图形的旋转(一)ppt课件
合集下载
23.1.2图形的旋转 课件人教版数学九年级上册

=360°-110°-150°-60°=40°
∵∠ADC=α=150°,∠ODC=60°, ∴∠ADO=90°. ∴△AOD 是直角三角形.
等的判定方法
则△ABE 为旋转后的图形.
(基本作图:作线段)
旋转作图的基本步骤
1.定 :确定旋转中心、旋转方向和旋转角,并找出原图形中每一个关键点; 2.连 :连接图形中每一个关键点与旋转中心; 3. 转 :把连线绕旋转中心按旋转方向旋转相同的角度(作旋转角); 4.截:在角的另一边上截取与关键点到旋转中心的距离相等的线段,得到各点的 对应点 ; 5.连 :连接所得到的各对应点; 6.写:写出结论,说明作出的图形.
A .①②
B .①③
C.②③
D.①②③
①
②
③
【知识技能类作业】选做题:
3.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB 绕 点 O 逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B 吗 ?
【综合拓展类作业】
4.如图,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α, 将△BOC 绕点C按顺时针方向旋转60°得到△ADC, 连接OD.
1.强化图形旋转的概念及性质; 2.根据旋转的基本性质解决实际问题和进行简单作图.
图形旋转的基本性质 (1)各组对应点与旋转中心的连线所成的角相等,都等于旋转角;
(2)对应点到旋转中心的距离相等; (3)旋转前、后的图形全等;
这节课我们就应用上节课所学的知识展现你的艺术风采.
1.点的旋转作法:
如图,点A₁ 走过的路径长
●
旋转的作 图
作旋转图形
作图基本步骤(五步)
确定旋转中心
找两条对应点连线段的 垂直平分线的交点
∵∠ADC=α=150°,∠ODC=60°, ∴∠ADO=90°. ∴△AOD 是直角三角形.
等的判定方法
则△ABE 为旋转后的图形.
(基本作图:作线段)
旋转作图的基本步骤
1.定 :确定旋转中心、旋转方向和旋转角,并找出原图形中每一个关键点; 2.连 :连接图形中每一个关键点与旋转中心; 3. 转 :把连线绕旋转中心按旋转方向旋转相同的角度(作旋转角); 4.截:在角的另一边上截取与关键点到旋转中心的距离相等的线段,得到各点的 对应点 ; 5.连 :连接所得到的各对应点; 6.写:写出结论,说明作出的图形.
A .①②
B .①③
C.②③
D.①②③
①
②
③
【知识技能类作业】选做题:
3.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB 绕 点 O 逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B 吗 ?
【综合拓展类作业】
4.如图,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α, 将△BOC 绕点C按顺时针方向旋转60°得到△ADC, 连接OD.
1.强化图形旋转的概念及性质; 2.根据旋转的基本性质解决实际问题和进行简单作图.
图形旋转的基本性质 (1)各组对应点与旋转中心的连线所成的角相等,都等于旋转角;
(2)对应点到旋转中心的距离相等; (3)旋转前、后的图形全等;
这节课我们就应用上节课所学的知识展现你的艺术风采.
1.点的旋转作法:
如图,点A₁ 走过的路径长
●
旋转的作 图
作旋转图形
作图基本步骤(五步)
确定旋转中心
找两条对应点连线段的 垂直平分线的交点
八年级数学北师大版初二下册--第三单元 3.2《图形的旋转》(第一课时)课件

的一点,也可以是图形上的一点,还可以是图形 内的一点.这一定点即为旋转中心. (2)旋转的决定因素: ①旋转中心;②旋转角;③旋转方向.
2. 旋转的性质: 一个图形和它经过旋转所得的图形中,对应
点到旋转中心的距离相等.任意一组对应点与旋 转中心的连线所成的角都等于旋转角;对应线段 相等,对应角相等.
知1-练
4 如图,△ABC和△ADE均为等边三角形,则图中 可以看成是旋转关系的三角形是( C ) A.△ABC和△ADE B.△ABC和△ABD C.△ABD和△ACE D.△ACE和△ADE
知1-练
5 在俄罗斯方块游戏中,已拼好的图案如图所示,现 又出现一小方格体正向下运动,为了使所有图案消 失,你必须进行以下哪项操作,才能拼成一个完整 图案,使其自动消失( A ) A.顺时针旋转90°,向右平移 B.逆时针旋转90°,向右平移 C.顺时针旋转90°,向下平移 D.逆时针旋转90°,向下平移
(来自《教材》)
知2-练
2 如图,你能绕点O旋转,使得线段AB与线段CD 重合吗?为什么?
