《机械优化设计》自学考试教学要求PPT课件

合集下载

《机械优化设计》自学考试教学要求共37页PPT

《机械优化设计》自学考试教学要求共37页PPT

谢谢!
37
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
ห้องสมุดไป่ตู้

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
《机械优化设计》自学考试教学要求
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔

机械优化设计PPT课件

机械优化设计PPT课件
ⅱ)设计方案—由设计常量和设计变量组成。
ⅲ)维 数—设计变量的个数n.
通常,n ,设计自由度 , 越能获得理想的结果,但求解难度 .
n 10 小型问题 n 11 50 中型问题 n 50 大型问题
2019/8/16
14
2.设计空间
Rn(n 4) 为超越空间.
2019/8/16
15
三.目标函数和等值线
1.目标函数—数学模型中用来评价设计方案优劣的函
数式 (又称评价函数): f (X ) f (x1, x2,...xn ) ①常用指标: 最好的性能; 最小的重量; 最紧凑的外形;
最小的生产成本; 最大的经济效益等.
②单目标和多目标;
l1 l2 l3 l4 0
l1 l10 0
arccos (l2 l1)2 l42 l32 arccos (l2 l1)2 l42 l32 0
2(l2 l1)l4
2(l2 l1)l4
180
l12
l22
2l32 sin 2 ( l22 l12
2019/8/16
22
3.算法的收敛性和收敛准则
1)算法的收敛性
若由某迭代算法计算得到
有极限 lim X (k) X *,这里X *为精确解,则称该迭代算法是 k
收敛的.
2)算法的收敛速度
一般根据算法对正定二次函数的求解能力来判 断,能在有限步迭代中得到其极小点,称算法具有 二次收敛性。具有二次收敛性的算法是收敛速度较 高的方法。
1)二十世纪三十年代.前苏联 Канторович 根据生产组织和计划管理的需要提出线性规划问题. 在 第二次世界大战期间出于战争运输需要,提出线性规划 问题的解法;

机械优化设计孙靖民主编课件

机械优化设计孙靖民主编课件

航空航天
优化飞机结构,减少重量,提高燃油效率。
能源工程
优化能源装备设计,提高能量利用率。
汽车工程
优化汽车零部件设计,提高安全性和经济性。
制造工程
优化制造工艺,降低成本,提高生产效率。
机械优化设计案例分析
发动机优化
通过优化活塞、气门和燃烧室设 计,提高燃烧效率,降低排放。
涡轮叶片优化
通过优化叶片几何Байду номын сангаас状,提高涡 轮的效率和性能。
传动箱优化
通过优化齿轮和轴承设计,提高 传动效率和可靠性。
机械优化设计的挑战和未来发展
复杂性
机械系统的复杂性增加了优化设计的难度。
计算资源
优化设计需要大量的计算资源和时间。
多目标优化
考虑多个目标和约束条件的优化设计仍具挑战性。
智能化发展
人工智能和机器学习技术将推动机械优化设计的发展。
总结与展望
机械优化设计是提高机械产品性能和质量的关键技术。随着计算资源和算法 的发展,机械优化设计将在更多领域得到广泛应用,并推动机械工程的进步。
1 设计参数分析
通过分析设计参数的影响,找到关键参数并 确定其范围。
2 数学模型建立
建立机械系统的数学模型,包括力学、动力 学和材料性能等方面。
3 优化算法应用
使用优化算法(如遗传算法和粒子群算法) 搜索最佳设计方案。
4 结果评价与验证
评价设计方案的性能,并进行仿真和试验验 证。
机械优化设计的应用领域
机械优化设计孙靖民主编 课件
本课件介绍机械优化设计的原理、方法和应用领域。通过案例分析,了解机 械优化设计的挑战和未来发展。最后总结与展望。
机械优化设计的定义
机械优化设计是通过优化设计参数,提高机械产品性能和质量的过程。它综合运用数学模型、仿真和试验验证 等方法,以达到最佳设计方案。

