倒立摆系统的建模及MATLAB仿真

合集下载

二级倒立摆的建模与MATLAB仿真

二级倒立摆的建模与MATLAB仿真
假设系统中的每一根摆杆都是匀质刚体驱动力与放大器的输入成正比且无延迟地直接作用于小车上并且可以在忽略实验中的库仑摩擦和动摩擦的前提下设定摆杆竖直向上时下摆杆角位移摆杆角位移均为零摆杆顺时针旋转为正
二级倒立摆的建模与 MATLAB 仿真 刘文斌,等
二级倒立摆的建模与MATLAB仿真
刘文斌,干树川 (四川理工学院电子与信息工程系 四川自贡,643000)
取为最小值。设控制输入函数形式为: U(t)= -Kx(t) (11) 状态反馈矩阵: K = R -1B T P ( 12) 其中,P 可由 Riccati 微分方程: (13) 其中, 性能指标函数: (14)
[J].计算机测量与控制,2006,14(12):1641 - 1642 5 张 春,江 明,陈其工等.平行单级双倒立摆系统的建模与滑
模变结构控制[J].2008.1
23
图1 二级倒立摆模型
(1)
(2)
(3) 经过线性化如下: (4)
(上接第 7 页) 0; 0; 0; 0]; p=eig(A) [num,den]=ss2tf(A,B,C,D,1); printsys(num,den) Q=[1000 0 0 0 0 0; 0 0 0 0 0 0; 0 0 10 0 0 0; 0 0 0 0 0 0; 0 0 0 0 10 0; 0 0 0 0 0 0]; Tc=ctrb(A,B); rank(Tc) To=obsv(A,C); rank(To) R=1; K=lqr(A,B,Q,R); Ac=[(A-B*K)]; Bc=[B]; Cc=[C]; Dc=[D]; T=0:0.005:20; U=0.2*ones(size(T)); [Y,X]=lsim(Ac,Bc,Cc,Dc,U,T); plot(T,Y(:,1),':',T,Y(:,2),' -',T,Y(:,3),'

单级倒立摆的数学建模与仿真

单级倒立摆的数学建模与仿真

单级倒立摆的数学建模与仿真倒立摆系统是一个典型的高阶次、多变量、严重不稳定和强耦合的非线性系统。

由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。

由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。

现对单级倒立摆系统进行数学建模并利用MATLAB 进行仿真。

在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,M :小车质量 x :小车位置m :为摆杆质量 J :为摆杆惯量F :加在小车上的力l :摆杆转动轴心到杆质心的长度θ:摆杆与垂直向上方向的夹角根据牛顿运动定律以及刚体运动规律,可知:(1)摆杆绕其重心的转动方程为:(2)摆杆重心的运动方程为:(3)小车水平方向上的运动为:22..........(4)x d xF F M d t -=联立上述4个方程,可以得出一阶倒立摆数学模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J m l F m l J m l m l g x J m l M m m l m l F m l M m m m l M m J m l θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩sin cos ..........(1)y x J F l F l θθθ=- 2222(sin )..........(2)(cos ).........(3)x y d F m x l d t d F m g m l d t θθ=+=-式中J 为摆杆的转动惯量:32ml J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m,重力加速度取g=2/10s m ,则可以得一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩由以上得出的一阶倒立摆模型,对一阶倒立摆进行仿真,222()0.4()12() 1.110()s F s s x s s s s θθ-⎧=⎪-⎪⎨-+⎪=⎪⎩。

基于MATLAB-GUI的一级倒立摆控制仿真软件设计

基于MATLAB-GUI的一级倒立摆控制仿真软件设计

基于MATLAB-GUI的一级倒立摆控制仿真软件设计基于MATLAB/GUI的一级倒立摆控制仿真软件设计摘要:本文介绍了一种基于MATLAB/GUI的一级倒立摆控制仿真软件的设计方法。

倒立摆是一个经典的控制系统问题,通过控制摆杆使其保持垂直状态。

本文使用MATLAB作为仿真平台,并通过GUI界面设计,使得用户可以方便地输入参数、观察系统状态和结果。

通过该仿真软件,可以有效地学习和研究控制系统的设计与应用。

关键词:MATLAB;倒立摆;控制系统;仿真软件;GUI一、引言倒立摆是一种非线性、强耦合且不稳定的控制系统,是控制理论中经典的问题之一。

倒立摆控制系统受到广泛的研究关注,其在机器人、飞行器、自动驾驶等领域有着重要的应用。

为了帮助学习者理解控制系统的原理和特点,设计了一种基于MATLAB/GUI的一级倒立摆控制仿真软件。

二、仿真软件设计1. 系统模型建立使用MATLAB工具箱中的Simulink建立倒立摆的系统模型。

系统包含两个部分:摆杆和电机控制器。

摆杆模型包括质量、长度、角度等参数;电机控制器模型包括电压、电流、转速等参数。

连接两个模块,构建完整的倒立摆控制系统。

2. GUI界面设计使用MATLAB的GUI工具进行界面设计,用户可以通过界面方便地输入参数、选择控制算法和观察系统状态。

界面包括输入参数框、按钮、图表等控件。

3. 控制算法设计通过GUI界面,用户可以选择不同的控制算法,如PID控制、模糊控制、自适应控制等。

根据选择的算法,修改Simulink模型中的控制器参数,并进行仿真分析。

4. 仿真结果可视化在GUI界面中添加图表,可以实时显示倒立摆的角度、位置等参数。

用户可以通过修改参数和算法,观察系统的响应结果并进行分析。

三、应用实例以PID控制算法为例,进行系统仿真。

用户可以通过GUI界面输入摆杆的质量、长度、角度等参数。

选择PID控制算法后,可以调节PID参数的值,观察系统响应和稳定性。

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与仿真1、直线二级倒立摆建模为进行性线控制器的设计,首先需要对被控制系统进行建模.二级倒立摆系统数学模型的建立基于以下假设:1)每一级摆杆都是刚体;2)在实验过程中同步带长保持不变;3)驱动力与放大器输入成正比,没有延迟直接拖加于小车;4)在实验过程中动摩擦、库仑摩擦等所有摩擦力足够小,可以忽略不计。

