动载荷和交变应力分析
第10章动载荷与交变载荷
4、振动问题: 求解方法很多。
4
工 程 力 学§10-2 构件作等加速直线运动
时的动应力计算
钢索起吊重物,W、a, 求:钢索 d
钢索具有a,不为平衡状态,不能用平
衡方程求内力。
kd
动荷因数
kd
FNd Fst
d st
d st
结论:只要将静载下的应力,变形,乘以动荷系数Kd即得 动载下的应力与变形。
6
工 程 力 学§10-3 构件受冲击载荷作用时
的动应力计算
冲击荷载问题的动响应
方法原理:能量法 ( 机械能守恒 )
在冲击物与受冲构件的接触区域内,应力状态异常复杂, 且冲击持续时间非常短促,接触力随时间的变化难以准确分析, 放弃动静法。工程中通常采用能量法来解决冲击问题,即在若 干假设的基础上,根据能量守恒定律对受冲击构件的应力与变 形进行偏于安全的简化计算。
7
工 程 力 学§10-3 构件受冲击载荷作用件受冲击载荷作用时
的动应力计算
9
工 程 力 学§10-3 构件受冲击载荷作用时
的动应力计算
10
工 程 力 学§10-3 构件受冲击载荷作用时
的动应力计算
在冲击过程中,运动中的物体称为冲击物。 阻止冲击物运动的构件,称为被冲击物。
(3)、构件在交变应力作用下发生破坏需要经历一定数量的应 力循环,其循环次数与应力的大小有关。应力愈大,循环次数 愈少。
实验表明在静载荷下服从胡克定律的材料,只要应力不超 过比例极限 ,在动载荷下虎克定律仍成立且E静=E动.
动荷因数:
动响应 Kd 静响应
材料力学 第十四章动荷载及交变应力
2.5m
FNd
2.5m
σ d m ax
M d m ax = = 13 5.4 M P a < [σ ] Wz
梁的强度足够. 梁的强度足够.
二,构件作匀速转动时的应力
轮缘
ω
D
δ
轮幅
y
ω
qd d
D
O
O
m m FNd
O n n FNd x
an=ω2D/2
FNd Aρω 2 D 2 = 4
D Aρω 2 D qd = 1. A.ρω 2 = 2 2 FNd ρω 2 D 2 σd = = = ρ v 2 ≤ [σ ] A 4
di = kd sti Fd = kd P
σ d = kdσ st
动荷因数kd中的st计算:是将冲击物的重量P 动荷因数 中的 计算:是将冲击物的重量 作为静荷载沿冲击方向作用在被冲击构件的冲 击点,引起该点沿冲击方向的位移. 击点,引起该点沿冲击方向的位移.
P
st
l
EA
P h P l
Pd
Δd
如:轮船靠泊时的冲击力 起吊重物时的惯性力
t
构件由动荷载引起的应力和变形称为动应力和动变形. 构件由动荷载引起的应力和变形称为动应力和动变形. 构件在动荷载作用下,同样有强度,刚度和稳定性问题. 构件在动荷载作用下,同样有强度,刚度和稳定性问题. 构件内的应力随时间作交替变化,则称为交变应力. 构件内的应力随时间作交替变化,则称为交变应力.
动荷载作用下构件的材料仍服从虎克定律. 动荷载作用下构件的材料仍服从虎克定律. 构件的材料仍服从虎克定律
§14-2 构件作匀加速直线运动 14和匀速转动时的应力
构件作匀加速直线运动时,内部各质点具有相同的 构件作匀加速直线运动时, 加速度;构件作匀速转动时, 加速度;构件作匀速转动时,内部各质点均具有向 心加速度. 心加速度.