机械优化设计方法ppt课件

机械优化设计方法ppt课件
目标函数的一般表示式为:
f (x) f (x1, x2,...xn )
23
优化设计的目的就是要求所选择的设计变
量使目标函数达到最佳值,即使 f (x) Opt
通常 f (x) min
单目标设计问题
目标函数
多目标设计问题
目前处理多目标设计问题的方法是组合成一个 复合的目标函数,如采用线性加权的形式,即
f (x) W1 f1(x) W2 f2 (x) ... Wq fq (x)
24
四、优化问题的数学模型
优化设计的数学模型是对优化设计问题的数 学抽象。 优化设计问题的一般数学表达式为:
min f (x) x Rn
s.t. gu (x) 0 u 1, 2,..., m
hv (x) 0 v 1, 2,..., p n
4
图1-3 机械优化设计过程框图
5
优化设计与传统设计相比,具有如下三个特点:
(1)设计的思想是最优设计; (2)设计的方法是优化方法; (3)设计的手段是计算机。
二、机械优化设计的发展概况
1ቤተ መጻሕፍቲ ባይዱ优化设计的应用领域 近几十年来,随着数学规划论和电子计算机的迅 速发展而产生的,它首先在结构设计、化学工程、 航空和造船等部门得到应用。
架的高h和钢管平均直径D,使钢管总质量m为最小。
11
图2-2 人字架的受力
12
人字架的优化设计问题归结为:
x D H T 使结构质量
mx min
但应满足强度约束条件 x y 稳定约束条件 x e
13
1
钢管所受的压力
F1

FL h

F(B2 h
25

机械优化设计课件2

机械优化设计课件2

用如下二维问题来说明有约束优化问题的几何解释 可知该问题的最优点为目标函数等值线 与可行域边界 g2 ( x) 0 的切点
( x1* , x2* ) (1.34,0.58)
* * 最优值为: f ( x1 , x2 ) 3.8
该问题的目标函数及等值线
该问题的设计空间及可行域
有约束的二维优化问题极值点所处位置的不同情况:
等式约束
---要求设计点同时在n维设计空间l个约束曲面上
不等式约束
---要求设计点在设计空间约束曲面的一侧(包括曲面本身)
在设计空间中,满足所有约束条件的区域称为可行域。
在设计空间中,至少不满足一个约束条件的区域称为非可行域。 可行域可记为: D x g j ( x) 0 ( j 1, 2,
在优化过程中,通过设计变量的不断向F(X)值改善的方向自动调整,最 后求得F(X)值最好或最满意的X值。
在实际优化问题中,对目标函数有两种要求形式
目标函数极小化 目标函数极大化
等价
所以,今后优化问题的数学表达一律采用目标函数的极小化形式
目标函数在设计空间的图像描述
一般地,n维目标函数可以在n+1维空间中描述其图像。 为了在n维设计空间中反映目标函数的变化情况,常采用 目标函数等值面的方法。其数学表达式:
1、
2、
采用作图法进行人字架的优化设计
3、数值迭代法(数学规划法):
xk
k 从一个初始设计 x 出发,按如下迭代公式:
x k 1 x k x k k 1 x 得到一个改进的设计 。
( x k ——修改量)
k 在这类方法中,许多算法是沿着某个搜索方向 ,以适当步长 k 的方式 d k 实现对 x 的修改,以获得x k 的值。

机械优化设计PPT

机械优化设计PPT

二、离散变量优化的主要方法及其特点、思路和步骤
表7-3 离散变量优化的主要方法及其特点和步骤
图7-8 两个目标函数的等值线和约束边界
三、协调曲线法
图7-9 协调曲线
四、分层序列法及宽容分层序列法
四、分层序列法及宽容分层序列法
采用分层序列法,在求解过程中可能会出现中断现象,使求解过程 无法继续进行下去。当求解到第k个目标函数的最优解是惟一时, 则再往后求第(k+1),(k+2),…,l个目标函数的解就完全没有意义 了。这时可供选用的设计方案只是这一个,而它仅仅是由第一个至 第k个目标函数通过分层序列求得的,没有把第k个以后的目标函数 考虑进去。尤其是当求得的第一个目标函数的最优解是唯一时,则 更失去了多目标优化的意义了。为此引入“宽容分层序列法”。这 种方法就是对各目标函数的最优值放宽要求,可以事先对各目标函 数的最优值取给定的宽容量,即ε1>0,ε2>0,…。这样,在求后一 个目标函数的最优值时,对前一目标函数不严格限制在最优解内, 而是在前一些目标函数最优值附近的某一范围内进行优化,因而避 免了计算过程的中断。
5.组合型算法终止准则
6.组合型算法的辅助功能
(1) 直线加速与二次曲线加速 当目标函数严重非线性时,即若
函数具有尖峰脊线,即存在“谷”时,则希望能沿着脊线方向进 行搜索,可迅速提高算法的寻优效率,该算法称为具有脊线加速 能力。 (2) 网格搜索法技术 将离散空间视为一网格空间,每个离散点 就是一个网格节点。 (3) 变量分解策略 将目标函数中的变量分成若干个子集合,若
离散复合形,重新进行调优搜索,直到前后两次离散复合形运算
的优化点重合,算法才最终结束。
6.组合型算法的辅助功能
图7-24 有脊线目标函数 寻优过程示意图

机械优化设计NO.ppt

机械优化设计NO.ppt
4、作图求出问题的最优解
问题的实质:在可行域内,求使目标函数值为最小
的点及该点的函数值

X

f
(
X

)
最优解:Xf


[x1 , x2 ]T f (X )
T
[1.4142,1.4142] 0.6863
24
x2
f (X ) (x1 2)2 (x2 2)2 ( Ci )2
(如: P13飞剪机剪切
f1(X ) f2 (X )


f1 (x1, f 2 (x1,
x2 x2

xn ) xn )
机构的优化问题)
f q ( X ) f q (x1, x2 xn )
q
f (X ) f j (X ) q _ 追求的目标数目
j 1
q
f (X ) j f j (X ) j 1
g1( X ) 0 X (2)
X (4)
X (3)
D
g4(X) 0
h1 ( X ) 0
g3(X ) 0
x1
边界点:X (2)
例:一个二维问题的可行域
13
五、目标函数的等值线(面)
等值线(面): 具有相同目标函数值的点集在设计空
间形成的曲线和曲面
F(x)
① 一维问题(n =1):
目标函数是一维函
3
hv (X ) 0
2
x
2
X
1
g1(X ) x1 0
D
g3 ( X ) x12 x22 4 0
g2 (X ) x2 0
O
1
x1
2

《机械优化设计》自学考试教学要求PPT课件

《机械优化设计》自学考试教学要求PPT课件
5. 变尺度法 识记:尺度矩阵的概念;变尺度矩阵的形式;拟牛顿条件。 领会:变尺度矩阵的建立方法,变尺度法的一般步骤。 应用:应用DFP变尺度法求函数极值。
-
14
第四章 无约束优化方法
6. 坐标轮换法
识记:坐标轮换法的定义;坐标轮换法的迭代公式。 领会:坐标轮换法的寻优过程。 应用:坐标轮换法搜索过程特点的几何描述。 7. 鲍威尔方法 识记:鲍威尔共轭方向的生成,鲍威尔共轭方向的特点。 领会:鲍威尔共轭方向的基本算法和改进算法的计算步骤。 应用:用鲍威尔方法求函数极值的计算。 8. 单形替换法 识记:单形替换法的基本原理;单形替换法的搜索策略。 领会:单形替换法的计算步骤。 应用:用单形替换法求二维函数极值。
识记:方向导数;梯度;负梯度方向。 领会:方向导数与梯度的关系;梯度方向与等
值线的关系。 应用:二元和多元函数的梯度的计算。 2. 多元函数的泰勒展开
识记:函数的泰勒展开式;海赛矩阵。 领会:二元函数的泰勒展开式的矩阵形式;函数的泰
勒展开式的一次形式和二次形式的意义。 应用:函数的梯度和海赛矩阵的计算,泰勒展开式的
2.优化问题的几何解释 识记:可行域与非可行域;极值点;全局最优点与局部 最优点。 领会:无约束极值点与约束极值点、起作用约束和不起 作用约束。 应用:二维约束优化问题极值点所处不同位置的几何描 述。
-
5
第一章 优化设计概述
3.优化设计问题的基本解法
识记:优化准则法;数值迭代法;搜索方向;最佳 步长;几种迭代收敛准则:模准则、值准 则和梯度准则。
《机械优化设计》自学考试 教学要求
-
1
一、教学内容和重点、难点 二、考核要求
-
2
一、教学内容和重点、难点

