高三数学一轮复习基础知识归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学一轮复习:基础知识归
纳
第一部分 集合
1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…
2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决
3.(1) 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. (2)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B ==.
(3)A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=
注意:讨论的时候不要遗忘了φ=A 的情况.
(4)集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1
个;
非空真子集有2n –2个.
4.φ是任何集合的子集,是任何非空集合的真子集.
第二部分 函数与导数
1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;
⑥利用均值不等式 2
2
2
2b a b
a a
b +≤
+≤; ⑦利用数形结合或几何意义(斜率、距离、
绝对值的意义等);⑧利用函数有界性(x a 、x sin 、x cos 等);⑨平方法;⑩ 导数法
3.复合函数的有关问题: (1)复合函数定义域求法:
① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出
② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域.
(2)复合函数单调性的判定:
①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =
②分别研究内、外函数在各自定义域内的单调性
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性. 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性:
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件.... ⑵)(x f 是奇函数)()(x f x f -=-⇔;)(x f 是偶函数)()(x f x f =-⇔. ⑶奇函数)(x f 在0处有定义,则0)0(=f
⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性
⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性 6.函数的单调性: ⑴单调性的定义:
①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >;
⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法;④图像法 注:证明单调性主要用定义法和导数法。 7.函数的周期性:
(1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常
数),则称函数)(x f 为周期函数,T 为它的一个周期。所有正周期中最小的称
为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。 (2)三角函数的周期:①π2:sin ==T x y ;②π2:cos ==T x y ;
③π==T x y :tan ;④|
|2:)cos(),sin(ωπ
ϕωϕω=
+=+=T x A y x A y ;⑤|
|:tan ωπω=
=T x y (3)与周期有关的结论:
)()(a x f a x f -=+或)0)(()2(>=-a x f a x f ⇒)(x f 的周期为a 2
8.基本初等函数的图像与性质: ㈠.⑴指数函数:)1,0(≠>=a a a y x ; ⑵对数函数:)1,0(log ≠>=a a x y a ; ⑶幂函数:αx y = ()R ∈α ; ⑷正弦函数:x y sin =; ⑸余弦函数:x y cos = ; (6)正切函数:x y tan =;
⑺一元二次函数:02=++c bx ax (a ≠0); ⑻其它常用函数:
① 正比例函数:)0(≠=k kx y ;②反比例函数:)0(≠=k x k y ;③函数)0(>+=a x
a x y
㈡.
⑴分数指数幂:m n
a =1m n
m n
a
a
-
=
(以上0,,a m n N *>∈,且1n >).
⑵.①b N N a a b =⇔=log ; ②()N M MN a a a log log log +=;
③N M N M a a a
log log log -=; ④log log m n a a n
b b m
=. ⑶.对数的换底公式:log log log m a m N
N a
=
.对数恒等式:log a N a N =.
9.二次函数:
⑴解析式:①一般式:c bx ax x f ++=2)(;
②顶点式:k h x a x f +-=2)()(,),(k h 为顶点; ③零点式:))(()(21x x x x a x f --= (a ≠0).
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
二次函数c bx ax y ++=2的图象的对称轴方程是a
b
x 2-
=,顶点坐标是⎪⎪⎭
⎫ ⎝⎛--a b ac a b 4422,。 10.函数图象: