初三专题构建y与x的函数关系式——圆.docx
中考数学总复习知识点总结:函数与圆
第六章一次函数与反比例函数1、坐标轴上的点的特征点P(x,y)在x轴上=y = 0,x为任意实数点P(x,y)在y轴上二x = 0,y为任意实数点P(x,y)既在x轴上,又在y轴上=x,y同时为零,即点P坐标为(0,0)2、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上=*与y相等点P(x,y)在第二、四象限夹角平分线上=x与y互为相反数3、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
4、关于x轴、y轴或远点对称的点的坐标的特征点P与点p '关于x轴对称二横坐标相等,纵坐标互为相反数点P与点p '关于y轴对称=纵坐标相等,横坐标互为相反数点P与点p '关于原点对称=横、纵坐标均互为相反数5、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1 )点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于「厂屮考点四、正比例函数和一次函数(3〜10分)1、正比例函数和一次函数的概念一般地,如果八kx b (k, b是常数,k = 0),那么y叫做x的一次函数。
特别地,当一次函数八kx b中的b为0时,y = kx (k为常数,k = 0)。
这时,y叫做x的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数y二kx b的图像是经过点(0,b)的直线;正比例函数y=kx函数图像图像特征符号符号的图像是经过原点(0,0)的直线。
K<0 b>0图像经过一、二、 四象限,y 随x 的增大k>0b>0图像经过一、二、三象限,y 随x 的增大而增 大。
b<0图像经过一、三、四象限,y 随x 的增大而增 大。
yyy而减小图像经过二、三、 四象限,y 随x 的增大 而减小。
圆的关系定理PPT精品课件
(4)如果∠AOB=∠COD,那么⌒ ⌒ ___O_E_=_O__F_,_A__B_=_C_D__,_A_B__=_C_D___。
Q
A
.B
O
性质4: 900的圆周角所对的弦是圆的直径.
∵AB是⊙O的直径
C
∴ ∠ACB=900
A
O
B
三.与圆有关的位置关系: 1.点和圆的位置关系
(1)点在圆内
(2)点在圆上
(3)点在圆外
如果规定点与圆心的距离为d,圆的半径为r,则d与r的大小关系为:
.
C
点与圆的位置关系
.. A
点在圆内
点在圆上
. B
点在圆外
半径的直线是圆的切线。
∟
.
O A
∵OA是半径,OA⊥ l
∴直线l是⊙O的切线. l
切线的性质: (1)圆的切线垂直于经过切点的半径. (2)经过圆心垂直于切线的直线必经过切点. (3)经过切点垂直于切线的直线必经过圆心.
∟
.
O
.
A
∵直线l是⊙O的切线,切点为A
∴ OA⊥ l l
切线长定理:
从圆外一点引圆的两条切线,它 们的切线长相等;这点与圆心的连线平 分这两条切线的夹角。
∴AF=BG
∴OF=OG
∴DC=EF
F
G
圆的对称性
圆的轴对称性(圆是轴对称图形)
2019年中考数学复习第五章圆5.1圆的性质及与圆有关的位置关系(讲解部分)素材
外接圆☉O 上的点.在以下判断中,不正确的是
( )
例 1 (2016 安徽马鞍山当涂四模) 如图,☉O 的直径 BD =
4,∠A = 60°,则 BC 的长度为
( )
A. 3
B.2
C.2 3
D.4 3
解析 由圆周角定理可得∠D = ∠A = 60°,
又 BD 为☉O 的直径,所以∠BCD = 90°,
答案 C 点评 本题主要考查等边三角形和圆的有关性质与计 算,同时考查分析问题的能力.
第五章 圆 5 1
������������������������������������
变 式 训 练 如 图, ☉O 是 △ABC 的 内 切 圆, ∠ABC = 70°, ∠ACB = 40°,则∠BOC 的度数为 .
所以∠DBC = 30°,可得
CD =
2023年中考数学重难点专题练习-一次函数最大利润问题
2023年中考数学重难点专题练习-一次函数最大利润问题一、解答题1.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <≤⎧=⎨-+<≤⎩,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <≤时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?2.2022年北京承办了第24届冬季奥林匹克运动会,某商店为了抓住冬奥会的商机,决定购买A ,B 两种冬奥会纪念品,若购进A 种纪念品20件,B 种纪念品10件,需要2000元.若购进A 种纪念品10件,B 种纪念品8件,需要1150元.(1)求购进A ,B 两种纪念品每件各需多少元?(2)若该商店购进这两种纪念品共1000件,总费用不超过60000元,销售每件A 种纪念品可获利润30元,每件B 种纪念品可获利润20元.设购进A 种纪念品a 件,请求出总利润最高时的进货方案.3.2022年翻开序章,冬奥集结号已吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受人民喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.4.某商场销售成本为每件40 元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10 件.设销售单价为x (50x ≥)元.(1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得一周内净利润(净利润=毛利润经营费用)最大,超市对该商品定价为______元,最大毛利润为______元.5.一大型商场经营某种品牌商品,该商品的进价为每件30元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于150元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于150元/件时,每销售一件商品便向某慈善机构捐赠m 元()1060m ≤≤,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请求出m 的取值范围.6.服装店经销甲种品牌的服装,受市场影响,现在每件降价50元销售,如果卖相同件数的服装,原价的销售额为9000元,现价销售额为8000元.(1)销售甲种品牌服装现价每件为多少元?服装店用不多于6600元且不少于6400元的资金购进这两种品牌的服装共20件.①问有几种进货方案?①乙种品牌的服装每件售价为370元,服装店决定每售出1件乙种品牌服装,返还顾客a元,要使①所有方案获利相同,求a的值.7.某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似看成一次函数y=-2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门的规定,这种电子产品的销售单价不得高于32元,如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本是多少万元?8.某商场分两次购进A,B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示购进数量/件购进所需费用/元次数A B第一次30403800第二次40303200(1)求A,B两种商品每件的进价分别是多少元;(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A,B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710且不超过6810元购进这两种商品共100件.(1)甲、乙两种商品的进价各是多少?(2)设其中甲商品的进货件数为x件,商店有几种进货方案?得最大利润,并求出最大利润是多少?10.二十大报告中指出,要深入推进能源革命,加强煤炭清洁高效利用,加快规划建设新型能源体系,积极参与应对气候变化全球治理.为保护环境,某市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车2辆,B型公交车3辆,共需750万元;若购买A型公交车3辆,B型公交车4辆,共需1040万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1550万元,且确保这10辆公交车在该线路的年均载客总和不少于720万人次,则该公司有几种购车方案?哪种购车方案总费用最少?最少总费用是多少万元?11.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和4瓶B型消毒液共需71元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且A型消毒液的数量不超过67瓶,请设计出最省钱的购买方案,并求出最少费用.12.疫情当前,口罩非常紧俏,某药店进货N95口罩和普通医疗口罩两种口罩共8000个惠民销售,已知15个普通医疗口罩与4个N95口罩的价格相同,3个N95口罩比5个普通医疗口罩贵2.5元.(1)求普通医疗口罩和N95口罩的单价分别是多少?(2)设进货N95口罩a个,两种型号口罩的销售总价为m元.①若两种型号口罩的销售总价不低于5400元,则至少进货N95口罩多少个?①请写出m与a之间的函数关系式;若根据实际需求,进货的普通医疗口罩不少于5000个,则该药店这一批口罩的销售总价最多是多少元?13.某体育用品店计划花7000元购进篮球和足球,已知足球比篮球进价贵20元.若花3000元购买篮球,4000元购买足球,则可以够买到相同数量的篮球和足球.(1)求篮球和足球的进价;(2)篮球的销售单价为100元,足球的销售单价为120元,求该商店将购进的篮球和足球全部售出后能获取的利润w14.“冰墩墩”和“雪容融”分别是北京2022年冬季奥运会和冬残奥运会的吉祥物.该吉祥物深受全世界人民的喜爱,某生产厂家经授权每天生产两种吉祥物挂件共600件,且当天全部售出,原料成本、销售单价及工人生产提成如下表所示:原料成本(元/件)生产提成(元/件)销售单价(元/件)“冰墩墩”36650“雪容融”28741设该厂每天制作“冰墩墩”挂件x件,每天获得的利润为y元.(1)求出y与x之间的函数关系式;(2)若该厂每天投入总成本不超过23800元,应怎样安排“冰墩墩”和“雪容融”制作量,可使该厂一天所获得的利润最大,请求出最大利润和此时两个挂件的制作量.15.某商店出售普通练习本和精装练习本,150本普通练习本和100本精装练习本销售总额为1450元;200本普通练习本和50本精装练习本销售总额为1100元.(1)求普通练习本和精装练习本的销售单价分别是多少?(2)该商店计划再次购进500本练习本,普通练习本的数量不低于精装练习本数量的3倍,已知普通练习本的进价为2元/个,精装练习本的进价为7元/个,设购买普通练习本x个,获得的利润为W元;①求W关于x的函数关系式①该商店应如何进货才能使销售总利润最大?并求出最大利润.16.大学生小李和同学一起自主创业开办了一家公司,公司对经营的盈亏情况在每月的最后一天结算一次,在1~12月份中,该公司前x个月累计获得的总利闻y(万元)与销售时间x(月)之间满足二次函数关系.(1)求y与x函数关系式;(2)求9月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司所获得利润最大?最大利润为多少?参考答案:1.(1)30(2)2100元(3)9天2.(1)购进A 种纪念品每件需要75元,B 种纪念品每件需要50元(2)当购进A 种纪念品400件,B 种纪念品600件时,获得的利润最大,最大利润是24000元3.(1)“冰墩墩”销售单价为120元,“雪容融”的销售单价为80元;(2)“冰墩墩”购进200个时该旗舰店当月销售利润最大,最大利润为11600元.4.(1)100010(50100)y x x -≤≤=(2)()210709000W x =--+,当5070≤≤x 时,毛利润w 随x 的增大而增大(3)75,50005.(1)5012000y x =-+;(2)这一周该商场的最大利润为540000元,售价为120元;(3)2960m <≤6.(1)400元(2)①5种;①207.(1)221361800z x x =-+-;(2)当销售单价为34元时,厂商每月能够获得最大利润,最大利润是512万元;(3)制造这种产品每月的最低制造成本是648万元.8.(1)A 种商品每件的进价为20元,B 种商品每件的进价为80元;(2)当购进A 种商品800件、B 种商品200件时,销售利润最大,最大利润为12000元.9.(1)进价为40元,乙商品的进价为80元(2)有三种进货方案:方案1,甲种商品30件,乙商品70件;方案2,甲种商品31件,乙商品69件;方案3,甲种商品32件,乙商品68件(3)30m =时,W 最大,此时4700W =10.(1)购买A 型公交车每辆需120万元,购买B 型公交车每辆需170万元(2)该公司有五种购车方案,当采购A 型7辆,采购B 型3辆时,费用最低,最低费用为1350万元11.(1)A 型消毒液的单价为7元,B 型消毒液的单价为9元(2)最省钱的购买方案是购买A 型消毒液67瓶,购买B 型消毒液23瓶,最低费用为676元12.(1)普通医疗口罩每个0.4元,N95口罩每个1.5元(2)①2000个;①6500元13.(1)篮球进价为60元/只,足球的进价为80元/只(2)当114m =时,利润w 最大,对应的方案是购买篮球114只,足球2只14.(1)()36000600y x x =+<<(2)当每天生产“冰墩墩”400件,“雪容融”200件时,可使该厂一天所获得的利润最大,最大为4400元15.(1)普通练习本:3元;精装练习本:10元(2)21500w x =-+①;①普通练习本进375本,精装练习本进125本,利润最大,最大为750元16.(1)26y x x =-(2)11万元(3)该公司12月所获得利润最大,最大利润为17万元。
中考数学试卷4(含答案解析).docx
中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019・广州)| - 6|=( )A. - 6B. 6C.-丄D.丄6 62. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) 3. (3分)(2019•广州)如图,有一斜坡AB,坡顶B 离地面的高度BC 为30,”,斜坡的倾 斜角是"AC,若taS 送,则此斜坡的水平距离AC 为(的切线条数为( )6. (3分)(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120 个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的 是(A. 120 = 150B. 120 ==150Xx-8 x+8XC. 120= 150D. 120 ==150 x-8XXx+87. (3分)(2019・广州)如图,口ABCD 中,对角线AC, BD 相交于点O, 且E, F, G, H 分别是AO, BO, CO, DO 的中点,则下列说法正确的是()A. 5B. 5.2C. 6D. 6.4B. 50mC. 30mD. 12m4. (3分)(2019•广州)下列运算正确的是( A. - 3 - 2= - 1C. x 3*x 5=x 15B. 3X (-丄)2=-丄335. (3分)(2019・广州) 平面内,OO 的半径为1,点P 到O 的距离为2,过点P 可作OOA. 0条B. 1条C. 2条D.无数条A. 75mA.EH=HGB.四边形EFGH是平行四边形C.AC±BDD.AABO的面积是△EFO的面积的2倍& (3分)(2019•广州)若点A ( - 1, yi), B(2,加,C(3,加在反比例函数■的x 图象上,则yi, y2,丁3的大小关系是()A. y3<j2<yiB. yi<yi<y3C. yi<y3<j2D. yi<j2<j39.(3分)(2019•广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()10.(3分)(2019・广州)关于x的一元二次方程(^ - 1)x-k+2=0有两个实数根xi,XI,若(M1 - X2+2)(XI - X2 - 2)+2X1X2= - 3,则斤的值()A. 0 或2B. - 2 或2C. - 2D. 2二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C 在直线/上,PBM, PA^6cm, PB=5cm, PC=7cm,则点P到直线/的距离是_________ cm.12.(3分)(2019・广州)代数式丿=有意义时,x应满足的条件是________ .13.(3 分)(2019・广州)分解因式:x2y+2xy+y= ____ .14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°B 重合),ZDAM=45°,点F 在射线AM 上,且CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @/\AEG 的周长为(1+V2) a ;③BEZ+DG^EG 2;(4)A£AF 的面2 「 积的最大值丄#.8其中正确的结论是 _______ •(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17. (9分)(2019・广州)解方程组:JxVFl .Ix+3y=918. (9 分)(2019・广州)如图,D 是 AB 上一点,DF 交 AC 于点 E, DE=FE, FC//AB, 求证:/\ADE 竺 CFE.点E 在边AB ±运动(不与点A,角形,则该圆锥侧面展开扇形的弧长为 _______ .(结果保留“)正方形ABCD 的边长为a,A(1)化简P;(2)若点(a, b)在一次函数的图象上,求P的值.20.(10分)(2019・广州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组OWrvi2B组1£V2mC组2Wt<310D组3WfV412E组4WrV57F组总54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图AS21.(12分)(2019・广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座. (1) 计划到2020年底,全省5G 基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率.22. (12分)(2019・广州)如图,在平面直角坐标系xOy 中,菱形ABCD 的对角线AC 与 BD 交于点P ( - 1, 2), AB Lx 轴于点E,正比例函数的图象与反比例函数丁=卫二1x的图象相交于A, P 两点. (1) 求m, n 的值与点A 的坐标; (2) 求证:△CPDsMEO ; (3)求 sinZCDB 的值.23. (12分)(2019・广州)如图,G )O 的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC (点D 不与B 重合),连接AD ;(保留作图痕迹, 不写作法)24. (14分)(2019・广州)如图,等边△ABC 中,AB=6,点D 在BC 上,BD=4,点、E 为 边AC 上一动点(不与点C 重合),关于DE 的轴对称图形为 (1) 当点F 在AC 上时,求证:DF//AB ;(2)设的面积为Si, AABF 的面积为S2,记S=Si-S2, S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;求四边形ABCD 的周长.(3)当B, F, E三点共线时.求AE的长.25.(14分)(2019*广州)已知抛物线G:y-rm? -2mx-3有最低点.(1)求二次函数y—mx2 - 2mx - 3的最小值(用含,"的式子表示);(2)将抛物线G向右平移加个单位得到抛物线G1.