m ,然后再给物体加上与F 1反向、大小为F 2=10N 的水平阻力,物体继续向前移动s 2=4m ,此时物体的速度大小为______m /s .24.乌鲁木齐市达坂城地区风力发电网每台风力发电机4张叶片总共的有效迎风面积为s ,空气密度为ρ、平均风速为v .设风力发电机的效率(风的动能转化为电能的百分比)为η,则每台风力发电机的平均功率P =______.25.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m /s .人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功等于______J (g 取10m /s 2) 三、应用题26.如图所示,一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ.27.一颗质量m=10g的子弹,以速度v=600m/s从枪口飞出,子弹飞出枪口时的动能为多大?若测得枪膛长s=0.6m,则火药引爆后产生的高温高压气体在枪膛内对子弹的平均推力多大?28.一辆汽车质量为m,从静止开始起动,沿水平面前进了距离s后,就达到了最大行驶速度v.设汽max车的牵引力功率保持不变,所受阻力为车重的k倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间.29.如图所示,斜面倾角为θ,滑块质量为m,滑块与斜面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s30.在光滑水平面上有一静止的物体,现以水平恒力F1推这一物体,作用一段时间后,换成相反方向的水平恒力F2推这一物体.当F2作用时间与F1的作用时间相同时,物体恰好回到出发点,此时物体的动能为32J.求运动过程中F1和F2所做的功.参考答案1、B解析:动能是标量,由可得答案为B。

动能定理练习题(附答案)

动能定理练习题(附答案)

动能定理练习题(附答案)2012年3月1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B :G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B : G F W W W ∑=+F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出.(1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理: 221122mgh mv mv =-20m/s v ∴=(2) m 由A 到B ,根据动能定理3:1不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.A22t 01122mgh W mv mv -=-1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v .(2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理: 221122mgH mv mv =-v ∴(2)变力6.(3) m 由B 到C ,根据动能定理:4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. 6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.v m0v 'O A →A B→v t v2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解:(1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴=(2) m 由1状态到3状态8:根据动能定理: 1cos0cos18000Fs mgs μ+=-100m s ∴=6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数. 解:78也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下:m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-270m s ∴=则总位移12100m s s s =+=.fA(1) m 由A 到C 9:根据动能定理: f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C : f cos180W mg x μ=⋅⋅0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功. 解:(1) m 由B 到C :根据动能定理: 2B1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理: 2f B 102mgR W mv +=-f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求证:hsμ=. 证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理:2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-9 也可以分段计算,计算过程略.10A又1cos l s θ=、12s s s =+ 则11:0h s μ-=即:hsμ=证毕.9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的B 点. 若该物体从斜面的顶端以初速度v 0沿斜面滑下,则停在平面上的C 点. 已知AB = BC ,求物体在斜面上克服摩擦力做的功. 解:设斜面长为l ,AB 和BC 之间的距离均为s ,物体在斜面上摩擦力做功为f W . m 由O 到B :根据动能定理:f 2cos18000mgh W f s ++⋅⋅=-m 由O 到C :根据动能定理:2f 2012cos18002mgh W f s mv ++⋅⋅=- 2f 012W mv mgh ∴=-克服摩擦力做功2f 012W W mgh mv ==-克f10、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小.(2)这一过程牵引力所做的功.11具体计算过程如下:由1cos l s θ=,得:12cos180cos18000mgh mg s mgs μμ+⋅⋅+⋅=-()120mgh mg s s μ-⋅+=由12s s s =+,得:0mgh mgs μ-=即:0h s μ-=(3)这一过程汽车行驶的距离. 解12:(1)汽车速度v 达最大m v 时,有F f =,故: m m P F v f v =⋅=⋅1000N f ∴=(2)汽车由静止到达最大速度的过程中:6F 1.210J W P t =⋅=⨯(2)汽车由静止到达最大速度的过程中,由动能定理:2F m 1cos18002W f l mv +⋅⋅=-800m l ∴=11.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。

动能定理练习题(附答案)

动能定理练习题(附答案)

A动能定理练习题1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2: 2102J 2W mv ∑=-=(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s 解:(1) m 由A 到B :根据动能定理:2201122mgh mv mv =-20m/s v ∴=(2) m 由A 到B ,根据动能定理3:22t 01122mgh W mv mv -=- 1.95J W ∴= 3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=1 不能写成:G10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2 也可以简写成:“m :A B →:k W E ∑=∆Q ”,其中k W E ∑=∆表示动能定理.3此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.v mv 'O A →A B →4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅o()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-o o3.74m/s v ∴==(2) m 由1状态到3状态8:根据动能定理:6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.8也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下: m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-o270m s ∴=v t v vf1cos0cos18000Fs mgs μ+=-o o100m s ∴=6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求:(1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C :f cos180W mg x μ=⋅⋅o0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-oB 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位10Af则11:0h s μ-= 即: h sμ= 证毕.9、质量为m 的物体从高为h 从斜面的顶端以初速度v 0沿斜面滑下,则停在平面上的C 点. 克服摩擦力做的功.解:设斜面长为l ,AB 和BC 之间的距离均为s m 由O 到B :根据动能定理: f 2cos18000mgh W f s ++⋅⋅=-om 由O 到C :根据动能定理:f 2012cos18002mgh W f s mv ++⋅⋅=-o 2f 012W mv mgh ∴=-克服摩擦力做功2f 012W W mgh mv ==-克f10、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求:(1)阻力的大小. (2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. 解12:(1)汽车速度v 达最大m v 时,有F f =,故:m m P F v f v =⋅=⋅ 1000N f ∴=(2)汽车由静止到达最大速度的过程中:6F 1.210J W P t =⋅=⨯(2)汽车由静止到达最大速度的过程中,由动能定理:2F m 1cos18002W f l mv +⋅⋅=-o 800m l ∴=11.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。