机械优化设计NO.5.ppt

机械优化设计NO.5.ppt

凸函数的基本性质
⑴、设f(X)为定义在D上的凸函数,λ为任意正
实数,则λf(X)也是凸集D上的凸函数
⑵、若函数 f1( X )和 f2 ( X )为凸集D上的两个凸
函数,则对任意正实数a和b,函数
f ( X ) af1( X ) bf2 ( X )仍为D集上的凸函数
⑶、若f(X)为凸集D上的凸函数,则f(X)在D上的 一个极小点也就是在D上的“全域最小点”
总返回
思考题:
1、何谓凸集、凸函数、凸规划? 2、如何判断函数的凸性? 3、写出第三章内容之间的相互联系以及在求优中
的意义。
预 习: 4 一维优化方法
4.1 概 述 4.2 初始搜索区间的确定 4.3 黄金分割法
Φ(X)
a X(1) X
X(2) b
X
f(X) ≤ Φ(X)
f(X)
f(X)
Φ (X)
0a
b
cX
定义:设f (X) 为定义在Rn 中凸集D上的函数,X (1) 和 X (2)
为D上任意两点,若对于任意实数 [0,1],恒
有: f(X) ≤ Φ(X) ,即: f (X (1) (1 ) X (2) ) ≤ f ( X (1) ) (1 ) f ( X (2) )成立,则称 f(X)为 定义在凸集D上的一个凸函数

f xi
(
X
(k
)
)

2

2
二、函数的二阶导数矩阵(Hesse矩阵)




H
(
X
)

2
f
(
X
)






简写为:

《机械优化设计》课件

《机械优化设计》课件

成本最低、 利润最大、 效率最高、 能耗最低、 综合性能最好
f(x*)
0
x*
x
在规定的范围内(或条件下),
寻找给定函数取得的最大值(或最
小值)的条件。
………
绪论
1.2 优化设计 优化设计是使某项设计在规定的各种设计限制条件下,
优选设计参数,使某项或几项设计指标获得最优值。
1.3 传统设计与优化设计 传统设计:求得 可行解,人工计算。 优化设计:解得 最优解,计算机计算。
优化问题的数学模型是实际优化问题的数学抽象。在
明确设计变量、约束条件和目标函数之后,优化设计问
题可以表示成一般的数学形式。
求设计变量向量
使
且满足约束条件
或可写成miຫໍສະໝຸດ f ( X ) f (x1, x2, , xn )
s.t.
gu ( X ) gu (x1, x2, , xn ) 0 (u 1, 2, m) hk ( X ) hk (x1, x2, , xn ) 0 (u 1, 2, k)
361240181
第二章 优化设计的数学基础
等值线的分布规律: 等值线越内层其函数值越小(对于求目标函数的极小化来说) 沿等值线密的方向,函数值变化快;沿等值线疏的方向,函数值变
没有“心”:例,线性函数的等值线是平行的,无“心”,认为 极值点在无穷远处。
多个“心”:不是单峰函数,每个极(小)值点只是局部极 (小)值点,必须通过比较各个极值点和“鞍点”(须正确判别) 的值,才能确定极(小)值点。
•欢迎加入湖工 大考试资料群:
361240181
•欢迎加入湖工 大考试资料群:
优化设计概述
一 优化设计内涵 二 优化设计基本过程——人字架的 优化设计 三 优化设计问题的描述——数学模型

机械优化设计方法(PPT 203页)