经过探究发现,随着加的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019•广州)|-6|=( 【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答. 【解答】解:-6的绝对值是| - 6|=6. 故选:B.2. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) A. 5B. 5.2C. 6D. 6.4【考点】众数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A. 3. (3分)(2019•广州)如图,有一斜坡坡顶B 离地面的高度为30加,斜坡的倾 斜角是ZBAC,若tanZB4C=Z,则此斜坡的水平距离AC 为()【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解 决.A. - 6B. 50mC. 30mD. 12mA. 75m【解答】解:•.•ZBC4=90° , tanZBAC=兰,BC=30m,55 "AC "AC解得,AC=75,故选:A.4.(3分)(2019-r州)下列运算正确的是()A.- 3 - 2= - 1B. 3X(-丄)2=-丄3 3C. ^•^—x15D. Va*Vab=a,Vb【考点】实数的运算;同底数幕的乘法.【分析】直接利用有理数混合运算法则、同底数幕的乘除运算法则分别化简得出答案.【解答】解:A、-3-2= -5,故此选项错误;B、3X (-丄)2=_,故此选项错误;3 3C、x i,x5—x s,故此选项错误;D、\/~a* V ab=fl Vb> 正确.故选:D.5.(3分)(2019・广州)平面内,OO的半径为1,点P到O的距离为2,过点P可作OO 的切线条数为()A. 0条B. 1条C. 2条D.无数条【考点】切线的性质.【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:•••O0的半径为1,点P到圆心0的距离为2,d>Y,.•.点P与OO的位置关系是:P在OO外,•.•过圆外一点可以作圆的2条切线,故选:C.6.(3分)(2019・广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. 120 = 150B. 120 = 150C. 120 = 150D. 120=150x~8 x x x+8【考点】由实际问题抽象出分式方程.【分析】设甲每小时做乂个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:120丿50,x x+8故选:D.7.(3分)(2019・广州)如图,口ABCD中,AB=2, AD=4,对角线AC, BD相交于点O,且E, F, G, H分别是AO, BO, CO, DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC1BDD.△ABO的面积是△EFO的面积的2倍【考点】三角形的面积;平行四边形的判定与性质.【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:•:E, F, G, H分别是AO, BO, CO, DO的中点,在°ABCD中,AB=2,AD=4,:.EH=1-AD^2,:.EH^HG,故选项A错误;•:E, F, G, H分别是AO, BO, CO, DO 的中点,•'•EH专AD 今BC=FG,•••四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;•••点E、F分别为OA和OB的中点,:.EF=L^, EF//AB,:,Z\OEF<^/\OAB,...S AAEF _ .-EF)2 4,^AOAB 壮4即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.& (3分)(2019・广州)若点A ( - 1, yi), B(2,以),C (3, %)在反比例函数的X 图象上,则yi, y2, y3的大小关系是()A. y3<y2<yiB. y2<yi<y3C. yi<y3<y2D. yi<y2<y3【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征求出八%、为的值,比较后即可得出结论.【解答】解:•••点A ( - 1, yi), B(2, 丁2), C(3, y3)在反比例函数y=^-的图象上,X .-.ji=-^-= - 6, y2=—=3, j3=—=2,-1 2 3又T - 6<2<3,.'.yi<y3<y2.故选:C.9.(3分)(2019・广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()A. 4^5B. 4A/3C. 10D. 8【考点】全等三角形的判定与性质;线段垂直平分线的性质;矩形的性质.【分析】连接AE,由线段垂直平分线的性质得出OA^OC, AE=CE,证明COE得出AF=CE=5,得出AE=CE=5, BC=BE+CE=8,由勾股定理求出AB =V A E2-BE2=4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:TEF是AC的垂直平分线,・・・OA=OC, AE=CE,・・•四边形ABCD是矩形,:.ZB=90° , AD//BC,:.ZOAF=ZOCE f'ZAOF=ZCOE在ZvlOF和ACOE 中,OA=OCZOAF^ZOCE•••△AOF竺△COE (ASA),:.AF=CE=5f:.AE=CE=5f BC=BE+CE=3+5 = 8,/MB=V A E2-BE2=V52-32=4,A c=V A B2+BC2= V42 + 82=4^:10.(3分)(2019・广州)关于x的一元二次方程(^ - 1) x-k+2^0有两个实数根xi,Xi,若(xi - X2+2) (xi -池-2) +2x1x2= - 3,贝!]丘的值( )A. 0或2B. -2 或2C. - 2D. 2【考点】根的判别式;根与系数的关系.【分析】由根与系数的关系可得出X\+X2 — k - 1, X\X2— - k+2,结合(X1-X2+2)(XI - X2 -2) +2X1X2= - 3可求出k的值,根据方程的系数结合根的判别式△三0可得出关于k 的一元二次不等式,解之即可得出)1的取值范围,进而可确定丘的值,此题得解.【解答】解:•••关于x的一元二次方程(^- 1) x-k+2=0的两个实数根为血,池,・*.X1+X2 —- 1, X1X2= ~ k+2....(XI - X2+2) (XI - X2 - 2) +2X1X2= - 3,即(X1+X2)2 - 2X1X2 - 4= - 3,(k- 1) 2+2斤-4-4= - 3,解得:k=±2.•••关于x的一元二次方程Ck- 1) x _ k+2=0有实数根,- (E-1) F-4X1X (-好2)三0,解得:k^2y/2 - 1 或kW - 2A/2 - 1 >.'.k=2.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C在直线/上,PBM, PA^Gcm, PB=5cm, PC【考点】点到直线的距离.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:TPB丄/, PB=5cm,■-.P到I的距离是垂线段PB的长度5cm,故答案为:5.12.(3分)(2019・广州)代数式卓=有意义时,x应满足的条件是x>8x-8【考点】62:分式有意义的条件;72:二次根式有意义的条件.【分析】直接利用分式、二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x-8x - 8>0,解得:x>8.故答案为:x>&13.(3 分)(2019・广州)分解因式:A+2xy+y= y (x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y C+2x+l)=y(x+1)故答案为:y(x+1)2.14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°<a<90°),使得三角板ADE的一边所在的直线与BC垂直,则a的度数为15°或【考点】角的计算.【分析】分情况讨论:®DE±BC ; @ADLBC. 【解答】解:分情况讨论:① 当 DELBC 时,ZBAD= 180° - 60° - 45° =75° , .*.a=90° - ZBAD= 15° ; ② 当 AD1BC 时,a=90° - ZC=90° - 30° =60° . 故答案为:15°或60°15. (3分)(2019-r 州)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三 角形,则该圆锥侧面展开扇形的弧长为—2近 兀(结果保留“)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题. 【解答】解:•••某圆锥的主视图是一个腰长为2的等腰直角三角形, •••斜边长为2迈, 则底面圆的周长为2屈T,•••该圆锥侧面展开扇形的弧长为2妨, 故答案为2屈T.16. (3分)(2019・广州)如图,正方形ABCD 的边长为a,点E 在边AB 上运动(不与点A, B 重合),ZDAM=45°,点F 在射线AM 上,且AF=^E, CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @AAEG 的周长为(1+返)a ;(3)BE 2+DG 2^EG 2;④△E4F 的面 积的最大值L A8其中正确的结论是①④.(填写所有正确结论的序号)弧长的计算;圆锥的计算;简单几何体的三视图;由三视图判断几何体.【考点】二次根式的应用;勾股定理;相似三角形的判定与性质.【分析】①正确•如图1中,在BC上截取BH=BE,连接EH.证明△ FAE竺厶EHC(SAS), 即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则厶CBE丝HCDH (SAS),再证明厶GCE竺厶GCH (SAS),即可解决问题.④正确.