高考物理动能与动能定理题20套(带答案)及解析

高考物理动能与动能定理题20套(带答案)及解析

高考物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得: -μ1mgL =12mv 2-1220mv解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2 解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,固定的粗糙弧形轨道下端B 点水平,上端A 与B 点的高度差为h 1=0.3 m ,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C 点到B 点的高度差为h 2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m =1 kg 的滑块(可看作质点)从轨道的A 点由静止滑下,然后从B 点抛出,恰好以平行于传送带的速度从C 点落到传送带上,传送带逆时针传动,速度大小为v =0.5 m/s ,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g =10 m/s 2,试求:(1).滑块运动至C 点时的速度v C 大小;(2).滑块由A 到B 运动过程中克服摩擦力做的功W f ; (3).滑块在传送带上运动时与传送带摩擦产生的热量Q . 【答案】(1)2.5 m/s (2)1 J (3)32 J【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。

动能定理练习题附标准答案.doc

动能定理练习题附标准答案.doc

动能定理练习题1、一质量为 1kg 的物体被人用手由静止向上提高 1m ,这时物体的速度是 2m/s ,求:(1) 物体克服重力做功 . (2)合外力对物体做功 .(3)手对物体做功 .v解: (1) m 由 A 到 B :W Gmgh10JBm克服重力做功 1 W 克GW G 10J(2) m 由 A 到 B ,根据动能定理2:W1 mv2 02JhN2(3) m 由 A 到 B : W W G W FW F 12JAmg2、一个人站在距地面高 h = 15m 处,将一个质量为 m = 100g 的石块以 v 0 = 10m/s 的速度斜向上抛出 .(1) 若不计空气阻力,求石块落地时的速度v.(2) 若石块落地时速度的大小为 v t = 19m/s ,求石块克服空气阻力做的功W.解: (1) m 由 A 到 B :根据动能定理:mgh 1 2 1 2v 20m/s m v 0mv2 mv 02(2) m 由 A 到 B ,根据动能定理3:AB11mghmgh22W 1.95JvWmv tmv 0223a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以 10m/s 的速度踢出,在水平面上运动 60m 后停下 . 求运动员对球做的功?3b 、如果运动员踢球时球以 10m/s 迎面飞来, 踢出速度仍为 10m/s ,则运动员对球做功为多少?解:v 0(3a)球由 O 到 A ,根据动能定理4v 0 0 v 0:m1Wmv 02 0 50J O AB2O AA B(3b) 球在运动员踢球的过程中,根据动能定理5:NN1 mv2 1 mv 2W22F fmgmg1不能写成: W G mgh 10J . 在没有特别说明的情况下, W G 默认解释为重力所做的功,而在这个过程中重力所做的功为负 .2 也可以简写成: “ m : AB : Q WE k ”,其中WE k 表示动能定理 .3 此处写 W 的原因是题目已明确说明W 是克服空气阻力所做的功 .4踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功 . 5 结果为 0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能, 然后其他形式的能又转化为动能,而前后动能相等.精选4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v 0 竖直下抛,落地后,小钢球陷入泥土中的深度为 h 求:(1) 求钢球落地时的速度大小v. (2) 泥土对小钢球的阻力是恒力还是变力?(3) 求泥土阻力对小钢球所做的功 . (4) 求泥土对小钢球的平均阻力大小. 解: (1) m 由 A 到 B :根据动能定理:v 0Amg1 mv2 1mv 02v2gH v 02mgHH22(2) 变力 6.(3) m 由 B 到 C ,根据动能定理:1 2B mgh W f 0mvv2mg1mv 02hW fmg H hv t0 C2(3) m 由 B 到 C : W ff h cos180ofmv 02 2mg Hh2h5、在水平的冰面上 ,以大小为 F=20N 的水平推力, 推着质量 m=60kg 的冰车, 由静止开始运动 . 冰车受到的摩擦力是它对冰面压力的0. 01 倍 ,当冰车前进了 s 1=30m 后 ,撤去推力 F ,冰车又前进了一段距离后停止 . 取 g = 10m/s 2 . 求:(1) 撤去推力 F 时的速度大小 .(2) 冰车运动的总路程 s.解: (1) m 由 1 状态到 2 状态:根据动能定理7:Fs 1 cos0omgs 1 cos180o1mv 2NN21 m2 v3v 14m/s3.74m/sf F f(2) m 由 1 状态到 3 状态 8:根据动能定理:mgs 1 mgs 2Fs 1 cos0o mgs cos180o0 0s 100m6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为 0,当小球在泥土中减速时, 泥土对小球的力必大于重力 mg ,而当小球在泥土中静止时, 泥土对小球的力又恰等于重力 . 因此可以推知,mg泥土对小球的力为变力 .8也可以用第二段来算 s ,然后将两段位移加起来 . 计算过程如下:2m 由 2 状态到 3 状态:根据动能定理:mgs 2 cos180o0 1 m v 2 s 2 70m2则总位移 s s s 100m .12精选6、如图所示, 光滑 1/4 圆弧半径为 0.8m ,有一质量为 1.0kg 的物体自 A 点从静止开始下滑到B点,然后沿水平面前进4m ,到达 C 点停止 . 求:AR O (1) 在物体沿水平运动中摩擦力做的功.mgNx(2) 物体与水平面间的动摩擦因数 .f解: (1) m 由 A 到 C 9:根据动能定理:mgR W f0 0CW fmgR8JBmg(2) m 由 B 到 C : W fmg x cos180o0.27、粗糙的 1/4 圆弧的半径为 0.45m ,有一质量为 0.2kg 的物体自最高点 A 从静止开始下滑到圆 弧最低点 B 时,然后沿水平面前进 0.4m 到达 C 点停止 . 设物体与轨道间的动摩擦因数为0.5 ( gA fRO2= 10m/s ),求:mg(1) 物体到达 B 点时的速度大小 .Nl(2) 物体在圆弧轨道上克服摩擦力所做的功.f解: (1) m 由 B 到 C :根据动能定理:mg l cos180o0 1 mv B 2BmgC2v B 2m/s(2) m 由 A 到 B :根据动能定理:mgR W f1mv B 2W f0.5J2克服摩擦力做功 W 克 f W f 0.5J8、质量为 m 的物体从高为 h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为 s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为 l ,斜面倾角为,物体在斜面上运动的水平位移为s 1 ,在水平面上运动的位移为 s 2 ,如图所示 10.m 由 A 到 B :根据动能定理:N 1mghmg cos l cos180omgs 2 cos180o0 0A又 Q l coss 1 、 s s 1 s 2N 2lCmghB f 2则 11: hs 0即:ss 2证毕 .mg s 1f 1hs9也可以分段计算,计算过程略 . 10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。