机械优化设计方法(PPT 203页)
则函数f(x)在x * 附近的一切x均满足不等式
f xf x*
所以函数f(x)在 x * 处取得局部极小值,称x * 为
局部极小点。 而优化问题一般是要求目标函数在某一区域内 的全局极小点。 函数的局部极小点是不是一定是全局极小点呢?
图2-7 下凸的一元函数
第四节优化设计问题的基本解法
求解优化问题的方法:
解析法 数值法
数学模型复杂时不便求解
可以处理复杂函数及没有数学表达式 的优化设计问题
图1-11 寻求极值点的搜索过程
第二章 优化设计的数学基础
机械设计问题一般是非线性规划问题。
实质上是多元非线性函数的极小化问题,因 此,机械优化设计是建立在多元函数的极值 理论基础上的。
2.目前机械优化设计的应用领域
在机械设计方面的应用较晚,从国际范围来说, 是在上世纪60年代后期才得到迅速发展的。
国内近年来才开始重视,但发展迅速,在机构 综合、机械的通用零部件的设计、工艺设计方 面都得到应用。
优化设计本身存在的问题和某些发展趋势主要 有以下几方面:
1)目前优化设计多数还局限在参数最优化这种数 值量优化问题。结构型式的选择还需进一步研究 解决。
图2-5 二维问题的可行域
三、目标函数
目标函数是设计变量的函数,是设计中所 追求的目标。如:轴的质量,弹簧的体积,齿 轮的承载能力等。
在优化设计中,用目标函数的大小来衡量设 计方案的优劣,故目标函数也可称评价函数。
目标函数的一般表示式为:
f(x)f(x1,x2,...xn)
优化设计的目的就是要求所选择的设计变 量使目标函数达到最佳值,即使 f(x)Opt
通常 f(x)min
单目标设计问题
目标函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 牛顿型方法 识记:多元函数求极值的牛顿法迭代公式;牛顿方向和阻尼 牛顿方向。 领会:牛顿法和阻尼牛顿法的计算过程。 应用:用牛顿法和阻尼牛顿法求函数极值。
2021/3/12
13
第四章 无约束优化方法
3. 共轭方向及共轭方向法
识记:共轭方向的概念;共轭方向的性质,求共轭方向的 迭代公式。
领会:共轭方向法迭代过程,格拉姆-斯密特向量系共轭化 方法。
2021/3/12
10
第三章 一维搜索方法
一、考核知识点与考核要求
1.一维搜索原理 识记:一维搜索迭代公式;一维搜索最佳步长因子。 领会:一维搜索最佳步长因子数值解法原理。
2. 搜索区间的确定与区间消去法 识记:确定搜索区间的外推法原理,一维搜索区间的 特征;区间消元法原理;一维搜索方法的分类。 领会:外推法和区间消去法的工作步骤。 应用:外推原则和区间消去的判定原则。
本章重点:优化设计问题的基本概念和几何解释。 本章难点:优化设计问题数学模型的建立。
2021/3/12
6
第二章 优化设计的数学基础
一、考核知识点与考核要求
1. 多元函数的方向导数与梯度 识记:方向导数;梯度;负梯度方向。 领会:方向导数与梯度的关系;梯度方向与等 值线的关系。 应用:二元和多元函数的梯度的计算。
《机械优化设计》自学考试 教学要求
2021/3/12
1
一、教学内容和重点、难点 二、考核要求
2021/3/12
2
一、教学内容和重点、难点
绪论 第一章 优化设计概述 第二章 优化设计的数学基础 第三章 一维搜索方法 第四章 无约束优化方法 第五章 线性规划 第六章 约束优化方法 第七章 多目标和离散变量优化方法 第八章 机械优化设计实例
二、本章重点、难点 本章重点:搜索区间的确定与区间消元法原理,用黄金分 割法和牛顿法求一元函数极小点。 本章难点:牛顿法,二次插值法。
2021/3/12
12
第四章 无约束优化方法
一、考核知识点与考核要求
1. 最速下降法(梯度法) 识记:最速下降法的定义;最速下降法的特点,最速下降法 的搜索方向。 领会:最速下降法的搜索路径和步骤。 应用:用最速下降法求函数极值。
2021/3/12
5
第一章 优化设计概述
3.优化设计问题的基本解法