设BE=x,则AE=a-x, AF=^,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.•:BE=BH, ZEBH=90° ,:.EH=y[2PE, ':AF=^2^E,:.AF=EH,':ZDAM=ZEHB=45° , ZBAD=90° ,:.ZFAE=ZEHC= 135° ,\'BA=BC, BE=BH,:.AE^HC,.•.△FAE竺AEHC (SAS),:.EF=EC, ZAEF^ZECH,V ZECH+ZCEB=9Q° ,A ZAEF+ZCEB^90° ,A ZF£C=90° ,:.ZECF=ZEFC=45° ,故①正确,如图2中,延长AD到H,使得DH=BE,则厶CBE竺“CDH (SAS),・•・ ZECB = ZDCH,:.ZECH=ZBCD=90° ,:.ZECG=ZGCH=45° ,•・・CG=CG, CE=CH,:.AGCE^AGCH (SAS),・・・EG=GH,•:GH=DG+DH, DH=BE,・・・EG=BE+DG,故③错误,AAEG 的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD = 2a,故②错误,设BE=x,贝lj AE=a - x, AF=\[^c,・*.S/\AEF=—(a - x) Xx= -- —(x2 - ax+^-a1 - Az?)=-丄(兀-^)2+^2,2 2 2 2 4 4 2 2 8护时,△仙的面积的最大值为护故④正确,故答案为①④.\G三、解答题(共9小题,满分102分)17.(9分)(2019・广州)解方程组:(xVFl .Ix+3y=9【考点】解二元一次方程组.【分析】运用加减消元解答即可.【解答】解:$于I:,]x+3y=9②②-①得,4y=2,解得y=2,把y=2代入①得,x - 2=1,解得兀=3, 故原方程组的解为]x=3.1尸218.(9 分)(2019・广州)如图,D 是 AB 1.一点,DF 交AC 于点E, DE=FE, FC//AB,【考点】全等三角形的判定.【分析】利用AAS证明:△ ADE竺CFE.【解答】证明:TFC/AB,:.ZA=ZFCE, ZADE= ZF,在△ADE与△ CFE中:'ZA=ZFCF•二ZADE=ZF>卫E=EF.•.△ADE竺ACFE (AAS).19.(10 分)(2019・广州)已知―至一--1(a^±b)a2-b2 a+b(1)化简P;(2)若点(a, b)在一次函数y=x-迈的图象上,求P的值.【考点】一次函数图象上点的坐标特征.【分析】(1)P=- 2a -丄= ____________ 2a ________ = 2a-a+b_=丄;2_^2 a+b (a+b)(a~b) a+b (a+b)(a~b) a~ba(2)将点(a, b)代入y=x-迈得到Q-Z?=伍,再将伍代入化简后的F,即可求解;【解答】解:(1) P= 2a -丄= _______________ 2a_ _=丄;a'-b? a+b (a+b) (a-b) a+b (a+b) (a-b) a~b(2) .点(a, b)在一次函数y—x - \[2的图象上,•• b=ci - ^2?.'.a - b—^f2,•p=.V20.(10分)(2019-r州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:(1)求频数分布表中Ml的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图【考点】频数(率)分布表;扇形统计图;列表法与树状图法.【分析】(1)用抽取的40人减去其他5个组的人数即可得出加的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)加=40-2-10- 12-7-4=5;(2)B组的圆心角=360° X旦=45° ,40C组的圆心角= 360°或丄。
圆方程的课件ppt课件ppt
当$theta = 0$时,点为$(a, b)$ ;当$theta = frac{pi}{2}$时,点 为$(a - r, b)$;当$theta = pi$ 时,点为$(a - r, b + r)$。
03 圆的方程的求解
直接求解法
总结词
通过已知条件直接代入求解。
适用范围
适用于已知圆心和半径的情况。
工程设计
在工程设计中,圆的面积和周长公 式同样必不可少,如设计圆形机械 零件、计算圆形结构件的承载能力 等。
06 圆的对称性和极 坐标方程
圆的对称性
01
02
03
圆的对称性定义
圆关于其圆心具有对称性 ,即圆心是圆上任意两点 的中点。
圆的对称性质
圆关于其直径也具有对称 性,即直径将圆分成两个 相等的部分。
$frac{sqrt{D^2 + E^2 4F}}{2}$。
圆的参数方程
圆的参数方程:$x = a + rcostheta, y = b + rsintheta$, 其中$(a, b)$是圆心坐标,$r$是 半径,$theta$是参数。
圆的参数方程通过参数$theta$描 述了一个圆上的点的坐标。
圆的基本性质
01
圆是中心对称图形,即圆心是圆上任何一对对称点 的对称中心。
02
圆是旋转对称图形,即旋转任意角度后与原图重合 。
03
圆的直径是半径的两倍,且直径平分半径。
圆的应用
圆在日常生活中的应用非常广 泛,如车轮、钟表、餐具等。
在工程和科学领域中,圆也常 用于建筑设计、机械制造和天 文观测等方面。
在数学领域中,圆是基础几何 图形之一,可用于研究圆的性 质和定理,以及解决相关的数 学问题。
初三数学圆的经典讲义之欧阳法创编
圆目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形六.会用切线, 能证切线七.切线长定理八.三角形的内切圆九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系十一.圆的有关计算十二.圆的基础综合测试十三.圆的终极综合测试一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:锐角三角形的外心在,直角三角形的外心在,钝角三角形的外心在。
考点5点和圆的位置关系设圆的半径为r,点到圆心的距离为d ,则点与圆的位置关系有三种。
①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB=90°,AC=2,BC=4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。
例2.已知,如图,CD 是直径,∠AE 交⊙O 于B ,且AB=OC ,数。
例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。
二次函数与圆知识点总结
初三数学二次函数和圆的知识点总结1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下: 函数解析式开口方向 对称轴顶点坐标2ax y =当0>a 时 开口向上 当0<a 时开口向下0=x (y 轴) (0,0) k ax y +=20=x (y 轴) (0, k ) ()2h x a y -=h x =(h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2ab x 2-= (ab ac a b 4422--,) 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=4442221221221211.垂径定理及推论: 如图:有五个元素,“知二可推三”;需记忆其中四个定理, 即“垂径定理”“中径定理” “弧径定理”“中垂定理”.几何表达式举例: ∵ CD 过圆心∵CD ⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中) “等角对等弦”; “等弦对等角”; “等角对等弧”; “等弧对等角”; “等弧对等弦”;“等弦对等(优,劣)弧”; “等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) ∵∠AOB=∠COD∴ AB = CD(2) ∵ AB = CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图) (3)“等弧对等角”“等角对等弧”; (4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1) (2)(3) (4)几何表达式举例: (1) ∵∠ACB=21∠AOB ∴ …………… (2) ∵ AB 是直径∴ ∠ACB=90° (3) ∵ ∠ACB=90°∴ AB 是直径 (4) ∵ CD=AD=BD∴ ΔABC 是Rt Δ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外 角都等于它的内对角. 几何表达式举例: ∵ ABCD 是圆内接四边形 ∴ ∠CDE =∠ABC∠C+∠A =180° 6.切线的判定与性质定理:如图:有三个元素,“知二可推一”; 需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点; ※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例: (1) ∵OC 是半径∵OC ⊥AB ∴AB 是切线 (2) ∵OC 是半径∵AB 是切线 ∴OC ⊥AB (3) ……………ABCD OABCDE O 平分优弧过圆心垂直于弦平分弦平分劣弧∴ AC BC AD BD==AE=BEABC DEFOABCOABCDEA B COABCD∵ ∴ ∥=AB CD ACBDA BCO是半径垂直是切线7.切线长定理:从圆外一点引圆的两条切线, 它们的切线长相等;圆心和这一 点的连线平分两条切线的夹角.几何表达式举例:∵ PA 、PB 是切线 ∴ PA=PB∵PO 过圆心 ∴∠APO =∠BPO 8.弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等; (3)弦切角的度数等于它所夹的弧的度数的一半.