解:不能,不符合旋转的概 念和特征.
(来自《教材》)
知2-练
3 【2017·青岛】如图,若将△ABC绕点O逆时针旋 转90°,则顶点B的对应点B1的坐标为( B ) A.(-4,2) B.(-2,4) C.(4,-2) D.(2,-4)
知1-导
知1-导
这个定点称为旋转中心,转动的角称为旋转角.
A
B
旋转角
o 旋转中心
例1 下列运动属于旋转的是( B ) A.篮球的滚动 B.钟摆的摆动 C.气球升空的运动 D.一个图形沿某条直线对折的过程
导引:按旋转的定义判断.知1-讲 Nhomakorabea总结
2. 旋转的性质: 一个图形和它经过旋转所得的图形中,对应
点到旋转中心的距离相等.任意一组对应点与旋 转中心的连线所成的角都等于旋转角;对应线段 相等,对应角相等.
知1-练
4 如图,△ABC和△ADE均为等边三角形,则图中 可以看成是旋转关系的三角形是( C ) A.△ABC和△ADE B.△ABC和△ABD C.△ABD和△ACE D.△ACE和△ADE
知1-练
5 在俄罗斯方块游戏中,已拼好的图案如图所示,现 又出现一小方格体正向下运动,为了使所有图案消 失,你必须进行以下哪项操作,才能拼成一个完整 图案,使其自动消失( A ) A.顺时针旋转90°,向右平移 B.逆时针旋转90°,向右平移 C.顺时针旋转90°,向下平移 D.逆时针旋转90°,向下平移
(来自《教材》)
知2-练
2 如图,你能绕点O旋转,使得线段AB与线段CD 重合吗?为什么?
解:不能,不符合旋转的概 念和特征.
(来自《教材》)
知2-练
3 【2017·青岛】如图,若将△ABC绕点O逆时针旋 转90°,则顶点B的对应点B1的坐标为( B ) A.(-4,2) B.(-2,4) C.(4,-2) D.(2,-4)
知1-导
知1-导
这个定点称为旋转中心,转动的角称为旋转角.
A
B
旋转角
o 旋转中心
例1 下列运动属于旋转的是( B ) A.篮球的滚动 B.钟摆的摆动 C.气球升空的运动 D.一个图形沿某条直线对折的过程
导引:按旋转的定义判断.知1-讲 Nhomakorabea总结
《图形的旋转》平移旋转和轴对称PPT课件

与时针旋转方向相同的是顺时针, 与时针旋转方向相反的是逆时针。
栏杆的打开和关闭是怎样旋转的? 它们的运动有什么相同点和不同点?
逆时针方向Biblioteka 顺时针方向OO
课堂探究
探究一: 转杆的打开和关闭,分别是绕哪个点按什么方向旋转的?旋转了多少度?
转杆的打开是绕o顺时针旋转90°。 ②转杆的打开是绕o逆时针旋转90°
随堂检测
(1)把三角形绕点A顺时针旋转90° (2)把四边形绕点B逆时针旋转90°
一、学习新课
把三角板绕A点顺时针旋转90。
A
当堂练习
(3)指针顺时针旋转90°,从指向A 旋转到指( D ) ; 指针逆时针旋转90°,从指向B旋转到指向( C ) 。
给出一个方向和角度,让线段OA绕着O点转一转
A
O
小结: 与时针旋转方向相同的是顺时针旋转,相反的是逆时针 旋转。转杆打开是顺时针旋转,转杆关闭是逆时针旋转。
课后练习
一、学习新课
把三角板绕A点顺时针旋转90。
A
讲授新课
你会把方格纸上的三角形绕点A逆时针旋转90°吗?
从113页剪下和它同样 大的三角形,在图上试 一试。
A
( 1 )千克的物品可以使指针按顺时针
方向旋转90。 。
4 0
3
1
2
4 0
3
1
2
如果不借助具体的实物,该怎样画出 三角形逆时针旋转90后的图形?
图形的旋转
学习目标
1.认识绕点顺时针或逆时针旋转90°的含义, 能在方格纸上画出把简单图形旋转90°后的图形。
2.认识对图形变化的兴趣,并进一步感受旋 转在生活中的应用。
讲授新课
与时针旋转方向相同的是顺时针旋转,相反的是逆时针旋转。
九年级上册23.1图形的旋转(共19张PPT)

知识要点
AAA
EEE
FF BB
D
OOO
CCC
旋转的性质
1、对应点到旋转中心的距离相等.
2、对应点与旋转中心所连线段的夹角等于旋转角.
3、旋转前、后的图形全等.
例题讲解
△A′OB′是△AOB绕点O按逆时针方向旋转得
到的.已知∠AOB=20°, ∠ A′OB =24°,
AB=3,OA=5,则A′B′ =
一个具有这种关系的角。相等
由例1归纳:旋转不改变图形的形状 和大小 ,
但图形上的每个点同时都按相同的方式转动相 同的角度。旋转前后两个图形对应点到旋转中 心的距离 相等 ;对应点与旋转中心的连线所 成的角都等于旋转角;对应线段__相__等____, 对应角___相_等_______.
检测反馈
1、判断
A1
线 对应线段之间
C
B
两条对应线段的夹角都是旋转角
图中对应的线段:
___A_C_和__A_1_C_、__B__C_和__B_1_C_、__A__B_和__A_1.B1
面 旋转前后的 到什么结论?
A'
A
B'
C
B
O
C'
角:∠AOA'=∠BOB' =∠COC'
线: AO=A'O ,BO=B'O ,CO=C'O
一个图形经过旋转
①图形上的每一个点到旋转中心的距离相等. ( × )
②图形上可能存在不动点.
(√ )
③图形上任意两点的连线与其对应点的连线相等.
( √)
检测反馈
2、如图是正六边形,这个图案可以看做是由
__△_A__O__B_____“基本图案”通过旋转得到的.
图形的旋转(第1课时)课件

学生作品展示与评价
作品展示
挑选部分学生的练习作品进行展示, 让学生互相学习。
评价与建议
对学生的作品进行点评,给出建议和 改进方向,帮助学生提高。
THANKS
感谢观看
动画的应用场景
01
02
03
04
旋转动画可以应用于各种场景 ,如产品展示、广告宣传、教
育演示等。
在产品展示中,旋转动画可以 全方位地展示产品的外观和特 点,增强观众对产品的认知和
兴趣。
在广告宣传中,旋转动画可以 吸引观众的注意力,提高广告
的传播效果和转化率。
在教育演示中,旋转动画可以 直观地展示抽象的概念和过程 ,帮助学生更好地理解和掌握
02
动画制作需要将静态图像按照一 定的时间间隔进行分解,并逐帧 绘制出每个状态,然后通过连续 播放形成动态效果。
旋转动画的实现
使用图形软件(如Adobe After Effects、Flash等)或动画 制作软件(如Toon Boom、Animate等)进行旋转动画的制 作。
在软件中导入需要旋转的图形,设置旋转中心点、旋转角度 、旋转速度等参数,然后逐帧绘制旋转过程,最后导出为视 频或GIF格式。
旋转的分类
等角度旋转
图形绕旋转中心按相等的角度进 行旋转,每次旋转的角度是相同 的。
变角度旋转
图形绕旋转中心按不同的角度进 行旋转,每次旋转的角度是不同 的。
02 旋转的数学表达
旋转矩阵
旋转矩阵是用于描述图形旋转 的数学工具,它由三个元素组 成:旋转角度、旋转轴和旋转 方向。
旋转矩阵的作用是将原始坐标 系中的点映射到新坐标系中, 实现图形的旋转。
知识。
05 课堂互动与练习
课堂互动环节设计
人教版九年级数学上册《图形的旋转》旋转PPT课件

又由∠CAC′=90°可知△CAC′为等腰直角三角形,所
以∠ CC′ A= 45°.又由∠ AC′ B′ =∠ACB=90°-60°
=30°,可得∠ CC′ B′ =15°.
新课讲解
知识点3 用旋转的知识画图
• 简单旋转作图的一般步骤: • (1)找出图形的关键点; • (2)确定旋转中心,旋转方向和旋转角; • (3)将关键点与旋转中心连接起来,然 后按旋转方向 • 分别将它们旋转一个角,得到关键点的对应点; • (4)按照原图形的顺序连接这些对应点,所得到的图 • 形就是旋转后的图形.
新课讲解
练一练
如图,A,B,C三点共线,△ACD和△BCE都是等边三角形,
△ACE旋转后到达△DCB的位置. (1) 旋转中心是哪一点? (2) 旋转角是多少度?