图1 二级摆物理模型二级倒立摆的参数定义如下:M 小车质量m1摆杆1的质量m2摆杆2的质量m3质量块的质量l1摆杆1到转动中心的距离l2摆杆2到转动中心的距离θ1摆杆1到转动与竖直方向的夹角θ2摆杆2到转动与竖直方向的夹角F 作用在系统上的外力利用拉格朗日方程推导运动学方程拉格朗日方程为:其中L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能其中错误!未找到引用源。

,错误!未找到引用源。

为系统在第i 个广义坐标上的外力,在二级倒立摆系统中,系统有三个广义坐标,分别为x,θ1,θ2,θ3。

首先计算系统的动能:其中错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

分别为小车的动能,摆杆1的动能,摆杆2的动能和质量块的动能。

小车的动能:错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆1的平动动能和转动动能。

错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆2的平动动能和转动动能。

对于系统,设以下变量: xpend1摆杆1质心横坐标 xpend2摆杆2质心横坐标 yangle1摆杆1质心纵坐标 yangle2摆杆2质心纵坐标 xmass 质量块质心横坐标 ymass 质量块质心纵坐标 又有:(,)(,)(,)L q q T q q V q q =-则有:系统总动能:系统总势能:则有:求解状态方程:可解得:使用MATLAB对得到的系统进行阶跃响应分析,执行命令:A=[0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 1 01;0 0 0 0 0 0;0 86.69 -21.62 0 0 0;0 -40.31 39.45 0 0 0];B=[0;0;0;1;6.64;-0.808];C=[1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];D=[0;0;0];sys=ss(A,B,C,D);t=0:0.001:5;step(sys,t)求取系统的单位阶跃响应曲线:图2 二级摆阶跃响应曲线由图示可知系统小车位置、摆杆1角度和摆杆2角度均发散,需要设计控制器以满足期望要求。

基于MATLAB的旋转倒立摆建模和控制仿真

基于MATLAB的旋转倒立摆建模和控制仿真

倒立摆系统作为一个被控对象具有非线性、强耦合、欠驱动、不稳定等典型特点,因此一直被研究者视为研究控制理论的理想平台,其作为控制实验平台具有简单、便于操作、实验效果直观等诸多优点。

倒立摆具有很多形式,如直线倒立摆、旋转倒立摆、轮式移动倒立摆等等。

其中,旋转倒立摆本体结构仅由旋臂和摆杆组成,具有结构简单、空间布置紧凑的优点,非常适合控制方案的研究,因此得到了研究者们广泛的关注[1-2]。

文献[3]介绍了直线一级倒立摆的建模过程,并基于MATLAB 进行了仿真分析;文献[4]通过建立倒立摆的数学模型,采用MATLAB 研究了倒立摆控制算法及仿真。

在倒立摆建模、仿真和研究中大多数研究者常用理论建模方法,也可以利用SimMechanics 搭建三维可视化模型仿真;文献[5]使用SimMechanics 工具箱建立旋转倒立摆物理模型,通过极点配置、PD 控制和基于线性二次型控制实现了倒立摆的平衡控制;文献[6]通过设计的全状态观反馈控制器来实现单极旋转倒立摆SimMechanics 模型控制,表明了SimMechanics 可用于不稳定的非线性系统;文献[7]通过单级倒立摆SimMechanics 仿真,研究了Bang-Bang 控制和LQR 控制对倒立摆的自起摆和平衡控制;文献[8]基于Sim⁃Mechanics 建立了直线六级倒立摆模型,并基于LRQ 设计状态反馈器进行了仿真控制分析。

本文首先采用Lagrange 方法建立了旋转倒立摆的动力学模型,在获得了旋转倒立摆动力学微分方程后建立了s-func⁃tion 仿真模型;然后,本文采用SimMechanics 建立了旋转的可视化动力学模型。

针对两种动力学模型,采用同一个PID 控制器进行了控制,从控制结果可以看出两种模型的响应曲线完全一致,这两种模型相互印证了各自的正确性。

1旋转倒立摆系统的动力学建模旋转倒立摆是由旋臂和摆杆构成的系统,如图1所示,旋臂绕固定中心旋转(角度记为θ)带动摆杆运动,摆杆可以绕旋臂自由转动,角度记为α。

倒立摆系统地建模及Matlab仿真

倒立摆系统地建模及Matlab仿真

倒立摆系统的建模及Matlab仿真1. 系统的物理模型考虑如图(i)所示的倒立摆系统。

图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题。

图(i)倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:l=1m小车的质量:M=1kg重力加速度:g=9.8m/ s2摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量<10%,调节时间ts <4s,通过小车的水平运动使倒立摆保持在垂直位置。

2. 系统的数学模型2.1建立倒置摆的运动方程并将其线性化为简化问题,在数学模型中首先假设:1)摆杆为刚体;2 )忽略摆杆与支点之间的摩擦;3) 忽略小车与接触面间的摩擦。