(如图) 几何表达式举例: (1)∵BD 是切线,BC 是弦∴∠CBD =∠CAB (2)∵ ED ,BC 是切线∴ ∠CBA =∠DEF9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等; (2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.几何表达式举例:(1) ∵PA ·PB=PC ·PD∴……… (2) ∵AB 是直径∵PC ⊥AB∴PC 2=PA ·PB10.切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何表达式举例: (1) ∵PC 是切线,PB 是割线 ∴PC 2=PA ·PB (2) ∵PB 、PD 是割线∴PA·PB=PC ·PD11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦; (2)如果两圆相切,那么切点一定在连心线上.(1) (2)几何表达式举例: (1) ∵O 1,O 2是圆心∴O 1O 2垂直平分AB (2) ∵⊙1 、⊙2相切∴O 1 、A 、O 2三点一线 12.正多边形的有关计算:(1)中心角αn ,半径R N , 边心距r n ,边长a n ,内角βn , 边数n ;(2)有关计算在Rt ΔAOC 中进行. 公式举例:(1) αn =n 360︒; (2) n1802n ︒=αABCDABCDEF PABOABCPABCDPAB O1O2AO1O2αnβnABCDEOa r n nnR ABCDP ABCPO ∵ EF AB=ABO几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 基本概念:圆的几何定义和集合定义、 弦、 弦心距、 弧、 等弧、 弓形、弓形高 三角形的外接圆、三角形的外心、三角形的内切圆、 三角形的内心、 圆心角、圆周角、 弦 切角、 圆的切线、 圆的割线、 两圆的内公切线、 两圆的外公切线、 两圆的内(外) 公切线长、 正多边形、 正多边形的中心、 正多边形的半径、 正多边形的边心距、 正 多边形的中心角. 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角形. 三 公式:1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形. 2. 圆心角的度数等于它所对弧的度数.3. 三角形的外心 ⇔ 两边中垂线的交点 ⇔ 三角形的外接圆的圆心;三角形的内心 ⇔ 两内角平分线的交点 ⇔ 三角形的内切圆的圆心.4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 ⇔ d <r ; 直线与圆相切 ⇔ d=r ; 直线与圆相离 ⇔ d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 ⇔ d >R+r ; 两圆外切 ⇔ d=R+r ; 两圆相交 ⇔ R-r <d <R+r ; 两圆内切 ⇔ d=R-r ; 两圆内含 ⇔ d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.7.关于圆的常见辅助线:OCAB已知弦构造弦心距.OA BC已知弦构造Rt Δ.OABC已知直径构造直角.OAB已知切线连半径,出垂直.O BC AD P圆外角转化为圆周角.OACD BP圆内角转化为圆周角.ODC PAB构造垂径定理.OACDPB构造相似形.M01ANO2两圆内切,构造外公切线与垂直.01CN O2DEABM两圆内切,构造外公切线与平行.NAM02O1 两圆外切,构造内公切线与垂直.CBMNADEO 102两圆外切,构造内公切线与平行.CE A DB O两圆同心,作弦心距,可证得AC=DB.A CBO102两圆相交构造公共弦,连结圆心构造中垂线. BAC OPPA 、PB 是切线,构造双垂图形和全等.OABCDE相交弦出相似.OP ABC一切一割出相似, 并且构造弦切角.OBCEADP两割出相似,并且构造圆周角.OABCP双垂出相似,并且构造直角.B ACD EF规则图形折叠出一对全等,一对相似.FEDBAC OGH圆的外切四边形对边和相等.ABOCD若AD ∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.EACBOD等腰三角形底边上的的高必过内切圆的圆心和切点,并构造相似形.EFCDBAORtΔABC的内切圆半径:r=2cba-+.O补全半圆.ABCo1o2AB=2221)rR(OO--.CABo1o2AB=2221)rR(OO+-.AC D PO BPC过圆心,PA是切线,构造双垂、RtΔ.BCDOAPO是圆心,等弧出平行和相似.D EMAB CFNG作AN⊥BC,可证出:ANAMBCGF=.。
最新人教版九年级数学上册第一次月考阶段性检测及答案解析.docx
九年级数学第一次阶段性测试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.下列图形既是轴对称图形又是中心对称图形的是(▲)A.B.C.D.2.一元二次方程3x2﹣2x﹣1=0的二次项系数和一次项系数分别为(▲)A.3,﹣2 B.3,2 C.3,﹣1 D.3x2,﹣2x3.抛物线y=3(x+2)2﹣4的顶点坐标是(▲)A.(1,4)B.(1,﹣4)C.(﹣1,4)D.(﹣1,﹣4)4.下列方程有两个相等的实数根的是( ▲)A.x2+2x+3=0 B.x2+x-12=0 C.x2+8x+16=0 D.3x2+2x+1=05.若将抛物线y=x2向右平移2个单位,再向上平移1个单位,则所得抛物线的表达式为(▲)A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x+2)2﹣1 D.y=(x﹣2)2﹣16.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是(▲)A.正三角形B.正方形C.正六边形D.正八边形7.已知点A(-2,y1),B(2,y2),C(3,y3)在抛物线y=x2-2x+c上,则y1,y2,y3的大小关系是( ▲)A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y18.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是( ▲)9.如下左图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为(▲)A.1≤x≤4 B.x≤4 C.x≥1 D.x≤1或x≥410.如上右图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②3a+c>0;③方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;④当y>3时,x的取值范围是0≤x<2;⑤当x<0时,y随x增大而增大其中结论正确的个数是(▲)A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题3分,共24分)11.如果(m-2)x2+3x-5=0是一元二次方程,则m______▲_________.12. 抛物线y=x2+2x-3开口方向是▲.13. 平面直角坐标系中,点P(-3,4)关于原点对称的点的坐标是___▲____.14. 抛物线y=x2+2x-3与x轴的交点坐标是▲.15. 若关于x的一元二次方程(m-1)x2+x+m2-1=0有一根为0,则m=__▲___.16.直径为20cm的圆中,有一条长为10cm的弦,则这条弦所对的圆心角的度数是__▲__.17.如下左图,CD为⊙O的弦,直径AB⊥CD于E,∠A=28°,则∠COB=___▲____.18.如上右图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是___________▲______________.三、解答题(本大题共10小题,共96分.)19.(本小题满分10分,每小题5分)(1)解方程:x2-8x+3=0;(2)解方程:x(2x+3)= 4x+6.20.(8分)根据下列条件,分别求出对应的二次函数的关系式.(1)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);(2)已知抛物线与x轴交于点M(-3,0)、(5,0),且与y轴交于点(0,15);21.(9分)如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).(1)作出△ABC关于原点O中心对称的图形;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(8分)为落实国务院房地产调控政策,我县加快了廉租房的建设力度,2014年县政府共投资3亿元人民币建设了廉租房12万平方米,2016年计划投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年县政府投资的增长率;(2)若这两年内的建设成本不变,问2016年将建设多少万平方米廉租房?23.(10分)已知关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0.(1) 求证:方程有两个不相等的实数根;(2) 若方程两根a,b 满足a 2+b 2 -ab =13 ,求k 的值(3) 若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.24.(10分)一家饰品店购进一种今年新上市的饰品进行销售,每件进价为20元,出于营销考虑,要求每件饰品的售价不低于22元且不高于28元,在销售过程中发现该饰品每周的销售量y (件)与每件饰品的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36件;当销售单价为24元时,销售量为32件.(1)请写出y 与x 的函数关系式;(2)当饰品店每周销售这种饰品获得150元的利润时,每件饰品的销售单价是多少元?(3)设该饰品店每周销售这种饰品所获得的利润为w 元,将该饰品销售单价定为多少元时,才能使饰品店销售这种饰品所获利润最大?最大利润是多少?25.