(1) 点C是在△ACE旋转过程中不动的点,所以点C是旋转中心. (2) △ACE旋转后到达△DCB的位置,AC绕点C转过的角即∠ACD就 是旋转角.因为△ACD是等边三角形,所以∠ACD =60°,即旋转角是
新课讲解
例 2 如图(1),E是正方形ABCD中CD边上任意一点,以点A为中 心,把△ADE顺时针旋转90°,画出旋转后的图形.
图(1) 分析:关键是确定△ADE三个顶点的对应点,
即它们旋转后的位置.
新课讲解
解:因为点A是旋转中心,
所以它知的识对点应点是它本身. 正方形ABCD中,AD=AB,∠DAB=90°,
所以旋转后点D与点B重合.
设点E的对应点为点E′.因为旋转后的图形
图(2)
与旋转前的图形全等,所以∠ABE′=∠ADE
=90°,BE′=DE.
因此,在CB的延长线上取点E′,使BE′=DE,则
五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)

五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)
五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)
11 12 10
9
O
8
76
1 2
3
4 5
从“3”到“6”,指针绕点O 按顺时针方向旋转了( 90°)
五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)
时针旋转90 °
时针旋转180 °
风车旋转后,每个 三角形有什么变化?
五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)
每个三角形的形状、 大小不变,位置变 了。
旋转图案欣赏 五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)
五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)
O
把三角板绕O点顺时针旋转90。
五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)
五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)
O
把三角板绕O点顺时针旋转90。
五年级上册数学优秀课件- 图形的旋转 ︳西师大版(共47张PPT)
把三角板绕O点顺时针旋转90°
问题:
3.知道人体活动需要的能量来自于消 化器官 对食物 中营养 的吸收 。 4.了解人体的消化器官包括口腔、食 道、胃 、小肠 和大肠 ,彼此 各有功 能,又 相互合 作,最 终完成 对食物 的消化 、吸收 过程。 5.叔本华认为人生充满着痛苦和无聊 ,人受 欲望支 配,欲 望没满 足的时 候你是 痛苦的 ,而满 足以后 则无聊 ,幸福 是根本 不可能 的。 6.伊壁鸠鲁认为,物质欲望的满足不 能使人 快乐, 只有满 足了生 命本身 需要的 那种快 乐才会 更深刻 、更持 久、更 强烈、 更美好 。 7.在幸福这个问题上之所以众说纷纭 ,是因 为每个 人看重 的不同 。我们 若仅从 满足身 体和物 质欲望 的层面 理解, 就不会 有幸福 感。
华东师大版七年级下册10.图形的旋转课件(共14张)

_A_与__B___、 _B_与__C___、 C__与__D___、 D__与__E___、 _E_与__F___、
_F__与__A__ .
B
A C
O
F
D
E
3. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的.已知 ∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,旋转角等于 44 ° .
在平面内,将一个图形绕着一个定点沿某个方向 转动一个角度,这样的图形运动称为旋转。
这个定点O称为旋转中心
o 旋转中心
转动的角∠POP'称为旋转 角
旋转角
P
P'
例1.下列各选项描述的运动中,属于旋转的是( D ) A.在草坪上滚动的足球 B.商场里乘坐扶梯上楼的顾客 C.升旗时旗杆上的旗 D.正常运转的时钟的时针
旋转中心点是__O____;
B'
A
旋转的角度是∠__B__O_B_'_或__者__∠__A_O__A_' .
O
B
旋转的三要素:旋转中心,旋转角,旋 转方向.
例2.如图,△ABC是等边三角形,P是△ABC内一点, △PBC经过旋转后到达△QBA的位置. (1)旋转中心是哪一点? 解:旋转中心是点B. (2)旋转了多少度? 解:旋转了60°. (3)如果点M是BC的中点,那么经过上述旋转后,点M 到什么位置了?
点M旋转到了AB的中点位置.
例3 如图(1)点M是线段AB上一点,将线段AB绕着 点M顺时针方向旋转900,旋转后的线段与原线段的 位置有何关系?,如果逆时针方向旋转900呢?
A
M BA
MB A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的旋转(一)
图形的旋转(一)
学习目标
1.从“绕哪个点”“向什么方向”“旋转多少 度”三个要素来描述图形的旋转现象。
2.认识旋转的三要素:旋转点、旋转方向、旋 转角度。
3.画出绕线段的一个端点旋转90度后的线段。
图形的旋转(一)
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在
图形的旋转(一)
图形的旋转(一)
顺逆时针旋转了90°。
图形的旋转(一)
1.想一想,填一填。
一棵小树被扶起种好,这棵小树绕点O( 顺时)针
方向旋转了( 9)0 度。
图形的旋转(一)
2.⑴下面两个钟面上,时针分别从几时走到了几时? 哪个钟面的时针旋转的角度大?