设小车瞬时位置为乙摆心瞬时位置为(z lsin ),在u 作用下,小车及摆均产生加速远动,绕摆轴转动的惯性力矩与重力矩平衡,因而有项。

于是有(M m)z ml u z l g联立求解可得mg丄口Ml Ml根据牛顿第二定律,在水平直线远动方向的惯性力应与 平衡,于是有.2 , 2d z d / M —亏 m 2 (z dt 2 dt 2l sin即:2(M m)z ml cos ml sin即:zcosm — (z lsin ) I cos dt 22 2l cos l sin cosmglsingsin以上两个方程都是非线性方程, 为求得解析解,需作线性化处理。

由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定B 很小,接近于零时合理的,则sin,cos 1,且可忽略22.2列写系统的状态空间表达式选取系统变量 X 1,X 2,X 3,X 4 , x X i ,X 2,X 3,T则X 1 X 2mg1X 2X 3UM MX 3 X 4(Mm)1X 4X 3. .. UMl Ml3. 设计控制器3.1判断系统的能控性和稳定性1,rank( QQ=4,故被控对象完全可控111 0 11 0I A 2( 2 11) 0解得特征值为0 , 0, ■ 11。

倒立摆系统建模及MATLAB仿真

倒立摆系统建模及MATLAB仿真

倒立摆系统的建模及MATLAB仿真通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作。

之后通过MA TLAB 软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能。

倒立摆系统是1个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。

倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。

因此研究倒立摆系统具有重要的实践意义,一直受到国内外学者的广泛关注。

本文就一级倒立摆系统进行分析和研究,建立倒立摆系统的数学模型,采用状态反馈极点配置的方法设计控制器,并应用MA TLAB 软件进行仿真。

1 一级倒立摆系统的建模1. 1 系统的物理模型如图1 所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为f 。

这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3 外力的共同作用。

图1 一级倒立摆物理模型1. 2 系统的数学模型在系统数学模型中,本文首先假设:(1) 摆杆为刚体。

(2)忽略摆杆与支点之间的摩擦。

(3)忽略小车与导轨之间的摩擦。

然后根据牛顿第二运动定律,求得系统的运动方程为:方程(1) , (2) 是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。

则sinθ≈θ,co sθ≈1 。

在以上假设条件下,对方程线性化处理后,得倒立摆系统的数学模型:1. 3 系统的状态方程以摆角θ,角速度θ',小车的位移x ,速度x'为状态变量,输出为y 。

即令:则一级倒立摆系统的状态方程为:2 控制器设计及MATLAB 仿真2. 1 极点配置状态反馈的基本原理图2 状态反馈闭环控制系统极点配置的方法就是通过一个适当的状态反馈增益矩阵的状态反馈方法,将闭环系统的极点配置到任意期望的位置。

单级倒立摆控制系统设计及MATLAB中的仿真

单级倒立摆控制系统设计及MATLAB中的仿真

单级倒立摆控制系统设计及MATLAB中的仿真第一步是建立单级倒立摆的数学模型。

单级倒立摆可以通过旋转关节将一根质量均匀的细杆与一个平台相连。

细杆的一端固定在平台上,另一端可以自由旋转。

细棒的旋转角度用θ表示,质心的位置用x表示。

根据牛顿力学和杆的动力学方程,可以得到如下数学模型:1.摆杆的运动方程:Iθ'' + mgl sin(θ) = u - F (1)其中,I是摆杆的转动惯量,m是摆杆的质量,g是重力加速度,l是摆杆的长度,u是控制输入(摆杆上的转动力矩),F是摩擦力。

2.质心的运动方程:m(x'' - lθ'²cos(θ)) = F (2)接下来是设计控制器来控制单级倒立摆。

一个常用的控制方法是使用线性化控制理论,其中线性化是将系统在一些工作点附近线性近似。

在这种情况下,将摆杆保持在垂直方向,并使质心静止作为工作点。

线性化系统的转移函数为:H(s) = θ(s)/u(s) = (ml²s² + mg)/(s(ml² + I))为了稳定单级倒立摆,可以使用自动控制理论中的反馈控制方法,特别是状态反馈。

状态反馈根据系统的状态变量来计算控制器输入。

为了设计状态反馈控制器,首先需要判断系统的可控性和可观测性。

根据控制系统理论,如果系统是可控和可观测的,则可以设计一个线性状态反馈控制器来稳定系统。

在MATLAB中,可以使用控制系统工具箱来设计单级倒立摆的控制系统。

首先,通过建立系统的传递函数模型(由线性化系统得到)来定义系统。

然后,使用控制系统工具箱中的函数来计算系统的稳定极点,并确定所需的反馈增益以稳定系统。

最后,可以使用MATLAB的仿真工具来模拟单级倒立摆的响应,并进行性能分析。

在进行仿真时,可以将倒立摆的初始状态设置为平衡位置,并应用一个输入来观察系统的响应。

可以通过调整控制器增益和系统参数来改变系统响应的性能,例如收敛时间、超调量和稳态误差。

单级倒立摆控制系统设计及MATLAB中的仿真

单级倒立摆控制系统设计及MATLAB中的仿真

单级倒立摆控制系统设计及simulink仿真摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。

因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。

单级倒立摆系统是一种广泛应用的物理模型。

控制单级倒立摆载体的运动是保证倒立摆稳定性的关键因素。

为了避免常用的物理反馈分析方法和运动轨迹摄像制导控制方法的某些缺点,本文从力学的角度提出对倒立摆的运动进行纯角度制导分析,完成了对倒立摆载体的角度制导运动微分方程的数学建模,设计了该模型的模糊控制系统,并利用 Matlab\simulink软件工具对倒立摆的运动进行了计算机仿真。