第十、十一章动载荷 交变应力概述
第十章 动载荷与交变应力
§10-2 动静法的应用
一、动静法
1. 构件作加速运动时,构件内各质点将产生惯性力, 惯性力的大小等于质量与加速度的乘积,方向与加速度的方向
相反。 2. 动静法:在任一瞬时,作用在构件上的荷载,惯性力和
约束力,构成平衡力系。当构件的加速度已知时,可用动静 法求解其动应力。
二、匀加速直线运动构件的动应力
式中, st
P 为静应力。 A
由(3),(4)式可见,动荷载等于动荷载因数与静荷载 的乘积;动应力等于动荷载因数与静应力的乘积。即用动荷因 数反映动荷载的效应。
6
材 料 力 学 电 子 教 案
第十章 动载荷与交变应力
例 10-4 已知梁为16号工字钢,吊索横截面面积 A=108
mm2,等加速度a =10 m/s2 ,不计钢索质量。求:1,吊索的动应 力d ; 2,梁的最大动应力d, max 。 解: 1. 求吊索的d 16号工字钢单位长度的 重量为
横截面上的正应力为
FNd rw2 D 2 d A 4
13
材 料 力 学 电 子 教 案
第十一章 动载荷与交变应力
四、匀变速转动时构件的动应力
例 6-3 直径d =100 mm的圆轴,右端有重量 P =0.6 kN, 直径D=400 mm的飞轮,以均匀转速n =1 000 r/min旋转(图a)。
P a FNd P a P (1 ) g g a 令 K d 1 (动荷系数) g
(1) (2) (3)
则
5
FN d Kd P
材 料 力 学 电 子 教 案
第十章 动载荷与交变应力
钢索横截面上的动应力为
FN d P d K d K d st A A
材料力学第五版课件 主编 刘鸿文 第六章 动荷载·交变应力
解:1)求最大静应力和静变形
Q
( ) s st max
=
QL Wz
QL3 D st = 3EI
l
2)计算动荷系数
Kd =
v2 gD st
3)计算最大正应力
(s d )max
=
Kd (s st )max
=
Kd
QL Wz
内容小结
动响应=Kd × 静响应
1、构件有加速度时动应力计算
(1)直线运动构件的动应力
Kd = 1+
1+ 2h D st
= 1+ 1+ 2h ×EA
Ql
l
3)计算冲击应力
sd
=
kds st =
Q+ A
(Q )2 Q Q
h
【例6-4】圆截面直杆长度为6m,截面直径d=300mm,杆件材
料的杨氏模量E=10GPa,重物重5kN,从h=1m处自由落下。
1、求最大应力。 2、在木柱上端垫20mm厚的橡皮,杨氏模量E=8MPa。最大正 应力为多少?
1998年6月3日,德国艾舍德高速列车脱轨事故中的车轮轮缘疲劳断口
三.什么是疲劳?
只有承受交变应力作用的条件下,疲劳才发生;
三.什么是疲劳?
疲劳破坏起源于高应力或高应变的局部;
a. 静载下的破坏,取决于结构整体;
b. 疲劳破坏由应力或应变较高的局部开始,形成损伤 累积,导致破坏发生;
Q
h
解:
1、
D st =
Ql = EA
5创103 6? 103 10创103 1 创3.14 3002
=
4.25? 10- 2(mm)
4
2h
分析力学基础-6
d
解:
Fv 2 Ek = 2g
Ep = 0
1 Vεd = ⋅ Fd ∆d 2
G C v a
G
Fd
杆内的应变能为
Fd a 3 ∆d = 3EI
3EI 由此得 Fd = 3 ∆d a
A (a)
A (b)
于是, 于是,可得杆内的应变能为
1 1 3EI 2 Vεd = Fd ∆d = ( 3 ) ∆d 2 2 a
转动构件的动应力: 二、转动构件的动应力: 重为G的球装在长 的转臂端部, 的球装在长L的转臂端部 例6-3 重为 的球装在长 的转臂端部,以等角速度 在光滑水平面上绕O点旋转 已知许用强度[ 点旋转, 在光滑水平面上绕 点旋转, 已知许用强度 σ] , 求转臂的截面面积(不计转臂自重)。 求转臂的截面面积(不计转臂自重)。
(a)
一、自由落体冲击问题 设重量为P的重物,从高度 自由落下 自由落下, 设重量为 的重物,从高度h自由落下,冲击到等截 的重物 面直杆AB的 端 长度为l 横截面面积为A。 面直杆 的B端。杆AB长度为 ,横截面面积为 。 长度为