图形的旋转(一)
2.⑵从9时到12时,时针绕中心点顺时针方向旋转 了多少度?从12时到16时,时针绕中心点顺时 针方向旋转了多少度?
用线段的旋转设计一幅图(注 意点、方向、度数)
图形的旋转(一)
你的收获是什么?
图形的旋转(一)
90°
120°
图形的旋转(一)
如右图,指针从点A开始,绕点O逆
A
时针旋转(9)0到点B;指针从点C
开始,绕点0O逆时针旋转(9)0 到
点D;指针从点B开始,绕点0O逆时 B
o
D
针旋转900到点( c);指针从点D
Hale Waihona Puke 开始,绕点O顺时针旋转900到点
C
( c )。
图形的旋转(一)
⑴ 画出线段AB绕点B顺时针旋转90°后的线段。 ⑵ 画出线段AB绕点A逆时针旋转90°后的线段。
图形的旋转(一)
⑴画出线段AB绕点A顺时 ⑵画出线段AB绕点B逆时
针旋转90°后的线段。
针旋转90°后的线段。
图形的旋转(一)
4.如图,点P是线段MN上的一点,请按下列要求分别
画图⑴。将线段MN绕点P顺
N’
⑵将线段MN绕点P逆
时针旋转90°。
M’
时针旋转90°。
N’
M’
图形的旋转(一)
我能设计
旋转过程中,其形状、大小、
位置是否发生变化呢?
图形的旋转(一)
图形的旋转(一)
逆时针旋转 12
顺时针旋转
9
3
6 图形的旋转(一)
时针、分针旋转的方向就是顺时针方向, 相反的方向就是逆时针方向。
逆时针
顺时针
图形的旋转(一)
1.横杆的收起和放下是绕着哪一点进行的? 2.横杆在两次旋转过程中有什么相同点和不同点?
图形的旋转(一)
学习目标
1.从“绕哪个点”“向什么方向”“旋转多少 度”三个要素来描述图形的旋转现象。
2.认识旋转的三要素:旋转点、旋转方向、旋 转角度。
3.画出绕线段的一个端点旋转90度后的线段。
图形的旋转(一)
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在
图形的旋转(一)
图形的旋转(一)
顺逆时针旋转了90°。
图形的旋转(一)
1.想一想,填一填。
一棵小树被扶起种好,这棵小树绕点O( 顺时)针
方向旋转了( 9)0 度。
图形的旋转(一)
2.⑴下面两个钟面上,时针分别从几时走到了几时? 哪个钟面的时针旋转的角度大?
图形的旋转(一)
2.⑵从9时到12时,时针绕中心点顺时针方向旋转 了多少度?从12时到16时,时针绕中心点顺时 针方向旋转了多少度?
用线段的旋转设计一幅图(注 意点、方向、度数)
图形的旋转(一)
你的收获是什么?
图形的旋转(一)
90°
120°
图形的旋转(一)
如右图,指针从点A开始,绕点O逆
A
时针旋转(9)0到点B;指针从点C
开始,绕点0O逆时针旋转(9)0 到
点D;指针从点B开始,绕点0O逆时 B
o
D
针旋转900到点( c);指针从点D
Hale Waihona Puke 开始,绕点O顺时针旋转900到点
C
( c )。
图形的旋转(一)
⑴ 画出线段AB绕点B顺时针旋转90°后的线段。 ⑵ 画出线段AB绕点A逆时针旋转90°后的线段。
图形的旋转(一)
⑴画出线段AB绕点A顺时 ⑵画出线段AB绕点B逆时
针旋转90°后的线段。
针旋转90°后的线段。
图形的旋转(一)
4.如图,点P是线段MN上的一点,请按下列要求分别
画图⑴。将线段MN绕点P顺
N’
⑵将线段MN绕点P逆
时针旋转90°。
M’
时针旋转90°。
N’
M’
图形的旋转(一)
我能设计
旋转过程中,其形状、大小、
位置是否发生变化呢?
图形的旋转(一)
图形的旋转(一)
逆时针旋转 12
顺时针旋转
9
3
6 图形的旋转(一)
时针、分针旋转的方向就是顺时针方向, 相反的方向就是逆时针方向。
逆时针
顺时针
图形的旋转(一)
1.横杆的收起和放下是绕着哪一点进行的? 2.横杆在两次旋转过程中有什么相同点和不同点?