完整版)高中物理动能定理典型练习题(含答案)

完整版)高中物理动能定理典型练习题(含答案)

完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。

对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。

速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。

速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。

2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。

假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。

在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。

解方程得到F = (H + h)mg / (gh)。

3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。

假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。

解方程得到W = 32J。

课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。

在一段时间内,水平力方向变为向右,大小不变为未知。

根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。

根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。

2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。

假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。

因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。

(完整版)动能定理专项练习(带答案)

(完整版)动能定理专项练习(带答案)

动能定理专项训练1. 下列说法正确的是()A.物体所受合力为0,物体动能可能改变B.物体所受合力不为0,动能一定改变C.物体的动能不变,它所受合力一定为0 D.物体的动能改变,它所受合力一定不为2. 一质量为2 kg 的滑块,以4 m/s 的速度在光滑的水平面上向左滑行,从某一时刻起,在滑 块上作用一向右的水平力,经过一段时间,滑块的速度方向变为向右,大小为4 m/s ,在这段时间里水平力做的功为() 3. 汽车在平直公路上行驶,在它的速度从零增至的速度从v 增大至2v 的过程中,汽车所做的功为 v 的过程中,汽车发动机做的功为 W,在它 W2,设汽车在行驶过程中发动机的牵引力和所受阻力不变,则有( )A . W =2WB . W =3WC 4 •如图所示,DC 是水平面,AB 是斜面,初速为 v o 的物体从D 点出发沿DBA #到A 点且速度刚好为零。

如果斜面改为 AC 让该物体从D 点出发沿DCA t 到A 点且速度 刚好为零,则物体具有初速度(已知物体与路面之间的动摩擦因数处处相同且不为 零)( ) A .大于v o B •等于v o C •小于v o D •取决于斜面的倾角5 .假设汽车紧急刹车制动后所受阻力的大小与汽车所受重力的大小差不多, 当汽车以20m/s 的速度行驶时,突然制动。

它还能继续滑行的距离约为( )6 •质量为m 的小球用长度为 L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空 气阻力作用•已知小球经过最低点时轻绳受的拉力为 7ng ,经过半周小球恰好能通过最高点, 则 此过程中小球克服空气阻力做的功为( A . ng L /4 B . m g L /3 C . m g L /2 D 8 .将小球以初速度 V 。

竖直上抛,在不计空气阻力的理想状况下, 由于有空气阻力,小球实际上升的最大高度只有该理想高度的 小球落回抛出点时的速度大小v 。

9 .如图所示,质量为 m 的钢珠从高出地面 h 处由静止自由下落,落到地面进入沙坑 h /10 停止,则1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑 h /8 ,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻 力大小不随深度改变。