A P l A A
h
F B (a)
P
d
∆d
(b)
∆st
(c)
B
B
简化成
∆d2 − 2 ∆st ∆d − 2 ∆st h = 0
的两个根, 的那个根, 解出 ∆d 的两个根,取其中大于 ∆st 的那个根,即得
2h ) ∆d = ∆st (1 + 1 + ∆st 2h 引用记号 K d = (1 + 1 + ) ∆st
则
∆d = K d ∆st
(e)
将上式两边乘以 E/l 后得
动载荷与交变应力
则 Fd K d Fst
Fd Fst 钢索中的动应力为 d K d K d st A A
st 为静载荷下钢索中的静应力
此时的强度条 件为
Fst m m
A
Fd
m m x
A
A
g a
d K d st [ ]
结论
x
G
G
G a g
只要将静载荷下的应力、变形,乘以动荷 因数Kd即得动载荷下的应力与变形。
例:一重量为 P的重物由高度为 h 的位置自由下落,与 一块和直杆AB 相连的平板发生冲击。杆的横截面面积 为A。求杆中的冲击应力。
解:重物是冲击物, 杆 AB(包括圆盘) 是被冲击物。
冲击物减少的势能:
A
A
P
B
V P(h d )
动能无变化:T 0
B
d
假使Δd为冲击发生后重物与平 板一起下降的最大位移, Pd为 重物与平板之间的相互作用力
惯性力:大小等于质点的质量 m 与加速度 a 的乘积, 方向与 a 的方向相反。
FIR ma
构件上除外加载荷外,再在构件的各点上加上 惯性力,则可按求静载荷应力和变形的方法, 求得构件的动应力和动变形。
例1:一起重机钢索以加速度 a 提升一重为 G 的物体,设钢索的横截面面积为 A ,钢索单位 体积的重量为 ,求距钢索下端为 x 处的 m-m A 截面上的应力。 Fst a g m m 解: 钢索的重力集度为 : A 物体的惯性力为:
(1) 不计冲击物的变形,且冲击物与被冲击物接触 后无反弹,成为一个运动系统。
(2)被冲击物的质量很小可略去不计,材料服 从胡克定律。
(3) 过程中只有势能、动能与应变能的转化, 略去其它能量的损失。
材料力学动载荷和交变应力第1节 惯性力问题
100
3
s 1
60 106 7.85 10
3
m/s
87.4 m/s
由线速度与角速度关系
v
R
2n
60
R
2n
60
(D
d) 2
/
2
则极限转速为
n
120v (D d
)
120 87.4 3.14 (1.8 1.4)
r/min
1044 r/min
图,与飞轮相比,轴的质量可以忽略不计。轴的另一
端 A 装有刹车离合器。飞轮的转速为 n 100r/min ,
转动惯量为 J x 600 kg/m2,轴的直径 d 80mm。刹车
时使轴在 10 秒内按均匀减速停止转动。求轴内的最大
动应力。 解:飞轮与轴的角速度
y 制动离合器
0
2n
60
• Kd — 动荷系数:表示构件在动载荷作用下其内力 和应力为静载荷作用 Fst 下的内力和应力的倍数。
说明
Fst mg Axg
1) x
Fst
Fd
危险截面在钢 丝绳的最上端
d max
Kd st max
Kd
(
mg A
gxmax )
2)校核钢丝绳的强度条件 d max Kd st max [ ]
16
例11-4 钢质飞轮匀角速转动如图所示,轮缘外径
D 1.8 m,内径 d 1.4 m ,材料密度 7.85 103 kg/m3。 要求轮缘内的应力不得超过许用应力 [ ] 60 Mpa ,轮
工程力学 第2版 第12章 动荷应力和交变应力
影响构件持久极限的主要因素 构件外形的影响 构件截面尺寸的影响 构件表面加工质量的影响
a
Kd 1 g
j max
Kd
12.1.2 构件受冲击时的动荷应力 当具有一定速度的运动物体碰到静止的构件时,物体 和构件间会产生很大的作用力,这种现象称为冲击。如汽 锤锻造工件、落锤打桩、金属冲压加工、铆钉枪铆接、高
速转动的传动轴制动等,都是冲击的一些工程实例。
d max Kd j max [ ]
综合考虑以上三种主要因素,则在对称循环下构件的持久极限表示为
0 1
K
1
或
0 1
K
1
目前在机械设计中,通常将疲劳强度设计准则写成比较安全因数的形式
构件在对称循环弯曲或拉压时
n n
n
0 1
