六年级数学培优提高含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学培优提高含答案
一、培优题易错题
1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.
(1)根据题意,填写下表(单位:元):
(2)当x取何值时,小红在甲、乙两商场的实际花费相同?
(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?
【答案】(1)271;0.9x+10;278;0.95x+2.5
(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.
∴当小红累计购物超过150元时,在甲商场的实际花费少.
当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样
【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;
(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;
(3)列不等式得出x的范围,可选择商场.
2.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):
日期一二三四五六日
增减数/辆+4-1+2-2+6-3-5
(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?
【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,
比原计划增加了,增加了561-560=1辆.
【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最
少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.
3.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)
14,﹣9,-18,﹣7,13,﹣6,10,﹣5
问:
(1)B地在A地的何位置;
(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?
【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米
(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,
∴82×0.5-29=12升.
∴途中要补油12升
【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.
4.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。(单位:km)
(1)求收工时距A地多远?
(2)在第________次纪录时距A地最远。
(3)若每千米耗油0.3升,问共耗油多少升?
【答案】(1)解:根据题意列式-4+7-9+8+6-5-2=1km.
答:收工时距A地1km,在A的东面
(2)五
(3)解:根据题意得检修小组走的路程为:
|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km)
41×0.3=12.3升.
答:检修小组工作一天需汽油12.3升
【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千
米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.
故答案为:五.
【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.
5.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.
(1)用含的代数式表示点对应的数:________;
(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.
①用含的代数式表示点在由到过程中对应的数:________ ;
②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);
③当PQ=3 时,求 t的值.________
【答案】(1)
(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,
【解析】(1)点所对应的数为:
( 2 )①
② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒
当时,:,:
,解之得
当时,:,:
,解之得
【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.
6.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”.
(1)第5个“三角形数”是________,第n个“三角形数”是________,第5个“正方形数”是