动能与动能定理经典习题及答案(免费》

动能与动能定理经典习题及答案(免费》

动能与动能定理经典习题及答案(免费》动能和动能定理的应用典例分析1.正确答案是B。

只有物体克服阻力做功时,它的动能减少。

2.正确答案是C。

当物体在合外力作用下作变速运动时,动能会变化。

3.正确答案是B。

甲和乙滑行的距离相同,因为它们具有相同的初动能。

4.正确答案是B。

动力做的功不为零,因为物体在做匀速运动时需要克服摩擦力的阻力。

5.正确答案是C。

撤去的那个力不再做功,但没有撤去的力仍可能做功。

6.正确答案是D。

因为物体做匀速圆周运动,所以外力对物体所做的功为零。

7.正确答案是16J。

水平力对物体做的功等于物体动能的变化量,即1/2mv^2-1/2mv^2=16J。

8.机车的功率为242.2kW,所受阻力的数值为9.58kN。

9.沙坑对球的平均阻力是其重力的10倍。

根据动能定理,球在下落过程中失去的动能等于沙坑对球做的功,因此可以求出沙坑对球做的功,从而得到平均阻力的大小。

1.飞行子弹打入放在光滑水平面上的木块中深入2cm,未穿出。

同时,木块滑动了1cm。

求子弹动能的变化、木块获得的动能和由于摩擦增加的内能的比。

2.一质量为M、厚度为d的方木块静止在光滑的水平面上。

一子弹以初速度v水平射穿木块。

子弹的质量为m,木块对子弹的阻力为F且始终不变。

在子弹射穿木块的过程中,木块发生的位移为L。

求子弹射穿木块后,子弹和木块的速度各为多少?3.物体质量为10kg,在平行于斜面的拉力F作用下沿斜面向上运动。

斜面与物体间的动摩擦因数为0.1.当物体运动到斜面中点时,去掉拉力F,物体刚好能运动到斜面顶端停下。

斜面倾角为30°。

求拉力F多大?(g=10m/s)4.质量为4t的汽车以恒定功率沿平直公路行驶。

在一段时间内前进了100m,其速度从36km/h增加到54km/h。

若车受到的阻力恒定,且阻力因数为0.02,求这段时间内汽车所做的功。

(g=10m/s)5.子弹以某速度击中静止在光滑水平面上的木块。

当子弹进入木块深度为x时,木块相对水平面移动距离为L。

5.2动能定理(解析版)

5.2动能定理(解析版)

5.2动能定理一、动能1.定义:物体由于运动而具有的能. 2.公式:E k =12m v 2.3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. 4.标矢性:动能是标量,动能与速度方向无关.5.动能的变化:物体末动能与初动能之差,即ΔE k =12m v 22-12m v 12. 二、动能定理1.内容:在一个过程中合力对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W =ΔE k =E k2-E k1=12m v 22-12m v 12. 3.物理意义:合力的功是物体动能变化的量度. 4.适用条件:(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.如图1所示,物块沿粗糙斜面下滑至水平面;小球由内壁粗糙的圆弧轨道底端运动至顶端(轨道半径为R ).图1对物块有W G +W f1+W f2=12m v 2-12m v 02 对小球有-2mgR +W f =12m v 2-12m v 02动能定理的理解和基本应用1.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.2.解题流程3.动能定理的优越性应用牛顿第二定律和运动学规律解题时,涉及到的有关物理量比较多,对运动过程的细节也要仔细研究,而应用动能定理解题只需考虑外力做功和初、末两个状态的动能,并且可以把不同的运动过程合并为一个全过程来处理.一般情况下,由牛顿第二定律和运动学规律能够解决的问题,用动能定理也可以求解,并且更为简捷.4.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.例题1.(多选)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。

动能和动能定理(解析版)--高一物理专题练习(内容+练习)

动能和动能定理(解析版)--高一物理专题练习(内容+练习)

动能和动能定理--高一物理专题练习(内容+练习)一、动能的表达式1.表达式:E k=12m v2.2.单位:与功的单位相同,国际单位为焦耳,符号为J.3.标矢性:动能是标量,只有大小,没有方向.二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W=12m v22-12m v12.如果物体受到几个力的共同作用,W即为合力做的功,它等于各个力做功的代数和.3.动能定理既适用于恒力做功的情况,也适用于变力做功的情况;既适用于直线运动,也适用于曲线运动.三.对动能定理的理解(1)在一个过程中合外力对物体做的功或者外力对物体做的总功等于物体在这个过程中动能的变化.(2)W与ΔE k的关系:合外力做功是物体动能变化的原因.①合外力对物体做正功,即W>0,ΔE k>0,表明物体的动能增大;②合外力对物体做负功,即W<0,ΔE k<0,表明物体的动能减小;如果合外力对物体做功,物体动能发生变化,速度一定发生变化;而速度变化动能不一定变化,比如做匀速圆周运动的物体所受合外力不做功.③如果合外力对物体不做功,则动能不变.(3)物体动能的改变可由合外力做功来度量.一、单选题1.如图所示,在光滑水平面上小物块在水平向右恒力1F作用下从静止开始向右运动,经时间t撤去1F,同时在小物块上施加水平向左的恒力2F,再经2t物块回到出发点,此时小物块的动能为k E,则以下说法正确的是()A .2145F F =B .12F F =C .1F 做的功为k49E D .2F 做功的为kE 【答案】C【解析】AB .设第一阶段的加速度为1a ,第二阶段的加速度为2a ,从静止出发到回到出发点对两个阶段列方程22112112422a t a t t a t ⎛⎫=-⋅- ⎪⎝⎭解得1254a a =根据牛顿第二定律得2154F F =故AB 错误;CD .由于12:4:5F F =所以二者做功之比为12:4:5W W =二者做功之和等于k E ,所以1F 做的功为k 49E ,2F 做的功为k 59E ,故C 正确,D 错误。

(完整版)高中物理动能定理经典计算题和答案

(完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0。

02),求飞机受到的牵引力。

例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv=12m/s C 。

W=0 D 。

W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C. gh v 220+ D 。

gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。

小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2—7—3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________。

例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。

高中物理动能定理练习题及讲解

高中物理动能定理练习题及讲解

高中物理动能定理练习题及讲解### 高中物理动能定理练习题及讲解动能定理是物理学中描述物体动能变化的重要定理,它表明物体动能的变化等于作用在物体上的外力所做的功。

以下是几道关于动能定理的练习题,以及相应的讲解。

#### 练习题一一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车,经过10秒后速度减为0。

求汽车受到的平均阻力。

解答:设汽车受到的平均阻力为 \( F \) 。

根据动能定理,汽车动能的变化等于阻力做的功,即:\[ \Delta E_k = -W = -F \cdot s \]其中 \( \Delta E_k \) 为动能的变化量,\( W \) 为阻力做的功,\( s \) 为汽车的位移。