[ 1 ]
n
0 1
max
通 常 把 由 最 大 应 力 max 变 到 最 小 应 力 min , 再 由 最 小 应 力 min变回到最大应力max的过程,称之为一个应力循环。把 一个应力循环中最小应力与最大应力之比值称为循环特性, 用r表示,即
r min max
常见的交变应力循环有 对称循环,
循环特性r = -1。
第12章 动荷应力与交变应力
12.1 动荷应力 10.2 交变应力
12.1 动荷应力
如果作用在构件上的载荷随时间有显著的变化,或在载荷作
用下构件上各点有显著的加速度,这种载荷即称为动载荷。
材料力学第08章 动载荷与交变应力
x
r Ag r Aa
x
FNd FNst d Kd K d st A A
st为静荷载下绳索中的静应力
强度条件为 d K d st [ ]
P
P P a g
△d表示动变形 △st表示静变形
当材料中的应力不超过比 例极限时荷载与变形成正比
m
FNst
m
FNd
rAg
x
rAg rAa
2 st 42st 8h st 2h d st (1 1 ) 2 st 2h d st ( 1 1 ) K d st
2
st
2h 为动荷因数 其中 K d 1 1
st
Fd d Kd P st
Fd K d P
第八章
动载荷与交变应力
中北大学理学院力学系
第一节 第二节 第三节 第四节
概述 构件受加速度作用时的动应力 构件受冲击时的动应力计算 疲劳破坏及其特点
第五节
第六节 第七节
材料的持久极限
影响构件持久极限的因素 构件疲劳强度计算
总结与讨论
第一节 概述
一、基本概念
1、静荷载:荷载由零缓慢增长至最终值,然后保持不变.构件内各 质点加速度很小,可略去不计. 2、动荷载: 荷载作用过程中随时间快速变化,或其本身不稳定 (包括大小、方向),构件内各质点加速度较大. 3、交变应力:构件内的应力随时间作交替变化。 4、疲劳失效:构件长期在交变应力作用下,虽然最大工作应力 远低于材料的屈服极限,且无明显的塑性变形,却往往发生突 然断裂。
(The point changes his location periodically with time under an unchangeable load)
动 载 荷
动载荷第一节构件匀加速度运动时的动应力第二节冲击载荷第三节交变应力与材料的持久极第一节构件匀加速度运动时的动应力一、基本概念动载荷:作用在构件上的载荷随时间有显著的变化,或在载荷作用下,构件上各点产生显著的加速度,这种载荷成为动载荷。
动应力:构件中动载荷产生的应力,称为动应力。
二、构件作匀加速度直线运动时的应力计算吊车以匀加速度a提升重物。
设重物的重量为G,钢绳的横截面面积为A,重量不计。
求钢绳中的应力。
用截面法将钢绳沿n-n面截开,取下半部分作为研究对象。
加上惯性力Pd ,即列平衡方程得钢绳横截面上的应力为式中令则其中K称为动荷系数。
d构件在动载荷作用下的强度条件为三、构件作匀速转动时的应力计算1、求加速度圆环以匀角速度转动时,圆环上各点只有法向加速度an 。
若环的平均直径D远大于环壁的厚度t,则可近似认为环上各点的an相同,且都等于2、求惯性力因圆环单位长度的质量为,所以,圆环单位长度(圆环平均直径上的单位圆弧长)上的惯性力为相反,沿圆环均匀分布。
方向与an3、求内力和应力为圆环横截面上的内力。
根据动静法原理,列平衡方程得圆环横截面上的应力为圆环的强度条件为第二节冲击载荷另一种动载荷是冲击问题,如重锤打桩、用铆钉枪铆接、紧急制动等,在两物体接触的瞬间,速度发生急剧变化,这种现象称为冲击或碰撞。
应用能量法进行近似计算,首先作如下假设:1、冲击物体为刚性体且不反弹;2、不计被冲击物体的质量;3、不计冲击过程中的声、光、热等能量损耗;4、冲击过程中,被冲击物体的变形为线性变形过程。
一、铅锤冲击分析如右图所示的铅垂冲击过程的能量转换,T表示动能、V表示势能、U表示变形能。
冲击前:系统(冲击物与被冲击物)的动能为势能为(设冲击物与被冲击物刚接触时的点为零势点)弹性变形能为冲击后,冲击物下落最低点,被冲击物的变形和应力均达到最大的那一刻,有系统的动能为势能为变形能为冲击前后能量守恒,且所以有上式为铅垂冲击的动荷系数。