实验表明,这种模糊控制配合代数解析方法的运算速度和计算机仿真的效果均较物理反馈制导控制方法有了一定的提高。

该方法可以有效地改善单级倒立摆控制系统的性能。

本论文的主要工作是研究了直线一级倒立摆系统的模糊控制问题,用Matlab和Simulink对一级倒立摆模糊控制系统进行了仿真,验证了设计的可行性。

本文论述了一级倒立摆数学建模方法,推导出他们的微分方程,以及线性化后的状态方程。

讨论了单级倒立摆系统的模糊控制方法和操作步骤。

用Simulink实现了单级倒立摆模糊控制仿真系统,分别给出一级倒立摆系统控制量的响应曲线。

通过仿真说明控制器的有效性和实现性。

关键词:单级倒立摆;仿真;模糊控制;运动;建模;SimulinkDesign of single stage inverted pendulum control systemand Simulink simulationAbstract: inverted pendulum system is unstable system with a typical multi variable, nonlinear, strong coupled and fast motion. So the research on the attitude adjustment of the double foot robot and the attitude adjustment of the rocket launching process and the helicopter flight control field have practical,significance. The related scientific research achievements have been applied to many fields such as aerospace science and robotics. Single inverted pendulum system is a widely used physical model. Controlling the movement of the single inverted pendulum is the key factor to guarantee the stability of the inverted pendulum. In order to avoid some shortcomings of common physical feedback analysis method and motion trajectory camera guidance control method, this paper presents a pure angle guidance analysis on the motionof the inverted pendulum, and designs the fuzzy control system of the model. Experimental results show that the operation speed and computer simulation of this kind of fuzzy control combined with algebraic analysis method are improved by the physical feedback control method. This method can effectively improve the performance of a single stage inverted pendulum control system. In this paper, the main work of this paper is to study the fuzzy control of a linear inverted pendulum system, and the Matlab and Simulink to simulate the fuzzy control system of a single inverted pendulum, verify the feasibility of the design. And a mathematical modeling method of an inverted pendulum is described, their differential equations are derived, and the equation of state is linearized. The fuzzy control method and operation steps of single stage inverted pendulum system are discussed. Using Simulink to realize the fuzzy control simulation system of a single inverted pendulum, the response curve of the control of an inverted pendulum system is given. The effectiveness and the implementation of the controller are illustrated by simulation.Keywords: Inverted pendulum; Simulation; Fuzzy control; Motion; modeling; Simulink 引言倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。

二级倒立摆的建模与MATLAB仿真毕业论文

二级倒立摆的建模与MATLAB仿真毕业论文

二级倒立摆的建模与MATLAB仿真摘要:本文根据牛顿力学原理,使用机理建模法对二级倒立摆系统进行了建模与仿真研究。

利用最优化控制理论,研究了线性二次型最优控制器对倒立摆系统进行了有效控制。

基于MATLAB程序的设计、仿真的运行,结果表明,二级倒立摆的数学建模法是切实可行的,而且十分可靠,同时利用LQR 控制器实现了对系统的控制,可以达到系统所需要的稳定性,鲁棒性。

关键词:二次型最优控制;二级倒立摆;MATLAB1 引言倒立摆系统是一个常用的、简单的、典型的可进行控制理论研究的实验平台,很多难以用常规实验研究的控制理论问题,都可以通过倒立摆系统来进行研究从而使这些抽象的控制理论问题,通过该系统可以直观的鲜明的显示出来。

所以倒立摆系统一直是控制领域的热点,并且在这些年来在不断的发展进步对控制理论的研究起到了重要作用。

倒立摆系统是一个典型的不稳定系统,具有多变量、强耦合、非线性等特点。

同时也是仿人类行走机器人和火箭发射飞行的过程调整和直升机飞行等实际运用控制对象的最简模型。

本文建立在牛顿力学定律的基础上,研究对象设置为二级倒立摆,对其进行数学建模,再使用二次型最优控制器(linear quadratic regulator,LQR)可以得到一个最优状态反馈的矩阵K,然后在通过对Q和R两个加权矩阵的严谨选取从而实现对二级倒立摆系统良好的自动控制。

2 二级倒立摆模型建立一个典型的二级倒立摆系统主要由机械部分和电气装置两部分组成。

机械装置的结构主要由小车、摆杆1、摆杆2及连接轴等组成,电气装置的主要结构是功率放大器、电动机、驱动电路、保护电路等。

其系统的结构如图1所示。

实验假设如下:(1)小车、摆杆1、摆杆2的材料性质都是刚体的。

(2)小车的驱动力和放大器的输出直接的,无滞后的作用于小车上。

(3)忽略实验中过程中出现的不可避免的各种摩擦力如库伦摩擦力等。

图1 二级倒立摆控制系统的结构二级倒立摆的参数设定如表1。

直线一级倒立摆系统的建模及仿真

直线一级倒立摆系统的建模及仿真

计算机控制技术课程设计实验:直线一级倒立摆系统的建模及仿真一、已知条件:图1倒立摆简化模型摆杆角度为输出,小车的位移为输入。

导轨中点为坐标轴的中心即零点,右向为坐标值增加的方向,杆偏移其瞬时平衡位置右侧的角度为正值。

二、任务要求:总体任务通过调节PID参数,设计PID控制器实现摆杆在受到干扰的情况下,依然能恢复平衡。

具体包括以下几部分:1. 理论推导包括倒立摆系统的动力学模型,传递函数,离散传递函数,状态空间或差分方程,稳定性分析,PID控制器设计2. 程序实现实现内容:倒立摆系统模型,控制器以及仿真结果的显示。