汽车的初始动能为 \( \frac{1}{2}mv^2 \),其中 \( m \) 为质量,\( v \) 为速度。

因此,动能的变化量为:\[ \Delta E_k = \frac{1}{2}m(0^2 - v^2) = -\frac{1}{2}mv^2 \]由于汽车速度从 \( v \) 减为0,所以 \( \Delta E_k = -\frac{1}{2} \times 1000 \times 20^2 \) J。

根据动能定理,我们有:\[ -\frac{1}{2} \times 1000 \times 20^2 = -F \cdot s \]汽车的位移 \( s \) 可以通过速度-时间公式 \( v = at \) 计算,其中 \( a \) 为加速度。

由于汽车做匀减速运动,\( a =\frac{\Delta v}{\Delta t} = \frac{0 - 20}{10} = -2 \) m/s²。

因此,\( s = \frac{1}{2}at^2 = \frac{1}{2} \times (-2) \times 10^2 \) m。

将 \( s \) 的值代入动能定理的公式中,我们可以求得 \( F \)。

动能定理习题及答案

动能定理习题及答案

动能定理习题及答案动能定理习题及答案动能定理是物理学中一个重要的定理,它描述了物体的动能与其所受的力之间的关系。

在本文中,我将为大家提供一些关于动能定理的习题及其答案,帮助大家更好地理解和应用这一定理。

1. 问题:一个质量为2kg的物体以10m/s的速度沿直线运动,它所受的恒力为5N。

根据动能定理,求物体在2s内所做的功。

解答:根据动能定理,物体所做的功等于它的动能的增量。

物体的动能的增量可以通过物体的初动能和末动能之差来计算。

物体的初动能为1/2 × 2kg × (10m/s)² = 100J,末动能为1/2 × 2kg × (10m/s)² + 5N × 10m × cos180° × 2s = 90J。

因此,物体在2s内所做的功为100J - 90J = 10J。

2. 问题:一个质量为0.5kg的物体以8m/s的速度沿直线运动,它所受的恒力为2N。

根据动能定理,求物体在3s内所做的功。

解答:根据动能定理,物体所做的功等于它的动能的增量。

物体的初动能为1/2 × 0.5kg × (8m/s)² = 16J,末动能为1/2 × 0.5kg × (8m/s)² + 2N × 8m ×cos180° × 3s = 0J。

因此,物体在3s内所做的功为16J - 0J = 16J。

3. 问题:一个质量为1kg的物体以5m/s的速度沿直线运动,它所受的恒力为10N。

根据动能定理,求物体在4s内所做的功。

解答:根据动能定理,物体所做的功等于它的动能的增量。

物体的初动能为1/2 × 1kg × (5m/s)² = 12.5J,末动能为1/2 × 1kg × (5m/s)² + 10N × 5m ×cos180° × 4s = -20J。

高中动能定理试题及答案

高中动能定理试题及答案

高中动能定理试题及答案一、选择题1. 一个物体从静止开始,沿着光滑的斜面下滑,下滑过程中受到的力只有重力,下列说法正确的是()。

A. 物体的动能增加,重力势能减少B. 物体的动能增加,重力势能增加C. 物体的动能减少,重力势能减少D. 物体的动能减少,重力势能增加答案:A解析:物体从静止开始下滑,重力做正功,物体的动能增加;同时物体的高度降低,重力势能减少。

2. 一个物体从一定高度自由落下,不计空气阻力,下列说法正确的是()。

A. 物体的动能增加,重力势能减少B. 物体的动能减少,重力势能增加C. 物体的动能和重力势能都增加D. 物体的动能和重力势能都减少答案:A解析:物体自由落下,重力做正功,物体的动能增加;同时物体的高度降低,重力势能减少。

二、填空题3. 一个质量为m的物体从高度为h的平台上自由落下,不计空气阻力,物体落地时的动能为____。

答案:mgh解析:根据动能定理,物体落地时的动能等于重力势能的减少量,即Ek = mgh。

角为θ,下滑过程中物体的动能增加量为____。

答案:mgv0sinθ解析:物体下滑过程中,重力沿斜面方向的分力做功,根据动能定理,动能增加量等于重力分力做功,即ΔEk = mgv0sinθ。

三、计算题5. 一个质量为2kg的物体从高度为10m的平台上自由落下,不计空气阻力,求物体落地时的速度。

答案:v = 14.1m/s解析:根据动能定理,物体落地时的动能等于重力势能的减少量,即Ek = mgh。

代入数据,解得v = √(2gh) = √(2×9.8×10) = 14.1m/s。

面倾角为30°,求物体滑到斜面底端时的速度。

答案:v = 20m/s解析:物体下滑过程中,重力沿斜面方向的分力做功,根据动能定理,动能增加量等于重力分力做功,即ΔEk = mgv0sinθ。

代入数据,解得v = √(v0^2 + 2gh) = √(10^2 + 2×9.8×5×sin30°) =20m/s。

物理动能与动能定理题20套(带答案)

物理动能与动能定理题20套(带答案)