工程力学课件 第11章 动载荷、冲击载荷、交变应力简介
交变应力的变化特点可用最小应力与最大应力的比值r表示, 称为循环特征(应力比)即
它的可能取值范围为
在五个特征量
中,只有两个是独立的,即只要已知其中的任意两个特征量, 就可求出其他的量。如果
工程力学
12
称为脉动循环交变应力,其循环特征r=0。 当
1.1.1 电路的组成
r=1 交变应力统称为非对称循环交变应力。
对于以等加速度作直线运动构件,只要确定其上各点的加速度a, 就可以应用达朗贝尔原理施加惯性力,如果为集中质量m,则惯性力 为集中力。
如果是连续分布质量,则作用在质量微元上的惯性力为
工程力学
2
然后,按照弹性 静力学中的方法对构
1.件1进.1行电应力路分的析和组强成 度与刚度的计算。以 图中的起重机起吊重 物为例,在开始吊起 重物的瞬时,重物具 有向上的加速度a,重 物上便有方向向下的 惯性力,如式(11-1) 所示。
其中
分别称为静应力(staticsstress)和动应力(dynamicsstress)。
工程力学
4
第二节 冲击载荷
一、基本假定 1.1.1具电有一路定的速度组的成运动物体,向着静止的构件冲击时,冲击物的
速度在很短的时间内发生了很大变化,即:冲击物得到了很大的负 值加速度。这表明,冲击物受到与其运动方向相反的很大的力作用。 同时,冲击物也将很大的力施加于被冲击的构件上,这种力在工程 上称为“冲击力”或“冲击载荷”。
③假设冲击过程中没有其他形式的能量转换,机械能量守恒定 理仍成立。
工程力学
5
二、自由落体冲击 1.1.1设电一简路支的梁(组线弹成性体)受自由落体冲击如图11.3所示,试分析
动载荷与交变应力
max m a
min m a
r min max
σ
8、脉动循环
交变应力变动于某一应力与零之间 max a
max max min 0
a
max
2
m
r0
o
或
max 0
min max
a
min
2
m
r
9、 静应力
σ
应力保持某恒定值不变
max min m
5、研究意义
实例
惯性载荷
冲击载荷
振动载荷(Tacoma大桥共振断裂)
交变载荷(交变载荷引起疲劳破坏)
16.2 构件作匀加速直线运动或匀速转动时旳动应力计算
16.2.1 构件作匀加速直线运动时旳动应力计算 1、此类问题旳特点:
加速度保持不变Βιβλιοθήκη 加速度数值保持不变,即角速度w = 0
2、处理此类问题旳措施: 牛顿第二定律 动静法(达朗伯原理)
g
[ ]
16.3 构件受冲击时旳应力与变形
一、构件受冲击时旳应力和变形 当运动物体(冲击物)以一定旳速度作用在静
止构件(被冲击物)上时,被冲击物体将受到很 大旳作用力(冲击载荷),这种现象称为 冲击
此类问题在工程中非经常见,例如 : 打桩、锻打工件、凿孔、高速转动飞轮制动等。
构件受冲击时旳应力和变形
弹性支承情况下旳冲击应力:
Q h
st
Ql 3 48EI
Q 2k
....... 5.08mm
l/2
l/2
kd 1
1 2h ....... 5.55 st
(b)
st
Ql 4W
..... 2.43MPa
d 5.55 2.43 13.5MPa
材料力学动载荷、交变应力
材料力学关注材料在不同载荷条件下的行为,为工 程设计和结构分析提供基础。
材料的基本属性
弹性
材料在受力后恢复到原始状态的 能力。
塑性
材料在应力超过屈服点后发生不 可逆变形的性质。
强度
材料抵抗破坏的能力,通常用极 限应力表示。
疲劳强度
材料在交变应力作用下抵抗疲劳 破坏的能力。
韧性
材料吸收能量的能力,通常用冲 击试验测定。
详细描述
在汽车部件的交变应力分析中,需要考虑发 动机、传动系统等不同部件的工作载荷和交 变应力。通过建立数学模型和进行数值模拟 ,可以预测部件在不同工况下的疲劳寿命和 可靠性,从而为汽车的设计和优化提供依据
。
案例三:航空材料的疲劳寿命预测
总结词
航空材料的疲劳寿命预测是材料力学在航空航天领域的重要应用,通过分析材料在不同 循环载荷下的响应,可以预测其疲劳寿命和可靠性。
详细描述
在桥梁结构的动载荷分析中,需要考虑车辆、 风、地震等多种外部载荷的作用,以及桥梁 自身的动力学特性。通过建立数学模型和进 行数值模拟,可以预测桥梁在不同载荷下的 变形、应力和振动响应,从而为桥梁的设计 和加固提供依据。