(10分)平面直角坐标系xOy 中,已知抛物线c bx x y ++=2,经过)12,1(2++-m m 、)22,0(2++m m 两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线c bx x y ++=2与x 轴有公共点,求m 的值;(3)设)(1y n ,、)2(2y n ,+是抛物线c bx x y ++=2两点,请比较12y y -与0的大小,并说明理由.26.(9分)由垂径定理可知:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.请利用这一结论解决问题:如图,点P在以MN为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,PQ=4.(1)连结OP,证明△OPH为等腰直角三角形;(2)若点C,D在⊙O上,且=,连结CD,求证:OP∥CD;27.(10分)如图1,已知△ABC是等腰三角形,AB=AC,点D,E分别在AB,AC上,AD=AE.(1)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则DB与CE有何数量关系,请给予证明.(2)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.28.(12分)如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.九年级数学第一次阶段性测试参考答案一、(每小题3分,共30分)1—5 题C.A.D.C.A.6—10 题C.B. C .A .C.二、(每小题3分,共24分)11.m≠2 ;12.向上;13.(3,-4);14.(1,0),(-3,0);15.-1;16.60°;17.56°;18.+..三、19.(1)解:…………2分…………4分…………5分(2)解:x(2x+3)﹣2(2x+3)=0,∴(2x+3)(x﹣2)=0,…………2分∴2x+3=0或x﹣2=0,…………4分∴x1=﹣,x2=2.…………5分(其它解法对照给分)20.(本题8分)(1)设函数关系式为,…………2分把(0,1)代入得a=4 …………3分∴函数关系式为…………4分(2)设函数关系式为, …………2分把(0, 15)代入得a =-1 …………3分∴函数关系式为…………4分21.解:(1)正确画出图形…………3分所以……为所求…………4分(2)正确画出图形…………7分所以……为所求…………8分A1(﹣1,1).…………9分22解:(1)设每年县政府投资的增长率为x,根据题意得3(1+x)2=6.75,…………3分解得x=0.5或x=-2.5(不合题意,舍去),…………4分∴x=0.5=50%,即每年县政府投资的增长率为50% …………5分(2)∵12(1+50%)2=27,∴2016年将建设27万平方米廉租房。
精品资料——押题卷02-决胜2020年中考数学押题卷(全国通用)(解析版).docx
押题卷02一、选择题(本大题共10小题,每小题3分,共30分.在四个选项中,只有一个选项是符 合题目要求的)b= —那么直角坐标系中点A (a, b )的位置在( V2-1 A.第一象限B.第二象限C.第三象限D.第四象限答案:C 解析:fl =-l-V2 <0, Z?=V2+l>0.I A (a, b )在第二象限选 C2.下列四个立体图形,左视图与其它三个不同的是( )答案:B解析:A 左视图是三角形B 左视图是矩形C 左视图是三角形D 左视图是三角形选 B3. 三角形的两边长分别为3和6,第三边的长是方程寸-6*+8=0的一个根,则这个三角形的 周长为()A 11B 12C 11 或 13D 13【答案】D【解析】•.•/-6了+8=0 中 a=l , b=-6, c=8 ,;.A=(-6)2-4x 1x8=4解得户2或x=4 .1.如果a= 1 1-V2当x=2时,2+3<6 ,构不成三角形,舍去;当x=4时,符合题意,这个三角形的周长为3+4+6=13.故选D.4.在。
中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD.如图,若点Q与圆心。
不重合,ZBAC=25° ,则ZDCA的度数()A. 35°B.40°C. 45°D.65°【答案】B【解析】连接BCBC ,■: AB是直径,ZACB=90° ,V ZBAC=25° ,.I Z B=90°- Z BAC=90°-25 °=65 ° ,根据翻折的性质,弧AC所对的圆周角为ZB,弧ABC所对的圆周角为ZAOC, ZADC+ZB= 180° ,:.ZB=ZCDB=65° ,ZDCA^ZCDB-ZBAC=65°-25°=40° .故选B.5.如图,正方形ABCZ)的边长为2, E是3。
初三中考数学圆及概念公式定理知识点的归纳
初三中考数学圆及概念公式定理知识点的归纳
初三中考数学圆及有关概念公式定理知识点的归纳
我们的圆是轴对称图形,其对称轴是任意一条通过圆心的直线,所以是无数条对称轴。
圆及有关概念
1 到定点的距离等于定长的点的集合叫做圆(circle).这个定点叫做圆的圆心。
2 连接圆心和圆上的任意一点的线段叫做半径(radius)。
3 通过圆心并且两端都在圆上的线段叫做直径(diameter)。
4 连接圆上任意两点的线段叫做弦(chord). 最长的弦是直径。
5 圆上任意两点间的部分叫做圆弧,简称弧(arc).大于半圆的弧称为优弧,优弧是用三个字母表示。
小于半圆的弧称为劣弧,劣弧用两个字母表示。
半圆既不是优弧,也不是劣弧。
优弧是大于180度的弧,劣弧是小于180度的弧
6 由两条半径和一段弧围成的图形叫做扇形(sector)。
7 由弦和它所对的一段弧围成的图形叫做弓形。
8 顶点在圆心上的角叫做圆心角(central angle)。
9 顶点在圆周上,且它的`两边分别与圆有另一个交点的角叫做圆周角。
10 圆周长度与圆的直径长度的比值叫做圆周率。
它是一个超越数,通常用π表示,π=3.1415926535……。
在实际应用中,一般取π≈3.14。
11 圆周角等于弧所对的圆心角的一半。
字母表示
圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ;
扇形弧长—L ; 周长—C ; 面积—S。
圆的表示方法要求很严格,需要用到相应的知识要求。
苏科版九年级上册第二章《对称图形—圆》解答题培优训练(一).docx
苏科版九上第二章《对称图形一圆》解答题培优训练(一)班级:___________ 姓名: __________ 得分:___________一、解答题1.如图,在直角坐标系中,已知点4(一8,0), B(0,6),点M在线段上.(1)如图1,如果点M是线段的中点,且OM的半径等于4,试判断直线与OM的位置关系,并说明理由;(2)如图2, 0“与^轴,y轴都相切,切点分别为E, F,试求出点M的坐标;(3)如图3,。
皿与乂轴,y轴,线段都相切,切点分别为E, F, G,试求出点M的坐标(直接写出答案)2.如图1, A ABC内接于O0,弦AB = 5,点P^AC上的一点(不与点A, C重合),丄4C于点D,过点C作射线AP的垂线,交BP延长线于点M,垂足为点0(1)若陀的度数为40。
,则/.CAP = ____ .(2)当PG = PM 时,①求证:厶BPQ +厶ABC = 180°;②若CM = 2苗,求四边形ABCP的面积;⑶如图2,延长CO交于点N,当四边形ANCQ有一组对边平行时,设^CPQ = y, ^CBP =x,请直接写出y于x之间的函数关系.3.【特例感知】(1)如图①,"BG是O。
的圆周角,BC为直径,BD平分"BG交O 0于点D, CD =3, BD=4,则点D到直线AB的距离为___________ .【类比迁移】(2)如图②,是O0的圆周角,BC为O。
的弦,平分"BG交O0于点D, 过点D作DE丄BC,垂足为E,探索线段佔、BE、BC之间的数量关系,并说明理由.【问题解决】(3)如图③,四边形ABCD为O0的内接四边形,厶1BC = 90°, BD平分厶ABC, BD =7A/2,AB = 6,则4 ABC的内心与外心之间的距离为___________ .P3P4,则这两条弦的位置关系是______ ;在点Pi,P2, P3,卩4中,连接点A与点___ 的线段的长度等于线段到O0的“平移距离”;⑵若点A, B都在直线)/ = V3x + 2A/3±,记线段AB到O0的“平移距离”为如求<4的最小值;⑶若点A的坐标为(2,|),记线段到O0的“平移距离”为d2,直接写出d2的取值范围.5.已知图形M和图形M上的两点P、Q,如果转上的所有点都在图形M的内部或边上,则称%为图形M的内弧.特别的,在A/IBC中,D,E分别是AABC两边的中点,如果觅上的所有点都在4ABC的内部或边上,贝9称宛为bABC的中内弧.(注: 陀是指劣弧或半圆)比655443311-6 -5 -4 -3 -2 -10 1 2 3 4 5 6 x -6 -5 -4 -3 -2 -10 1 2 3 4 5 6 ?-2-2-3-3-4-4-5-5-6-6-7-7图1 备用图在平面直角坐标系中,已知点4(4,0)、B(0,n).设内弧所在圆的圆心为P.(1)当九=4时,连接OA、并延长.①请在图1中画出一条"OB的内弧屈;②请直接写出M0B的内弧爺长度的最大值______ .(2)连接OA、OB并延长.①当n =彳苗时,请直接写出"OB的所有内弧命所在圆的圆心P的纵坐标的取值范围______ ;②若直线x = 6上存在"OB的内弧命所在圆的圆心P,请求出n的取值范围.(3)作点B关于点O的对称点C,作点B关于点A的对称点D,连接BC、BD、CD.令n>0,当'BCD的中内弧壮所在的圆的圆心P在'BCD的外部时,A BCD的所有中内弧壮都存在,请直接写出"的取值范围________________ •6.如图,在平面直角坐标系xOy中,存在半径为2,圆心为(0,2)的G> W,点P为O" 上的任意一点,线段P0绕点P逆时针旋转90。
第3讲-圆的方程及直线与圆、圆与圆的位置关系
圆的方程以及直线与圆、圆与圆的位置关系学习提纲1、了解圆的方程2、了解直线和圆、圆与圆的位置关系及其判断标准3、了解圆的切线方程,相交弦方程1.圆的定义:平面内到定点的距离等于定长的点的轨迹是圆.这个定点叫做圆的圆心,定长称为该圆的半径。