(2)若滑块在 A 点以 v0=lm/s 的初速度沿斜面下滑,最终停止于 B 点,求 μ 的取值范围。
【答案】(1) t
3 3
s;(2)
1 32
3 4

3
13 16

【解析】
【分析】
【详解】
(1)设滑块从点 A 运动到点 B 的过程中,加速度大小为 a ,运动时间为 t ,则由牛顿第二
定律和运动学公式得
(1)当细线与水平杆的夹角为 β( 90 )时,A 的速度为多大?
(2)从开始运动到 A 获得最大速度的过程中,绳拉力对 A 做了多少功?
【答案】(1) vA
2gh 1 cos2
1
sin
1 sin
;(2)WT
mg
h sin
h
【解析】
【详解】
(2)A、B 的系统机械能守恒
EP减 EK加
(1)圆弧轨道的半径 (2)小球滑到 B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是 5m. (2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下. 【解析】
(1)小球由 B 到 D 做平抛运动,有:h= 1 gt2 2
x=vBt
解得: vB x
g 4 2h
10 10m / s 2 0.8
mg sin ma
s 1 at2 2
解得 t 3 s 3
(2)滑块最终停在 B 点,有两种可能:
①滑块恰好能从 A 下滑到 B ,设动摩擦因数为 1 ,由动能定律得:
mg sin
s 1mg cos
s
0
1 2
mv02
解得
1
13 16
②滑块在斜面 AB 和水平地面间多次反复运动,最终停止于 B 点,当滑块恰好能返回 A

高考物理动能定理的综合应用的技巧及练习题及练习题(含答案)

高考物理动能定理的综合应用的技巧及练习题及练习题(含答案)

高考物理动能定理的综合应用的技巧及练习题及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力大小;(2)小物块在水平面上滑动的最大距离.【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B点联立以上两式得F N=3mg=3×0.1×10N=3N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.2.如图所示,光滑曲面与光滑水平导轨MN相切,导轨右端N处于水平传送带理想连接,传送带长度L=4m,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=4.0m/s运动.滑块B、C之间用细绳相连,其间有一压缩的轻弹簧,B、C与细绳、弹簧一起静止在导轨MN上.一可视为质点的滑块A从h=0.2m高处由静止滑下,已知滑块A、B、C质量均为m=2.0kg,滑块A与B碰撞后粘合在一起,碰撞时间极短.因碰撞使连接B、C的细绳受扰动而突然断开,弹簧伸展,从而使C与A、B分离.滑块C脱离弹簧后以速度v C=2.0m/s滑上传送带,并从右端滑出落至地面上的P点.已知滑块C与传送带之间的动摩擦因数μ=0.2,重力加速度g取10m/s2.(1)求滑块C 从传送带右端滑出时的速度大小; (2)求滑块B 、C 与细绳相连时弹簧的弹性势能E P ;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C 总能落至P 点,则滑块A 与滑块B 碰撞前速度的最大值v m 是多少? 【答案】(1) 4.0m/s (2) 2.0J (3) 8.1m/s 【解析】 【分析】 【详解】(1)滑块C 滑上传送带到速度达到传送带的速度v =4m/s 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,有mg ma μ=C v v at =+212C x v t at =+代入数据可得3m x = 3m x L =<滑块C 在传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为v=4.0m/s(2)设A 、B 碰撞前A 的速度为v 0,A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,有2012A A m gh m v =01()A A B m v m m v =+ 12()()A B A B C C m m v m m v m v +=++A 、B 碰撞后,弹簧伸开的过程系统能量守恒222A 1A 2111()()222P B B C C E m m v m m v m v ++=++代入数据可解得2.0J P E =(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .设A 与B 碰撞后的速度为1v ',分离后A 与B 的速度为2v ',滑块C 的速度为'C v ,C 在传送带上做匀减速运动的末速度为v =4m/s ,加速度大小为2m/s 2,有22()Cv v a L '-=- 解得Cv '=以向右为正方向,A 、B 碰撞过程1()A m A B m v m m v '=+弹簧伸开过程12()()A B C C A B m m v m v m m v '''+=++22212111+()()+222p A B A B C C E m m v m m v m v '''+=+代入数据解得74228.14m v =+≈m/s .3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB 的底端等高对接,如图所示.已知小车质量M=3.0kg ,长L=2.06m ,圆弧轨道半径R=0.8m .现将一质量m=1.0kg 的小滑块,由轨道顶端A 点无初速释放,滑块滑到B 端后冲上小车.滑块与小车上表面间的动摩擦因数.(取g=10m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)小车运动1.5s 时,车右端距轨道B 端的距离;(3)滑块与车面间由于摩擦而产生的内能.【答案】(1)30 N (2)1 m (3)6 J 【解析】(1)滑块从A 端下滑到B 端,由动能定理得(1分)在B 点由牛顿第二定律得(2分) 解得轨道对滑块的支持力N (1分)(2)滑块滑上小车后,由牛顿第二定律 对滑块:,得m/s2 (1分) 对小车:,得m/s2 (1分)设经时间t 后两者达到共同速度,则有(1分)解得s (1分)由于s<1.5s ,故1s 后小车和滑块一起匀速运动,速度v="1" m/s (1分)因此,1.5s 时小车右端距轨道B 端的距离为m (1分)(3)滑块相对小车滑动的距离为m (2分)所以产生的内能J (1分)5.质量为m =0.5kg 、可视为质点的小滑块,从光滑斜面上高h 0=0.6m 的A 点由静止开始自由滑下。

(2021年整理)动能定理练习题

(2021年整理)动能定理练习题

(完整)动能定理练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)动能定理练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)动能定理练习题的全部内容。

第七节动能和动能定理1.物体由于________而具有的能叫做动能,反之,凡是做__________的物体都具有动能,质量为m的物体,以速度v运动时的动能是E k=____________。