开发语言和工具:Matlab m 文件或C/C++ (工具:VC++或其它)3. PID控制参数设定及仿真结果。

分别列出不同杆长的仿真结果(例如:L=0.25 和L=0.5)。

4. 将理论推导、程序实现、仿真结果写成实验报告。

具体求解过程如下:一,倒立摆系统动力学模型的建立图1 摆杆的受力分析图以摆杆为研究对象,对其进行受力分析,如图1所示。

根据质点系的达朗贝尔原理得IC I 0F CP mg CP M →→⨯+⨯-= (1)式中,IC F 为杆的惯性力,表达式为()IC C P CP CP IP ICP ICP t n t nF ma m a a a F F F ==++=++,m 为杆的质量,g 为重力加速度,I M 为杆的惯性力偶。

惯性力及惯性力偶的大小分别为2222IP P ICP I c 2221,,3t d x d d F ma m F m m M J mL dt dt dt θθαα======(2)式中,α为杆的角加速度,P a 为小车的加速度,2L 为杆的长度,θ为杆偏离中心位置的角度,x 偏离轨道中心的位移。

对(2)式代入(1)式,并整理可得22224sin cos 3d d x L g dt dt θθθ-=-(3) 当摆动较小时,可以进行近似处理sin ,cos 1θθθ≈≈。

基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】

基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】

1 绪论1.1倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。

倒立摆系统是一个非线性,强耦合,多变量和自然不稳定的系统。

它是由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成的。

在导轨一端装有用来测量小车位移的电位计,摆体与小车之间由轴承连接,并在连接处安置电位器用来测量摆的角度。

小车可沿一笔直的有界轨道向左或向右运动,同时摆可在垂直平面内自由运动。

直流电机通过传送带拖动小车的运动,从而使倒立摆稳定竖立在垂直位置。

图1.1一级倒立摆装置简图由图1.1中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆体组成。

导轨的一端固定有位置传感器,通过与之共轴的轮盘转动可以测量出沿导轨由图中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆运动的小车位移;小车通过轴承连接摆体,并在小车与摆体的连接处固定有共轴角度传感器,用以测量摆体的角度信号;并通过微分电路得到相应的速度和角速度信号;导轨的另一端固定有直流永磁力矩电机,直流电机通过传送带驱动小车沿导轨运动,在小车沿导轨左右运动的过程中将力传送到摆杆以实现整个系统的平衡。

倒立摆的种类很多,有悬挂式倒立摆、平行式倒立摆、和球平衡式倒立摆;倒立摆的级数可以是一级,二级,乃至更多级。

控制方法也是多种,可以通过模糊控制,智能控制,PID控制,LQR控制等来实现倒立摆的动态平衡,本文介绍的是状态反馈极点配置方法来实现一级倒立摆的控制。

1.2倒立摆的控制规律当前,倒立摆的控制规律可总结如下:(1)状态反馈H控制[1],通过对倒立摆物理模型的分析,建立倒立摆的动力学模型,然后使用状态空间理论推导出状态方程和输出方程,应用状态反馈和Kalnian滤波相结合的方法,实现对倒立摆的控制。

(2)利用云模型[2-3]实现对倒立摆的控制,用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统MATLAB模型的建立与仿真

直线二级倒立摆系统模型的建立与仿真1 引言倒立摆是一个高阶次、非线性、快速、多变量、强藕合、不稳定的系统。

在控制理论发展过程中,倒立摆常常被做为典型的被控对象来验证某一理论的正确性,以及在实际应用中的可行性,通过对倒立摆引入一个适当的控制方法使之成为一个稳定系统,来检验控制方法对不稳定性、非线性和快速性系统的处理能力。

该控制方法在军工、航天、机器人等领域和一般工业过程中都有广泛应用。

本文主要讨论二级倒立摆系统模型的建立和仿真。

2二级倒立摆系统数学模型直线二级倒立摆系统是由直线运动模块和两级倒立摆组件组成。

主要包括导轨、小车和各级摆杆、编码器等元件。

由驱动电机给小车施加一个控制力,迫使小车在导轨上左右移动。

而小车的位移和各级摆杆角度由编码器测得。

倒立摆的控制目标是使倒立摆的摆杆能在有限长的导轨上快速的达到竖直向上的稳定状态,以实现系统的动态平衡,并且小车位移和摆杆角度的振荡幅度较小,系统具有一定的抗干扰能力。

系统简化后的直线二级倒立摆系统物理结构图如图2.1所示。

图1.二级倒立摆系统模型系统模型建立所用的各参数如下:应用Lagrange 方程建立的数学模型为012221221211121221222212212222cos (,)cos()cos cos()1121111121111m +m +m (m l +m L )cos m l H (m l +m L )cos J m l m L m l L m l m l L J m l θθθθθθθθθθ⎡⎤⎢⎥=++-⎢⎥⎢⎥-+⎣⎦.1011...1221212122.11222cos (,,,)0(0(112222222f m l +m L sin m l H f f m l L sin f m l L sin f f θθθθθθθθθθθθθ⎡⎤-•⎢⎥⎢⎥=--•+⎢⎥⎢⎥-•+-⎢⎥⎣⎦111()-)-) 312(,)h θθ= [0 11211()sin m l m L g θ+ 212sin m l g θ] T0h =[1 0 0]T()1121212121312022(,)(,,,),x x H H h h u θθθθθθθθθθθθ⎡⎤⎡⎤⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦3 倒立摆PID控制器系统PID控制是比例积分微分控制的简称。