2.圆的标准方程在平面直角坐标系中,设动点(,)P x y ,圆心(,)C a b ,半径为r ,由圆的定义有22()()x a y b r -+-=,即222()()x a y b r -+-=此即为:以(,)C a b 为圆心,r 为半径的圆的标准方程.特别地,以原点为圆心,半径为(0)r r >的圆的标准方程为222x y r +=3.圆的一般方程有时,我们也把圆的方程写成如下形式220x y Dx Ey F ++++= (*)由于22222240()()224D E D E F x y Dx Ey F x y +-++++=⇔+++= 因此,(*)表示圆的方程,前提是2240D E F +-> 事实上,如2240D E F +-=,方程(*)表示一个点(,)22D E -- 如2240D E F +-<,则方程(*)不表示任何图形.4、点00(,)P x y 与圆222()()(0)x a y b r r -+-=>的位置关系(1)若22200()()x a y b r -+->,则点P 在圆外;(2)若22200()()x a y b r -+-=则点P 在圆上;(3)若22200()()x a y b r -+-<,则点P 在圆内. 5.直线与圆的位置关系直线与圆的位置关系有三种:相离、相切、相交.判断直线与圆的位置关系常见的有两种方法:(1)代数法:直线方程与圆的方程联立,化简得一元二次方程,令其判别式为∆,则0∆<⇔相离; 0∆=⇔相切; 0∆>⇔相交;(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d r <⇔相交; d r =⇔相切; d r >⇔相离.6.圆与圆的位置关系的判定设⊙1C :2221111()()(0)x a y b r r -+-=>, ⊙2C :2222222()()(0)x a y b r r -+-=>,则有: 1212||C C r r >+⇔⊙1C 与⊙2C 相离;1212||=C C r r +⇔⊙1C 与⊙2C 外切;121212||||r r C C r r -<<+⇔⊙1C 与⊙2C 相交;121212||||()C C r r r r =-≠⇔⊙1C 与⊙2C 内切;1212||||C C r r <-⇔⊙1C 与⊙2C 内含;一条规律过圆外一点M 可作两条直线与圆相切,求切线方程时,可先设出方程,再用圆心到切线的距离等于半径列出方程求出切线的斜率.求直线被圆所截得弦长的两种常用方法(1)几何方法圆心到弦所在直线的距离、半弦长、半径构成直角三角形,用勾股定理.(2)代数方法运用根与系数关系及弦长公式 222||1||1()4A B A B A B AB k x x k x x x x =+-=++-说明:圆的弦长、弦心距的计算常用几何方法. CA B D7、切线方程,切点弦方程,相交弦方程(1)点00(,)P x y 在圆222()()(0)x a y b r r -+-=>上,则过P 的切线之方程为 200()()()()x a x a y b y b r --+--=(2)点00(,)P x y 在圆222()()(0)x a y b r r -+-=>外,则过P 可作两条切线,设切点为,A B ,则切点弦AB 所在直线的方程为 200()()()()x a x a y b y b r --+--=(3)如果圆22211:()()C x a y b r-+-=与22222:()()C x c y d r -+-=交于,A B 两点,则相交弦AB 所在直线的方程为 22222212()()[()()]x a y b x c y d r r -+---+-=-例1(1)若点(1,1)在圆22()()4x a y a -++=的内部,则实数a 的取值范围是( ).A .11a -<<B .01a <<C .1a >或1a <-D .1a =±(2)方程(1)(7)(2)(10)0x x y y --+--=表示什么曲线?【解】(1)因为点(1,1)在圆的内部,∴22(1)(1)4a a -++<∴11a -<< (2)(1)(7)(2)(10)0x x y y --+--=22812270x y x y ⇒+--+=22(4)(6)25x y ⇒-+-=故,原方程表示的曲线为以点(4,6)为圆心,5为半径的圆。
圆的解析式-圆函数-在平面直角坐标系里画圆
圆的解析式圆函数在平面直角坐标系里画圆表述方式一:平面直角坐标系中,以点(a,b)为圆心且半径为r 的圆,其解析式为。
表述方式二:平面直角坐标系中,关于x 的两个函数的图象组成以点(a,b)为圆心且半径为r 的圆。
表述方式三:平面直角坐标系中有一以点(a,b) 为圆心且半径为r的圆,则此圆上任一点都满足关系式。
表述方式四:平面直角坐标系中以点(a,b)为圆心且半径为r 的圆,是满足的所有点的集合。
推导简要过程已知:平面直角坐标系x O y,定点M(a,b)。
以点M 为圆心、r 为半径作圆,此圆上有一点P(x,y)。
过点M和点P分别作x 轴和y 轴的平行线各种证矩形,线段长都可以用字母表示出来。
更严谨的话,应该加绝对值,不过后面用的是勾股定理,都平方了,就无所谓了。
由勾股定理,,整理可得将其视为关于y 的一元二次方程,由一元二次方程求根公式可得。
则满足的点,一定满足,即线段PM的长一定等于r,点一定在圆M上。
若将视为y 是x 的两个函数,则自变量x 的取值范围为。
进一步讨论对于上面的函数,不难发现,被开方数可以利用完全平方公式因式分解,即可化为:。
看到这个玩意儿我觉得有点眼熟——跟二次函数的顶点式有点儿像啊!先请看这个函数:。
特征为:根号下x二次项系数为-1,后面加一个非负的常数。
两边分别平方之后就可以得到,这个很好理解,勾股定理嘛,图像画出来是一个以原点为圆心的圆。
那么,我们把这个函数平移,向上平移b 个单位,再向右平移a 个单位,按照传说中的杨凡艺大法之二,平移之后的解析式就是:。
嗯,实际上就是平移圆心嘛,跟平移抛物线的时候平移顶点类似。
然后把被开方数展开,,哇哈,这不就是任意圆的解析式了嘛!观察一下这个函数,被开方数实际上是个二次三项式,看来这玩意儿和二次函数还真有不少联系。
我给它起了个名字:圆函数。
圆函数的特征就是被开方数是二次三项式,即形如的函数。
仿照二次函数的说法,这个便是圆函数的一般式。
专题10 二次函数的应用-备战2022年中考数学题源解密(解析版)
专题10 二次函数的应用考向二次函数的应用【母题来源】(2021·浙江台州)【母题题文】以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h (单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=.【分析】利用h=vt﹣4.9t2,求出t1,t2,再根据h1=2h2,求出v1=v2,可得结论.【解答】解:由题意,t1=,t2=,h1==,h2==,∵h1=2h2,∴v1=v2,∴t1:t2=v1:v2=:1,故答案为::1.【母题来源】(2021·浙江金华)【母题题文】某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.【分析】(1)利用二次函数图象上点的坐标特征可求出点A的坐标,进而可得出雕塑高OA的值;(2)利用二次函数图象上点的坐标特征可求出点D的坐标,进而可得出OD的长度,由喷出的水柱为抛物线且形状相同,可得出OC的长,结合CD=OC+OD即可求出落水点C,D之间的距离;(3)代入x=10求出y值,进而可得出点(10,)在抛物线y=﹣(x﹣5)2+6上,将与1.8比较后即可得出顶部F不会碰到水柱.【解答】解:(1)当x=0时,y=﹣(0﹣5)2+6=,∴点A的坐标为(0,),∴雕塑高m.(2)当y=0时,﹣(x﹣5)2+6=0,解得:x1=﹣1(舍去),x2=11,∴点D的坐标为(11,0),∴OD=11m.∵从A点向四周喷水,喷出的水柱为抛物线,且形状相同,∴OC=OD=11m,∴CD=OC+OD=22m.(3)当x=10时,y=﹣(10﹣5)2+6=,∴点(10,)在抛物线y=﹣(x﹣5)2+6上.又∵≈1.83>1.8,∴顶部F不会碰到水柱.【母题来源】(2021·浙江衢州)【母题题文】如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【分析】(1)利用待定系数法求函数解析式,然后结合二次函数图象上点的坐标特征计算求解;(2)①由图像分析右边钢缆所在抛物线的顶点坐标为(6,1),然后利用待定系数法求函数解析式;②根据题意,列式y2﹣y1利用二次函数的性质求最值.【解答】解:(1)根据题意可知点F的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y1=a1x2.将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1,求得a1=,∴y1=x2,当x=12时,y1=×122=﹣6,∴桥拱顶部离水面高度为6m.(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1,将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=,∴右边钢缆所在抛物线表达式为:y2=(x﹣6)2+1,同理可得左边钢缆所在抛物线表达式为:y3=(x+6)2+1②设彩带的长度为Lm,则L=y2﹣y1=(x﹣6)2+1﹣(x2)==,∴当x=4时,L最小值=2,答:彩带长度的最小值是2m.【母题来源】(2021·浙江绍兴)【母题题文】小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径AB=4,且点A,B关于y轴对称,杯脚高CO=4,杯高DO=8,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围);(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A′CB′所在抛物线形状不变,杯口直径A′B′∥AB,杯脚高CO不变,杯深CD′与杯高OD′之比为0.6,求A′B′的长.【分析】(1)运用待定系数法,由题意设顶点式y=ax2+4,进而求得答案;(2)由题意知:=0.6,进而求得OD′=10,再由题意得抛物线y=x2+4过B′(x1,10),A′(x2,10),从而列方程求出x1和x2,进而求得A′B′的长.