案例二:汽车部件的交变应力分析
总结词
汽车部件的交变应力分析是材料力学在汽车 工程领域的重要应用,通过分析部件在交变 载荷下的响应,可以预测其疲劳寿命和可靠 性。
详细描述
在航空材料的疲劳寿命预测中,需要考虑飞机在不同飞行条件下的循环载荷和交变应力。 通过建立数学模型和进行数值模拟,可以预测材料在不同循环载荷下的疲劳寿命和可靠 性,从而为飞机的设计和优化提供依据。同时,疲劳寿命预测还可以为飞机的维护和检
修提供指导,确保飞机的安全性和可靠性。
第六章 动载荷交变应力
动响应 动荷系数K d 静响应
5、动荷系数的导出:由能量守恒定律
P
T V Vd (弹簧变形能 ),
其中:
V P d
Fd Vd d 2
Fd d d Kd P st st
其中st 为静变形 st 为静应力
Fd P( d ) 1 d T P d Vd d ( P) d 2 2 st 2 st
a m max
2
(3)r=1,静荷载作用下的应力;
max m min
t
min r 1 max
a 0
m max min
§6.4.3持久极限(疲劳极限)
1、材料的疲劳寿命: 材料疲劳破坏时所经历的应力循环次数。
2、材料的疲劳极限: 材料经历无限次应力循环(107)而不发生疲劳破坏时,相应的 最大应力值。用“σr”表示。 它与除与材料本身的材质有关外,还与变形形式、循环特征和 应力循环次数有关。它与强度极限的意义相同。 3、 —N 曲线(应力—寿命曲线):
例3 已知:d1=0.3m, l=6m, P=5kN, E1=10Gpa, 求两 种情况的动应力。(1)H=1m自由下落;(2) H=1m, 橡皮垫d2=0.15m, h=20mm,E2=8Mpa.
P H
P
d2 h
d1
d1
l
解:1)自由下落且无橡皮垫时: Pl st =0.0425 mm E1 A1 2H Kd 1 1 218 st
冲击问题最具代表性的一类是碰撞,随着冲击过程 的进行,往往发生塑性变形、噪声辐射、热能辐射等物 理现象,即冲动问题的复杂性。
3、求解冲击问题的能量方法及假设
由于冲击问题的复杂性,精确求解十分困难,故仅使用能量方法; 1)冲击物为刚体且不反弹; 2)不计冲击过程中的声、光、热等能量损耗(能量守恒);3) 冲击过程为线弹性变形过程。 4、动荷系数:
动载荷与交变荷载课件
实验设备与实验原理
实验设备 实验原理
实验方法与步骤
在此添加您的文本17字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字 在此添加您的文本16字 在此添加您的文本16字
实验结果与分析
实验结 果
结果分析
对实验结果进行分析,可以得出不同 结构在不同动载荷和交变荷载作用下 的响应规律和特性,为工程结构的优 化设计和安全评估提供依据。
新材料对动载荷与交变荷载的影响
总结词
详细描述
新技术对动载荷与交变荷载的影响
总结词
详细描述
新应用领域对动载荷与交变荷载的挑战
总结词
新应用领域的拓展给动载荷与交变荷载 带来了新的挑战。
VS
详细描述
随着科技的进步和社会的发展,新的工程 领域如海洋工程、空间探索、新能源等不 断涌现。这些领域中的结构物常常面临复 杂的动载荷与交变荷载环境,需要针对具 体情况进行深入研究,以确保工程安全和 可靠性。同时,这些新领域的研究也将推 动动载荷与交变荷载理论的进一步发展。
机械工程中的动载荷与交变荷载
总结词
详细描述
土木工程中的动载荷与交变荷载
总结词
详细描述
航空航天工程中的动载荷与交变荷载
总结词
高强度、高精度
详细描述
在航空航天工程中,由于飞行器的高速运动和复杂环境, 动载荷与交变荷载的影响更加显著。例如,飞机在起飞、 降落和飞行过程中会受到气动载荷、惯性载荷等多种动 载荷的作用;航天器在发射、轨道运行和返回过程中也 会受到各种交变荷载的作用。这些载荷不仅会影响飞行 器的性能和安全性,还会对航天员的生命安全产生重要 影响,因此航空航天工程师需要高度重视动载荷与交变 荷载的研究和控制。
第十六章 动载荷 交变应力
2
g j