毕业设计基于模糊控制的倒立摆系统及MATLAB仿真

毕业设计基于模糊控制的倒立摆系统及MATLAB仿真

摘要倒立摆系统是研究控制理论的一种典型的实验装置,广泛应用于控制理论研究,航空航天控制等领域,其控制研究对于自动化控制领域具有重要的价值。

然而,倒立摆装置是一个绝对不稳定系统,具有高阶次、非线性、强耦合等特性,本文应用模糊控制策略对其进行控制研究。

本文应用牛顿力学定律建立了直线一级倒立摆的状态方程数学模型并推导了简化的传递函数数学模型,分析了其稳定性,可控性和可观测性。

研究了控制系统整体结构,建立了模糊控制器,在MATLAB平台上对模糊控制系统进行了仿真研究,并对获得的控制系统输出图进行了性能分析。

关键词:一阶倒立摆,数学模型,模糊控制, MATLAB仿真AbstractInverted pendulum control system is to study the theory of a typical experimental device, widely used in control theory, the field of aerospace control, its control is important for the automation and control value. However, the inverted pendulum device is an absolute unstable system, with high time, nonlinear, strong coupling and other features, this fuzzy control strategy to control research.In this paper, Newton's laws of mechanics to establish a line-level inverted pendulum equation of state mathematical model to derive the simplified transfer function model to analyze its stability, controllability and observability. Of the control system as a whole structure of a fuzzy controller, in the MATLAB platform for fuzzy control system was simulated, and access control system output graph of the performance analysis.Keywords: inverted pendulum, mathematical model, fuzzy control, MATLAB simulation目录摘要 (i)Abstract (ii)第一章倒立摆系统简介 (1)1.1倒立摆系统概述 (1)1.2倒立摆的控制目标及研究意义 (1)1.3倒立摆系统控制方法简介 (2)1.4论文的主要工作 (4)第二章模糊控制概述 (6)2.1控制理论简介 (6)2.1.1经典控制理论 (6)2.1.2现代控制理论 (6)2.1.3模糊控制与经典控制理论的比较 (8)2.2模糊控制的数学基础 (9)2.2.1模糊子集与运算 (9)2.2.2模糊关系与模糊关系合成 (11)2.2.3模糊推理 (12)第三章控制系统分析与模糊控制方法研究 (15)3.1控制系统结构及工作原理 (15)3.1.1控制系统结构 (15)3.1.2模糊控制器的工作原理 (16)3.2精确量的模糊化 (17)3.2.1模糊控制器的语言变量 (17)3.2.2量化因子与比例因子 (17)3.2.3语言变量值的选取 (18)3.2.4语言变量论域上的模糊子集 (18)3.3常见的模糊控制规则 (19)3.4输出信息的模糊判决 (20)3.4.1基于推理合成规则进行模糊推理 (20)3.4.2输出信息的模糊判决 (20)3.5本章小结 (21)第四章倒立摆系统建模 (21)4.1常见的倒立摆类型 (21)4.2倒立摆系统建模 (23)4.3系统可控性分析 (27)第五章倒立摆模糊控制器的设计及仿真 (29)5.1倒立摆的稳定模糊控制器的设计 (29)5.1.1位置模糊控制器的设计 (29)5 .1.2角度模糊控制器的设计 (34)5.1.3稳定控制器的实现 (34)5. 2一级倒立摆系统仿真 (35)5.2.1 Simulink简介 (36)5.2.2系统仿真 (37)第六章总结 (44)致谢 (45)参考文献 ......................................................................................................................... 错误!未定义书签。

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究

一阶倒立摆系统建模与仿真研究一阶倒立摆系统是一种典型的非线性控制系统,具有多种状态和复杂的运动特性。

在实际生活中,倒立摆被广泛应用于许多领域,如机器人平衡控制、航空航天、制造业等。

因此,对一阶倒立摆系统进行建模与仿真研究具有重要的理论价值和实际意义。

ml''(t) + b*l'(t) + k*l(t) = F(t)其中,m为质量,b为阻尼系数,k为弹簧常数,l(t)为摆杆的位移,l'(t)为摆杆的加速度,l''(t)为摆杆的角加速度,F(t)为外界作用力。

在仿真过程中,需要设定摆杆的初始位置和速度。

一般而言,初始位置设为0,初始速度设为0。

边界条件则根据具体实验需求进行设定,如限制摆杆的最大位移、最大速度等。

利用MATLAB/Simulink等仿真软件进行建模和实验,可以方便地通过改变输入信号的参数(如力F)或系统参数(如质量m、阻尼系数b、弹簧常数k)来探究一阶倒立摆系统的性能和反应。

通过仿真实验,我们可以观察到一阶倒立摆系统在受到不同输入信号的作用下,会呈现出不同的运动规律。

在适当的输入信号作用下,摆杆能够达到稳定状态;而在某些特定的输入信号作用下,摆杆可能会出现共振现象。

在仿真过程中,我们可以发现一阶倒立摆系统具有一定的鲁棒性。

在一定范围内,即使输入信号发生变化或系统参数产生偏差,摆杆也能够保持稳定状态。

然而,当输入信号或系统参数超过一定范围时,摆杆可能会出现共振现象,导致系统失稳。

因此,在实际应用中,需要对输入信号和系统参数进行合理控制,以保证系统的稳定性。

为了避免共振现象的发生,可以通过优化系统参数或采用其他控制策略来实现。

例如,适当增加阻尼系数b能够减小系统的振荡幅度,有利于系统尽快达到稳定状态。

可以采用反馈控制策略,根据摆杆的实时运动状态调整输入信号,以抑制系统的共振响应。

本文对一阶倒立摆系统进行了建模与仿真研究,通过观察不同参数设置下的系统性能和反应,对其运动规律、鲁棒性及稳定性进行了分析。

倒立摆MATLAB建模

倒立摆MATLAB建模

Matlab程序设计上交作业要求:1)纸质文档:设计分析报告一份(包括系统建模、系统分析、系统设计思路、程序及其执行结果)。

2)Matlab程序:按班级统一上交后备查。

题目一:考虑如图所示的倒立摆系统。

图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题。

图倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:2l=1m小车的质量:M=1kg重力加速度:g=10/s2摆杆惯量:I=0.003kgm2摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量%≤10%,调节时间ts ≤4s,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。