识记:优化准则法;数值迭代法;搜索方向;最佳 步长;几种迭代收敛准则:模准则、值准 则和梯度准则。
领会:优化准则法和数值迭代法极值点的搜索过程 及特点。
应用:优化准则法和数值迭代法迭代公式;收敛准 则及收敛精度的选用。
二、本章重点、难点
2021/3/12
3
绪论—一般了解
一、考核知识点与考核要求 1. 传统设计和优化设计 识记:传统设计特点,传统设计流程; 领会:优化设计特点,现代设计流程; 2. 机械优化设计发展概况 二、本章重点、难点 传统设计和优化设计的特点和区别
2021/3/12
4
第一章 优化设计概述
一、考核知识点与考核要求
1.优化设计问题的基本概念 识记:设计变量和设计空间、设计常量;约束条件和 约束类型、约束曲面;目标函数、等值线和等值 面。 领会:优化问题的数学模型;优化问题的分类。 应用:优化问题的数学模型的规范表达方式。
2.优化问题的几何解释 识记:可行域与非可行域;极值点;全局最优点与局部 最优点。 领会:无约束极值点与约束极值点、起作用约束和不起 作用约束。 应用:二维约束优化问题极值点所处不同位置的几何描 述。
2021/3/12
14
第四章 无约束优化方法
6. 坐标轮换法
识记:坐标轮换法的定义;坐标轮换法的迭代公式。 领会:坐标轮换法的寻优过程。 应用:坐标轮换法搜索过程特点的几何描述。
7. 鲍威尔方法 识记:鲍威尔共轭方向的生成,鲍威尔共轭方向的特点。 领会:鲍威尔共轭方向的基本算法和改进算法的计算步骤。 应用:用鲍威尔方法求函数极值的计算。
4. 凸集、凸函数与凸规划 识记:凸集与非凸集;局部极小点和全局极小点;凸函数 定义;凸规划和表达形式。 领会:凸集、凸函数和凸规划的性质。 应用:凸集与凸集的判定;凸函数的数学表达和几何描述。
2021/3/12
8
第二章 优化设计的数学基础
5. 等式约束优化问题的极值条件 识记:消元法(降维法)定义;拉格朗日乘子和拉格 朗日乘子法定义和表达式。 领会:拉格朗日乘子法原理与算法步骤 应用:拉格朗日乘子法计算等式约束优化问题。
2. 多元函数的泰勒展开
识记:函数的泰勒展开式;海赛矩阵。 领会:二元函数的泰ቤተ መጻሕፍቲ ባይዱ展开式的矩阵形式;函数的泰
勒展开式的一次形式和二次形式的意义。 应用:函数的梯度和海赛矩阵的计算,泰勒展开式的
计算。
2021/3/12
7
第二章 优化设计的数学基础
3. 无约束优化问题的极值条件 识记:极值点和拐点;函数取得极值的充分条件;海赛矩 阵正定。 领会:二元和多元函数取得极值的充分条件。 应用:二元函数取得极值判定
3. 一维搜索的试探方法 识记:黄金分割的特点和定义;黄金分割法的迭代公式 ;黄金分割法的特点。 领会:黄金分割法的迭代过程和收敛准则。 应用:用黄金分割法进行一维搜索求极值的应用。
2021/3/12
11
第三章 一维搜索方法
4. 一维搜索的插值方法 识记:牛顿法(切线法)的迭代公式;二次插值法(抛 物线法)的原理。 领会:牛顿法(切线法)的迭代过程和几何意义;二次 插值法(抛物线法)的迭代过程。 应用:牛顿法和二次插值法进行一维搜索求极值的应用。
6. 不等式约束优化问题的极值条件
识记:一元函数在给定区间上的极值条件;库恩-塔克 条件的表达式。
领会:库恩-塔克条件的几何意义。 应用:库恩-塔克条件的在约束优化问题中的实际应用。
2021/3/12
9
第二章 优化设计的数学基础
二、本章重点、难点 本章重点:多元函数的方向导数与梯度,多元函数的泰
勒展开,海赛矩阵,凸集、凸函数与凸规划 、库恩-塔克条件。 本章难点:等式约束优化问题的极值条件,库恩-塔克 条件。
应用:会求矩阵的一组共轭向量系。
4. 共轭梯度法 识记:共轭梯度法的原理和定义;共轭梯度方向的递推公式 领会:共轭梯度法的计算过程。 应用:用共轭梯度法求函数极值。
5. 变尺度法 识记:尺度矩阵的概念;变尺度矩阵的形式;拟牛顿条件。 领会:变尺度矩阵的建立方法,变尺度法的一般步骤。 应用:应用DFP变尺度法求函数极值。
相关文档
最新文档