三、冲击响应计算 等于静响应与动荷系数之积. [例 ] 直径0.3m的木桩受自由落锤冲击,落锤重5kN, 求:桩 的最大动应力。E=10GPa v W 解:①求静变形 Pj L WL j 425 mm h=1m EA EA ②动荷系数
2h 21000 K 1 1 1 1 217 .9 d j 425
物体上加上惯性力,就可以把动力学问题在形式
上作为静力学问题来处理,这就是动静法。
一、直线运动构件的动应力
[例 ] 起重机钢丝绳的有效横截面面积为A , 已知[], 单位体积 重为 , 以加速度a上升,试校核钢丝绳的强度(不计绳重)。 解:①受力分析如图:
x a L m x n qj qG a Nd
O L
GG man 2 Rm 2 LG / g
②强度条件
GG / A
GG 2GL A ( g )
[例] 设圆环的平均直径D、厚度t ,且 t« D,环的横截面面积 为A,单位体积重量为 ,圆环绕过圆心且垂直于圆环平面的
轴以等角速度旋转,如图所示,试确定圆环的动应力,并建
疲劳源 光滑区
粗糙区
二、疲劳破坏的发展过程:
材料在交变应力下的破坏,习惯上称为疲劳破坏。 1.亚结构和显微结构发生变化,从而永久损伤形核。 2.产生微观裂纹。 3.微观裂纹长大并合并, 形成“主导”裂纹。
4.宏观主导裂纹稳定扩展。
5.结构失稳或完全断裂。
三、疲劳破坏的特点:
1. 工作 jx 。
d mg
1 mg 2 2 m mg (h K d j ) Kd j 2 2
Kd 1 1
2 / g 2h
j
△j:冲击物落点的静位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FNd Kd FNj ; d Kd j ; Ld Kd Lj
4、强度计算
d max d
二、构件作等速转动时的动应力
一薄壁圆环平均直径为 D,壁厚为 t,
以等角速度 ω绕垂直于环平面且过圆心的
平面转动,圆环的比重为 γ。求圆环横截
D
ω 面的动应力。
解:1、求动轴力
(1)
an
2R
2
D 2
实验表明:在静载荷下服从虎克定律的材料,只要应力不超 过比例极限 ,在动载荷下虎克定律仍成立且 E静 = E动。
四、动载荷问题的分类:
(1)构件作等加速直线运动和等速转动时的动应力计算; (2)构件在受冲击和作强迫振动时的动应力计算; (3)构件在交变应力作用下的疲劳破坏和疲劳强度计算。
§14—2 惯性力问题
h
Q
Δd
Δj
d
Kd
j
Kd
Q; A
L
(Ld
Kd Lst
Kd
QL ) EA
例:图示矩形截面梁,抗弯刚度为 EI,一重为 F 的重物从距 梁顶面 h 处自由落下,冲击到梁的跨中截面上。 求:梁受冲击时的最大应力和最大挠度。
F
b 解(1)、动荷系数
A
C
L/2
H Bh
L/2
Z Y
Kd 1
1 2H j
A
F
C
B
三、冲击问题的简便计算方法
1、自由落体冲击 如图所示,L、A、E、Q、h 均为已知量,
求:杆所受的冲击应力。
解(1)冲击物的机械能:
Q
h
T V 0 Q(h d )
Fd L
Δd (2)被冲击物的动应变能
1 Ud 2 Fd d
d为被冲击物的最大变形量,Fd为冲击载荷
(3)能量守恒
Q(h d )
一、冲 击
一个运动的物体(冲击物)以一定的速度,撞击另 一个静止的物体(被冲击构件),静止的物体在瞬间使 运动物体停止运动,这种现象叫做冲击。
二、冲击问题的分析方法:能量法
假设—— 1、被冲击构件在冲击荷载的作用下服从虎克定律; 2、不考虑被冲击构件内应力波的传播 3、冲击过程只有动能、势能、变形能的转换,无其它能量损失。 4、冲击物为刚体,被冲击构件的质量忽略不计;
1
1
2H FL3
1
1
96HEI FL3
L/2
L/2
48EI
(2)、最大应力 1 FL
K K 4
d max
d j max
dW
Z
(3)、最大挠度
d max
Kd jmax
Kd
FL3 48EI
A
F
C
h
B
A、B支座换成刚度为 C 的弹簧
L/2
L/2
Kd 1
1 2h j
F
A
C
B
L/2
L/2
j
FL3 48EI
d1
l
Kd 1
1 2H 218 st
d Kd st 15.42MPa
(2) 加橡皮垫 d2 = 0.15m, h= 20 mm,E2 = 8 MPa.