要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标——能控性、能观性、稳定性3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图。

题目二:根据自身的课题情况,任意选择一个被控对象,按照上题所示步骤进行分析和设计,并给出仿真程序及其执行结果。

题目一:考虑如图所示的倒立摆系统。

图中,倒立摆安装在一个小车上。

这里仅考虑倒立摆在图面内运动的二维问题。

图倒立摆系统假定倒立摆系统的参数如下。

摆杆的质量:m=0.1g摆杆的长度:2l=1m小车的质量:M=1kg重力加速度:g=10/s2摆杆惯量:I=0.003kgm2摆杆的质量在摆杆的中心。

设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量%≤10%,调节时间ts ≤4s,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。

要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标——能控性、能观性、稳定性3、设计状态反馈阵,使闭环极点能够达到期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进行参数的确定4、用MATLAB 进行程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)
方程 (1) , (2) 是非线性方程 ,由于控制的目的是 保持倒立摆直立 ,在施加合适的外力条件下 ,假定θ 很小 ,接近于零是合理的 。则 sinθ≈θ,co sθ≈1 。在 以上假设条件下 ,对方程线性化处理后 ,得倒立摆系 统的数学模型 :
( M + m) ¨x + mθl¨= f
(3)
Co nference , 1999 :230. [ 2 ] 王沉培 ,周艳红 ,周云飞. 复杂形状刀具磨削运动三维图 形仿真的研究. 中国机械工程 ,1998 ,10 (2) :1232126. [ 3 ] (美) 马尔金 1 S 著. 磨削技术理论与应用 [ M ]1 沈阳 :东 北大学出版社 ,20021
Key words inverted pendulum , model building , simulatio n under t he MA TL AB enviro nment
中图分类号 : TP273 文献标识码 :A
倒立摆系统是 1 个经典的快速 、多变量 、非线 性 、绝对不稳定系统 ,是用来检验某种控制理论或方 法的典型方案 。倒立摆控制理论产生的方法和技术 在半导体及精密仪器加工 、机器人技术 、导弹拦截控 制系统和航空器对接控制技术等方面具有广阔的开 发利用前景 。因此研究倒立摆系统具有重要的实践 意义 ,一直受到国内外学者的广泛关注 。
的稳态响应和瞬态响应特性由矩阵 A - B K 的特征
决定 。如果矩阵 K 选取适当 , 则可使矩阵 A - B K
构成 1 个渐近稳定矩阵 ,并且对所有的 x (0) ≠0 , 当
t 趋于无穷时 ,都可使 x ( t) 趋于 0 。称矩阵 A - B K
的特征值为调节器极点 。如果这些调节器极点均位
于 s 的左半平面内 ,则当 t 趋于无穷时 , x ( t) 趋于 0 。
将闭环极点配置到所期望的位置 , 称为极点配置问
题 。因而极点配置状态反馈控制器的设计最主要就
是 K 值的计算 。
2. 2 极点配置状态反馈控制器的设计 一级倒立摆系统是一个不稳定的系统 。控制器
的目的是使倒立摆系统动态稳定 ,即保持倒立摆在
ml2θ¨+ ml¨x = mgθl
(4)
1. 3 系统的状态方程 以摆角θ,角速度θ,小车的位移 x ,速度 x 为状
态变量 ,输出为 y 。即令 :
x1
θ
y1
x1
x=
x2
θ
=
y =
y2
=
x2
x3
x
y3
x3
x4
θ
y4
x4
则一级倒立摆系统的状态方程为 :
x1
= x2 ; x2
=
M+ Ml
m
g
《新技术新工艺》·数字技术与数字制造 2005 年 第 10 期
·17 ·
根据如下 MA TL AB 程序可求得状态反馈增益 K(假设小车的质量为 3 kg ,摆杆的质量为 0. 1 kg , 摆杆的长度为 0. 5 m) ,程序如下 :
M = 3 ; m = 0. 1 ; l = 0. 5 ; g = 9. 81 ; A21 = (M + m) / M/ l 3 g ; A41 = - m/ M 3 g ;
究前景 。如何提高曲面的制造精度一直是行业研究 的重要课题 。将磨削过程的数值计算 、图形处理 、优 化设计 、误差分析和实践经验等知识结合起来 ,研究 曲面磨削中的定量计算和定性推理等计算制造问 题 ,为轮槽铣刀前 、后刀面的精密磨削和复杂刀具的 设计加工提供了保障 。对其他曲面的磨削及复杂曲 面的精密加工提供了借鉴经验 。
倒立摆系统的建模及 MA TL AB 仿真
华南理工大学机械工程学院 (510640) 曾志新 邹海明 李伟光 周建辉
【摘要】通过建立倒立摆系统的数学模型 ,应用状态反馈控制配置系统极点设计倒立摆系统的 控制器 ,实现其状态反馈 ,从而使倒立摆系统稳定工作 。之后通过 MA TL AB 软件中 Simulink 工具对倒立摆的运动进行计算机仿真 ,仿真结果表明 ,所设计方法可使系统稳定工作并具有良 好的动静态性能 。 关键词 倒立摆 建模 MA TL AB 仿真