2.国际单位制中,动能的单位是____________.1970年我国发射的第一颗人造地球卫星,质量为173kg,运动速度为7。

2km/s,它的动能是______________。

3.动能是矢量还是标量?______________;动能是状态量还是过程量?_____________;动能可能小于零吗?____________;动能具有相对性,参考系的不同,速度就不同,动能就_________。

一般取______为参考系。

4.动能是由物体的质量和速度的大小共同决定的,由于速度是矢量,因此,物体的速度变化,动能__________.5.力在一个过程中对物体所做的功等于_________________________________。

这个结论叫做_________,可用公式表述为W=___________,其中E k1表示____________,E k2表示____________,W表示__________。

如果物体受到几个力的作用,则动能定理中的W表示______________ 。

6.物体的动能增加,表示物体的动能增量是___________值,合外力对物体做的功为___________值;反之,物体的动能减少,表示物体的动能增量是___________值,合外力对物体做的功为___________值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[限时训练][限时45分钟,满分100分]一、选择题(每小题6分,共60分)1.物体在合外力作用下做直线运动的v-t图象如图5-2-11所示,下列表述正确的是A.在0~1 s内,合外力做正功B.在0~2 s内,合外力总是做正功C.在1~2 s内,合外力做负功D.在0~3 s内,合外力总是做正功图5-2-11答案AC2.(2012·天津理综)如图5-2-12甲所示,静止在水平地面的物块A,受到水平向右的拉力F作用,F与时间t的关系如图乙所示,设物块与地面的静摩擦力最大值f m与滑动摩擦力大小相等,则图5-2-12A.0~t1时间内F的功率逐渐增大B.t2时刻物块A的加速度最大C.t2时刻后物块A做反向运动D.t3时刻物块A的动能最大解析根据图乙可知:在0~t1时间内拉力F没有达到最大静摩擦力f m,物体处于静止状态,则拉力F的功率为零,选项A错误;对物块A由牛顿第二定律有F-f m=ma,由于t2时刻拉力F 最大,则t2时刻物块加速度a最大,选项B正确;t2到t3这段时间内拉力F大于f m,所以物块做加速运动,t3时刻速度达到最大,选项C错误、D正确.答案BD3.如图5-2-13所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动一段距离.在此过程中图5-2-13 A.外力F做的功等于A和B动能的增量B.B对A的摩擦力所做的功,等于A的动能增量C.A对B的摩擦力所做的功,等于B对A的摩擦力所做的功D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和解析A物体所受的合外力等于B对A的摩擦力,对A物体运用动能定理,则有B对A的摩擦力所做的功等于A的动能的增量,即B对;A对B的摩擦力与B对A的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A在B上滑动,A、B对地的位移不等,故二者做功不等,C错;对B应用动能定理,W F-W f=ΔE k B,即W F=ΔE k B+W f就是外力F对B做的功,等于B的动能增量与B克服摩擦力所做的功之和,D对;由前述讨论知B克服摩擦力所做的功与A的动能增量(等于B对A的摩擦力所做的功)不等,故A错.答案BD4.在地面上某处将一金属小球竖直向上抛出,上升一定高度后再落回原处,若不考虑空气阻力,则下列图象能正确反映小球的速度、加速度、位移和动能随时间变化关系的是(取向上为正方向)答案 A5.一人乘竖直电梯从1楼到12楼,在此过程中经历了先加速,后匀速,再减速的运动过程,则下列说法正确的是A.电梯对人做功情况是:加速时做正功,匀速时不做功,减速时做负功B.电梯对人做功情况是:加速和匀速时做正功,减速时做负功C.电梯对人做的功等于人动能的增加量D.电梯对人做的功和重力对人做的功的代数和等于人动能的增加量解析电梯向上加速、匀速、再减速运动的过程中,电梯对人的作用力始终向上,故电梯始终对人做正功,A、B均错误;由动能定理可知,电梯对人做的功和重力对人做的功的代数和等于人动能的增加量,故C错误,D正确.答案 D6.如图5-2-14所示,质量相等的物体A和物体B与地面间的动摩擦因数相等,在力F的作用下,一起沿水平地面向右移动x,则A.摩擦力对A、B做功相等图5-2-14 B.A、B动能的增量相同C.F对A做的功与F对B做的功相等D.合外力对A做的功与合外力对B做的功不相等解析因F斜向下作用在物体A上,A、B受的摩擦力不相同,因此,摩擦力对A、B做的功不相等,A错误;但A、B两物体一起运动,速度始终相同,故A、B动能增量一定相同,B正确;F不作用在B上,因此力F对B不做功,C错误;合外力对物体做的功应等于物体动能的增量,故D错误.答案 B7.(2014·湛江模拟)在新疆旅游时,最刺激的莫过于滑沙运动.某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时,速度为2v0,设人下滑时所受阻力恒定不变,沙坡长度为L,斜面倾角为α,人的质量为m,滑沙板质量不计,重力加速度为g.则A.若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时的速度大小为3v0B.若人在斜面顶端被其他人推了一把,沿斜面以v0的初速度下滑,则人到达斜面底端时的速度大小为5v0C .人沿沙坡下滑时所受阻力F f =mg sin α-2m v 20LD .