六年级数学培优提高含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学培优提高含答案

一、培优题易错题

1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.

(1)根据题意,填写下表(单位:元):

(2)当x取何值时,小红在甲、乙两商场的实际花费相同?

(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?

【答案】(1)271;0.9x+10;278;0.95x+2.5

(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。

(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.

∴当小红累计购物超过150元时,在甲商场的实际花费少.

当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样

【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;

(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;

(3)列不等式得出x的范围,可选择商场.

2.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):

日期一二三四五六日

增减数/辆+4-1+2-2+6-3-5

(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?

【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,

比原计划增加了,增加了561-560=1辆.

【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最

少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.

3.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)

14,﹣9,-18,﹣7,13,﹣6,10,﹣5

问:

(1)B地在A地的何位置;

(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?

【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米

(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,

∴82×0.5-29=12升.

∴途中要补油12升

【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.

4.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。(单位:km)

(1)求收工时距A地多远?

(2)在第________次纪录时距A地最远。

(3)若每千米耗油0.3升,问共耗油多少升?

【答案】(1)解:根据题意列式-4+7-9+8+6-5-2=1km.

答:收工时距A地1km,在A的东面

(2)五

(3)解:根据题意得检修小组走的路程为:

|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km)

41×0.3=12.3升.

答:检修小组工作一天需汽油12.3升

【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千

米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.

故答案为:五.

【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.

5.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.

(1)用含的代数式表示点对应的数:________;

(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.

①用含的代数式表示点在由到过程中对应的数:________ ;

②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);

③当PQ=3 时,求 t的值.________

【答案】(1)

(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,

【解析】(1)点所对应的数为:

( 2 )①

② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒

当时,:,:

,解之得

当时,:,:

,解之得

【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.

6.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”.

(1)第5个“三角形数”是________,第n个“三角形数”是________,第5个“正方形数”是

相关文档
最新文档