稳定在平衡状态 ,即所有的状态变量都可以稳定在 零状态 。这就意味着即使在初始状态或因存在外界 干扰时 ,摆杆稍有倾斜或小车偏离基准位置导轨中 心 ,依靠该状态反馈控制也可以使摆杆垂直竖立 ,并 使小车保持在基准位置 。相对平衡状态的偏移 ,得 到迅速修正的程度要依赖于指定的特征根的位置 。
一般来说 ,将指定的特征根配置在原点的左侧 , 离原点越远 ,控制动作就越迅速 ,但相应地需要更大 的控制力和快速的灵敏度 。
垂直的位置 ,使小车在外力作用下其位移以较小的
误差跟随输入的变化 。由于系统的动态响应主要是
由他的极点位置决定的 ,同时容易证明一级倒立摆
系统是一个能控而且能观的系统 。因此本文通过极
点配置状态反馈控制器来使系统保持稳定 。
状态反馈控制方程为 : f = - K x =
- [ K1 K2 K3 K4 ] x 闭环系统的方程为 : x = A x + B f = ( A - B K) x 选取所期望的闭环极点位置 :μ1 ,μ2 ,μ3 ,μ4
B21 = - 1/ M/ l ;
B41 = 1/ M ;
A = [ 0 1 0 0 ;A21 0 0 0 ;0 0 0 1 ;A41 0 0 0 ] ;
B = [ 0 ;B21 ;0 ;B41 ] ;
C = [1 0 0 0 ;0 1 0 0 ;0 0 1 0 ;0 0 0 1 ] ;
D=0; M = [B A 3 B A^2 3 B A^3 3 B ] ; J = [μ1 0 0 0 ;0 μ2 0 0 ;0 0 μ3 0 ;0 0 0 μ4 ] ; jj = poly (J ) ; Phi = polyvalm (poly (J ) ,A) ; K = [ 0 0 0 1 ] 3 (inv ( M) ) 3 Phi ; 求得 :
o n t he pole placement met hod wit h f ull state feedback to make t he inverted pendulum system work stably. Then co mp uter simulation fo r t he movement of inverted pendulum is done by t he Simulink tool of t he MA T2 L AB software . The result of simulation shows t hat t his met hod can make t he system wo rk stably and have good dynamic 、static qualities. Therefore , it is effective.
泛的科学与工程计算软件 ,具有高级的数学分析和运 算能力 ,可以如上编写 MATLAB 程序计算倒立摆系 统的状态反馈增益 K;同时还具有强大的动态系统的 分析 和 仿 真 能 力[2] 。以 下 是 用 MATLAB 软 件 中 Simulink 工具箱来设计仿真一级倒立摆系统 。
应用 MA TL AB 中的 Simulink 设计用极点配 置控制的一级倒立摆系统的仿真模型如图 3 所示 。 图中 State - Space 模块填入了上面程序计算所得 的 A , B , C , D 值 。然后用 1 个 Bus Selector 输出转 角 、角速度 、位移和速度 4 个量 ,之后用 4 个 Gain (分别输出参数 K ( 1) K ( 2) K ( 3) K ( 4) ) 和 1 个 Sum 构成状态反馈 ,同时用示波器输出转角 、角速 度 、位移和速度 4 个量 。输出结果如图 4 所示 。
图 4a 、图 4b 分别是配置极点为 : u1 = - 2 - j2 3 , u2 = - 2 + j2 3 , u3 = - 10 , u4 = - 10 和 u1 = - 1 - j 3 , u2 = - 1 + j 3 , u3 = - 10 , v4 = - 10 (其中 u1 , u2 是主导闭环极点) 一级倒立摆系统的仿真结果图 :
计算制造作为新兴的研究领域 ,具有广泛的研
责任编辑 吕 菁
·16 ·
《新技术新工艺》·数字技术与数字制造 2005 年 第 10 期
M ,摆杆的质量为 m , 摆杆长度为 l ,在某一 瞬间时刻摆角 (即摆 杆与 竖 直 线 的 夹 角) 为θ,作用在小车上的 水平控制力为 f 。这 样 ,整个倒立摆系统 就受到重力 ,水平控 制力和摩擦力的 3 外 图 1 一级倒立摆物理模型 力的共同作用 。 1. 2 系统的数学模型[1]
在系统数学模型中 ,本文首先假设 : (1) 摆杆为 刚体 。(2) 忽略摆杆与支点之间的摩擦 。(3) 忽略小 车与导轨之间的摩擦 。
然后根据牛顿第二运动定律 ,求得系统的运动 方程为 :
M
d2 x d t2
+
m
d2 d t2
(x
+
l si nθ)
=
f
(1)
mlco sθddt22 ( x + lsinθ) = mg l sinθ
本文就一级倒立摆系统进行分析和研究 ,建立 倒立摆系统的数学模型 ,采用状态反馈极点配置的 方法设计控制器 ,并应用 MA TL AB 软件进行仿真 。
1 一级倒立摆系统的建模
1. 1 系统的物理模型 如图 1 所示 ,在惯性参考系下 ,设小车的质量为
练样本 ,对系统进行重新训练 。实际加工中 ,上述学 习和决策过程均是在事前或加工间隙进行的 ,对其 算法的实时性 (快速性) 并未提出特别苛刻的要求 , 所以上述思想是切实可行的 。图 3 是基于知识的曲 面磨削系统结构图[3 ] 。
相关文档
最新文档