P H
st
Pl E1 A1
Ph E2 A2
=0.75mm,
Kd=52.3
P
d2
d Kd st 3.7MPa
h
d1
d1
l
2、水平冲击: v
二、动载荷的概念:
载荷随时间急剧变化且使构件的速度有显著变化 (系统产生惯性力),此类载荷为动载荷。
例:起重机以等速度吊起重物,重物对吊索的作用为静载。 起重机以加速度吊起重物,重物对吊索的作用为动载。 旋转的飞轮、气锤的锤杆工作时、打桩均为动荷载作用。
三、动响应:
构件在动载荷作用下产生的各种响应(如应力、应变、位 移等),称为动响应。
mg
冲击前: 动能Ek1 mv2 / 2 势能V1 0 变形能V1 0
冲击前后能量守恒,且
冲击后: 动能EK 2 0 势能V2 0
Fd Kd Pst (Pst mg)
变形能V 2 Pd d / 2
d Kd st
1 mv2 2
mg 2
K
2 d
st
动荷系数
Kd
v2 g st
例:一下端固定、长度为 l 的铅直圆截面杆AB,在C点处
F 2
C
例 已知:d1=0.3m, l = 6m, P=5kN, E1 = 10GPa, 求两种情况 的动应力。(1)H = 1m自由下落;(2)H =1m, 橡皮垫d2 = 0.15m, h= 20 mm,E2 = 8 MPa.
解:(1)
P H
P d2
h
st
Pl E1 A1
=0.0425
mm
d1
a
FNd
ma
Ax
0
FNd
Ax(1
a) g
2、动应力的计算
Ax(1 a )
d
FNd A
g x(1 a )
A
g
3、最大动应力
x
L
d max
L(1
a g
)
a = 0时 d x st
d
st (1
a) g
Kd
(1
a g
)
d
K受静荷载作用; 下标d——受动荷载作用。
被一物体G沿水平方向冲击(图a)。已知C点到杆下端的距
离为a,物体G的重量为P,物体G在与杆接触时的速度为v。
试求杆在危险点的冲击应力。
解:
Pv 2 Ek 2g
Ep 0
杆内的应变能为
Vεd
1 2
Fd
Δd
B GC v
一、 匀加速直线运动构件的动应力计算
如图所示,一起重机绳索以等加速度 a 提升一等截面直
杆,直杆单位体积的重量(比重、重度)为γ,横截面面积
为 A,杆长为L,不计绳索的重量。求:杆内任意横截面的 动应力、最大动应力。
解:1、动轴力的确定
F
FNd
Ax
ma
Ax
g
a
a FNd
FNd
Ax(1
a) g
x
γ
1 2
Fd d
1 2
EA 2d L
(d
Fd L EA
Fd
EA L
d
)
2d
2QL(h d ) EA
2st (h d ); 2d
2std
2sth
0
d (2st )
(2st )2 2
4(2sth)
st (1
2h 1 )
st
动荷系数——
Kd
d st
1
1 2h st
(4)动应力、动变形
Q Fd
qd
F
ma n
AL
g
2
D 2
(2)
qd
ma n L
ALan
gL
A
g
2
D 2
(3)
Y
0 2FNd
0
D 2
dqd
sin
qd D
dφ φ
FNd
1 2
qd D
A 2 D 2
4g
2、动应力的计算
FNd
FNd
d
FNd A
2D2 v2 ; 4g g
(v R D) 2
§14—3 构件受冲击荷载作用时的动应力
第十四章 动载荷
§1 动载荷概念和工程实例 §2 惯性力问题 §3 构件受冲击时的应力及强度计算 §4 交变应力、疲劳强度 §5 提高构件抵抗冲击能力的措施 §6 构件的动力强度和冲击韧度
§14—1 动载荷概念和工程实例
一、静荷载的概念:
载荷不随时间变化(或变化极其平稳缓慢)且使 构件各部件加速度保持为零(或可忽略不计),此类 载荷为静载荷。