人在下滑过程中重力功率的最大值为2mg v 0解析 对人进行受力分析如图所示,根据匀变速直线运动的规律有:(2v 0)2-0=2aL ,v 21-v 20=2aL ,可解得:v 1=5v 0,所以选项A 错误、B 正确;根据动能定理有:mgL sin α-fL =12m (2v 0)2,可解得f =mg sin α-2m v 20L ,选项C 正确;重力功率的最大值为P m =2mg v 0sin α,选项D 错误.答案 BC8.如图5-2-15所示,AB 为半径R =0.50 m 的四分之一圆弧轨道,B 端距水平地面的高度h =0.45 m .一质量m =1.0 kg 的小滑块从圆弧轨道A 端由静止释放,到达轨道B 端的速度v =2.0 m/s.忽略空气的阻力,取g =10 m/s 2,则下列说法正确的是A .小滑块在圆弧轨道B 端受到的支持力大小F N =16 NB .小滑块由A 端到B 端的过程中,克服摩擦力所做的功W =3 JC .小滑块的落地点与B 点的水平距离x =0.6 mD .小滑块的落地点与B 点的水平距离x =0.3 m 图5-2-15 解析 小滑块在B 端时,根据牛顿第二定律有F N -mg =m v 2R ,解得F N =18 N ,A 错误;根据动能定理有mgR -W =12m v 2,解得W =mgR -12m v 2=3 J ,B 正确;小滑块从B 点做平抛运动,水平方向上x =v t ,竖直方向上h =12gt 2,解得x =v ·2h g =0.6 m ,C 正确、D 错误. 答案 BC9.人通过滑轮将质量为m 的物体,沿粗糙的斜面从静止开始匀加速地由底端拉到斜面顶端,物体上升的高度为h ,到达斜面顶端时的速度为v ,如图5-2-16所示,则在此过程中A .物体所受的合外力做的功为mgh +12m v 2 图5-2-16 B .物体所受的合外力做的功为12m v 2 C .人对物体做的功为mghD .人对物体做的功大于mgh解析物体沿斜面做匀加速运动,根据动能定理:W合=W F-W f-mgh=12,其中W f为物体克服摩擦力做的功.人对物体做的功即是人对物体2m v的拉力做的功,所以W人=W F=W f+mgh+12,A、C错误,B、D正确.2m v答案BD10.如图5-2-17所示,图线表示作用在某物体上的合力随时间变化的关系,若物体开始时是静止的,那么A.从t=0开始,5 s内物体的动能变化量为零B.在前5 s内只有第1 s末物体的动能最大C.在前5 s内只有第5 s末物体的速率最大D.前3 s内合外力对物体做的功为零图5-2-17 解析由图象可知0~1 s的合外力的大小是1~5 s的合外力的大小的2倍,所以加速度大小的关系也是2∶1,物体的运动状态可描述为0~1 s物体做匀加速运动到速度最大,3 s末减速到零,5 s末反向加速到最大,因此5 s内动能变化量不为零,故选项A错;第1 s末和第5 s末物体的动能和速率一样大,所以选项B、C都不对;3 s末减速到零,所以前3 s内合外力对物体做的功为零,所以正确选项为D.答案 D二、计算题(共40分)11.(20分)(2014·郑州预测)如图5-2-18所示,摩托车做特技表演时,以v0=10.0 m/s的初速度冲向高台,然后从高台水平飞出.若摩托车冲向高台的过程以P=4.0 kW的额定功率行驶,冲到高台上所用时间t=3.0 s,人和车的总质量m=1.8×102 kg,台高h=5.0 m,摩托车的落地点到高台的水平距离x=10.0 m.不计空气阻力,取g=10 m/s2.求:图5-2-18(1)摩托车从高台飞出到落地所用时间;(2)摩托车落地时速度的大小;(3)摩托车冲上高台过程中克服阻力所做的功.解析 (1)摩托车在空中做平抛运动,设摩托车飞行时间为t 1,则h =12gt 21,t 1=2h g =1.0 s(2)摩托车到达高台顶端的速度v x =x t 1=10.01.0m/s =10.0 m/s ,竖直速度为v y =gt 1=10.0 m/s摩托车落地时的速度v =v 2x +v 2y =10 2 m/s(3)摩托车冲上高台过程中,根据动能定理有Pt -W f -mgh =12m v 2x -12m v 20 解得W f =Pt -mgh =3.0×103 J所以,摩托车冲上高台过程中克服阻力所做的功为3.0×103 J.答案 (1)1.0 s (2)10 2 m/s (3)3.0×103 J12.(20分)如图5-2-19所示,粗糙水平地面AB 与半径R =0.4 m 的光滑半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量m =2 kg 的小物块在9 N 的水平恒力F 的作用下,从A 点由静止开始做匀加速直线运动.已知AB =5 m ,小物块与水平地面 图5-2-19间的动摩擦因数为μ=0.2.当小物块运动到B 点时撤去力F .取重力加速度g =10 m/s 2.求:(1)小物块到达B 点时速度的大小;(2)小物块运动到D 点时,轨道对小物块作用力的大小;(3)小物块离开D 点落到水平地面上的点与B 点之间的距离.解析 (1)从A 到B ,根据动能定理有(F -μmg )x AB =12m v 2B得v B = 2(F -μmg )x AB m =5 m/s (2)从B 到D ,根据动能定律有-mg ·2R =12m v 2D -12m v 2B 得v D =v 2B-4Rg =3 m/s 在D 点,根据牛顿运动定律有F N +mg =m v 2D R得F N =m v 2D R -mg =25 N(3)由D 点到落点小物块做平抛运动,在竖直方向上有2R =12gt 2 得t = 4Rg = 4×0.410s =0.4 s , 水平地面上落点与B 点之间的距离为x =v D t =3×0.4 m =1.2 m.答案 (1)5 m/s (2)25 N (3)1.2 m。

相关文档
最新文档