【解答】解:(1)∵CO=4,∴顶点C(0,4),∴设抛物线的函数表达式为y=ax2+4,∵AB=4,∴AD=DB=2,∵DO=8,∴A(﹣2,8),B(2,8),将B(2,8)代入y=ax2+4,得:8=a×22+4,解得:a=1,∴该抛物线的函数表达式为y=x2+4;(2)由题意得:=0.6,CO=4,∴=0.6,∴CD′=6,∴OD′=OC+CD′=4+6=10,又∵杯体A′CB′所在抛物线形状不变,杯口直径A′B′∥AB,∴设B′(x1,10),A′(x2,10),∴当y=10时,10=x2+4,解得:x1=,x2=﹣,∴A′B′=2,∴杯口直径A′B′的长为2.【母题来源】(2021·浙江丽水)【母题题文】如图,已知抛物线L:y=x2+bx+c经过点A(0,﹣5),B(5,0).(1)求b,c的值;(2)连结AB,交抛物线L的对称轴于点M.①求点M的坐标;②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.P是抛物线L1上一点,横坐标为﹣1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.【分析】(1)用待定系数法可求出答案;(2)①设直线AB的解析式为y=kx+n(k≠0),由A点及B点坐标可求出直线AB的解析式,由(1)得,抛物线L的对称轴是直线x=2,则可求出答案;②由题意可得点N的坐标是(2,m2﹣9),P点的坐标是(﹣1,m2﹣6m),分三种情况,(Ⅰ)如图1,当点N在点M及下方,即0<m<时,(Ⅱ)如图2,当点N在点M的上方,点Q在点P及右侧,(Ⅲ)如图3,当点N在M上方,点Q在点P左侧,根据PE+MN=10列出方程可得出答案.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(0,﹣5)和点B(5,0),∴,解得:,∴b,c的值分别为﹣4,﹣5.(2)①设直线AB的解析式为y=kx+n(k≠0),把A(0,﹣5),B(5,0)的坐标分别代入表达式,得,解得,∴直线AB的函数表达式为y=x﹣5.由(1)得,抛物线L的对称轴是直线x=2,当x=2时,y=x﹣5=﹣3,∴点M的坐标是(2,﹣3);②设抛物线L1的表达式为y=(x﹣2+m)2﹣9,∵MN∥y轴,∴点N的坐标是(2,m2﹣9),∵点P的横坐标为﹣1,∴P点的坐标是(﹣1,m2﹣6m),设PE交抛物线L1于另一点Q,∵抛物线L1的对称轴是直线x=2﹣m,PE∥x轴,∴根据抛物线的对称性,点Q的坐标是(5﹣2m,m2﹣6m),(Ⅰ)如图1,当点N在点M及下方,即0<m<时,∴PQ=5﹣2m﹣(﹣1)=6﹣2m,MN=﹣3﹣(m2﹣9)=6﹣m2,由平移的性质得,QE=m,∴PE=6﹣2m+m=6﹣m,∵PE+MN=10,∴6﹣m+6﹣m2=10,解得,m1=﹣2(舍去),m2=1,(Ⅱ)如图2,当点N在点M及上方,点Q在点P及右侧,即<m<3时,PE=6﹣m,MN=m2﹣6,∵PE+MN=10,∴6﹣m+m2﹣6=10,解得,m1=(舍去),m2=(舍去).(Ⅲ)如图3,当点N在M上方,点Q在点P左侧,即m>3时,PE=m,MN=m2﹣6,∵PE+MN=10,∴m+m2﹣6=10,解得,m1=(舍去),m2=,综合以上可得m的值是1或.【试题分析】以上题目都考察了二次函数的实际应用;【命题意图】二次函数的实际应用一般都需要先根据实际意义建议适合的平面直角坐标系,所以此考点主要考察考生对实际问题的转化问题,怎么讲实际问题数学化是解决这类问题的关键;【命题方向】在浙江中考中,二次函数的应用是综合性问题的主要结合考点,一般都是在简答题的综合问题中出现,可以是代数型的二次函数最值问题,也可以是和其他几何图形结合的综合问题,难度一般都在中等以上,是考生复习备考中必须熟练掌握的一个考点。
初三专题构建y与x的函数关系式——圆.docx
构建y与兀的函数关系式3点0为边上的动1.如图,梯形人BCD 中,AD//BC, CD丄BC,已知人B=5, BC=6, COsB = -5点,以0为圆心,为半径的OO交边于点P.(1)设03=兀,BP=y,求y与兀的函数关系式,并写出函数定义域;(2)当00与以点D为圆心,DC为半径OD外切时,求的半径;(3)连接OD、AC,交于点E,当ZXCEO为等腰三和形时,求OO的半径.2如图,在半径为5的OO中,点A、B在QO ±, ZAOB=90。
,点C是弧AB上的一个动点,AC与0B的延长线和交于点D,设AC=x, BD=y. (2011.静安区二模)(1)求y关于x的函数解析式,并写出它的定义域;(2)如果00】与O0相交于点4、C, RQO{与OO的圆心距为2,当BD = -OB时,求的3半径;(3)是否存在点C,使得△ DCBs\DOC2如果存在,请证明;如果不存在,请简要说明理由.・3・3 在梯形ABCD中,AD//BC, AB丄AD, 4B=4, AD=5, CD=5. E为底边BC上一点,以点E为圆心,BE为半径画OE交线段DE于点F.(1)如图,当点F在线段DE .L时,设BE=x, DF=y,试建立y关于x的函数关系式,并写出口变量x 的取值范围;(2)当以CD为直径的与OE相切时,求x的值;(3)连接AF、BF,当是以AF为腰的等腰三角形吋,求x的值.(201b徐汇区二模)4.如图1,已知OO的半径长为1, PQ是00的直径,点M是PQ延长线上一点,以点M为圆心作圆, 与交于4、3两点,连接用并延长,交OM于另外一点C.(1)若恰好是©0的直径,设0M=x, AC=y,试在图2中画出符合要求的大致图形,并求y关于x的断数解析式;(2)连接04、MA. MC,若04丄M4,且△0M4与Z\PMC相似,求0M的长度和0M的半径长;(3)是否存在OM,使得人3、4C恰好是一个正五边形的两条边?若存在,试求0M的长度和的半径长;若不存在,试说明理由.(2011.嘉定区二模)图25如图,在Rt/\ABC中,ZACB=90°.半径为1的圆A与边佔相交于点D,与边AC相交于点E, 连接DE并延长,与线段BC的延长线交于点P.(1)当ZB=30°时,连接AP,若ZVIEP与△BDP相似,求CE的长;(2)若CE=2, BD=BC,求ZBPD的正切值;(3)若tan ZBPD =-,设CE=x, AABC的周长为),,求y关于x的函数关系式.(2010•上海)・7・6.已知:的直径AB=S, OB与OO相交于点C、D,的直径CF与03相交于点E,设03 的半径为兀,0E的长为y.(1)如图,当点E在线段0C上时,求y关于兀的函数解析式,并写出定义域;(2)当点E在直径CF上时,如果0E的长为3,求公共弦CD的长;(3)设0B与AB相交于G,试问AOEG能否为等腰三角形?如果能够,请宜接写岀BC的长度(不必写过程);如果不能,请简要说明理由.(2009.静安区二模)二、巩固训练:1、在半径为4的。
初三中考压轴题专题——y与x的函数关系式
5.(2011普陀区模拟考压轴题)直角三角板ABC 中,∠A =30°,BC =1.将其绕直角顶点C 逆时针旋转一个角α(0120α︒<<︒且α≠ 90°),得到Rt△''A B C , (1)如图9,当''A B 边经过点B 时,求旋转角α的度数;(2)在三角板旋转的过程中,边'A C 与AB 所在直线交于点D ,过点 D 作DE ∥''A B 交'CB 边于点E ,联结BE .①当090α︒<<︒时,设AD x =,BE y =,求y 与x 之间的函数解析式及定义域; ②当ABC BDE S S ∆∆=31时,求AD 的长.CBACBA图9备用图备用图6.(2011年上海市中考)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13EMP ∠=. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.8.(2010年上海市中考压轴题)如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用) 图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构建y与兀的函数关系式
3
点0为边上的动1.如图,梯形人BCD 中,AD//BC, CD丄BC,已知人B=5, BC=6, COsB = -
5
点,以0为圆心,为半径的OO交边于点P.
(1)设03=兀,BP=y,求y与兀的函数关系式,并写出函数定义域;
(2)当00与以点D为圆心,DC为半径OD外切时,求的半径;
(3)连接OD、AC,交于点E,当ZXCEO为等腰三和形时,求OO的半径.
2如图,在半径为5的OO中,点A、B在QO ±, ZAOB=90。
,点C是弧AB上的一个动点,AC与0B的延长线和交于点D,设AC=x, BD=y. (2011.静安区二模)
(1)求y关于x的函数解析式,并写出它的定义域;
(2)如果00】与O0相交于点4、C, RQO{与OO的圆心距为2,当BD = -OB时,求的
3
半径;
(3)是否存在点C,使得△ DCBs\DOC2如果存在,请证明;如果不存在,请简要说明理由.
・3・
3 在梯形ABCD中,AD//BC, AB丄AD, 4B=4, AD=5, CD=5. E为底边BC上一点,以点E为圆心,BE为半径画OE交线段DE于点F.
(1)如图,当点F在线段DE .L时,设BE=x, DF=y,试建立y关于x的函数关系式,并写出口变量x 的取值范围;
(2)当以CD为直径的与OE相切时,求x的值;
(3)连接AF、BF,当是以AF为腰的等腰三角形吋,求x的值.(201b徐汇区二模)
4.如图1,已知OO的半径长为1, PQ是00的直径,点M是PQ延长线上一点,以点M为圆心作圆, 与交于4、3两点,连接用并延长,交OM于另外一点C.
(1)若恰好是©0的直径,设0M=x, AC=y,试在图2中画出符合要求的大致图形,并求y关于x的断数解析式;
(2)连接04、MA. MC,若04丄M4,且△0M4与Z\PMC相似,求0M的长度和0M的半径长;
(3)是否存在OM,使得人3、4C恰好是一个正五边形的两条边?若存在,试求0M的长度和的
半径长;若不存在,试说明理由.(2011.嘉定区二模)
图
2
5如图,在Rt/\ABC中,ZACB=90°.半径为1的圆A与边佔相交于点D,与边AC相交于点E, 连接DE并延长,与线段BC的延长线交于点P.
(1)当ZB=30°时,连接AP,若ZVIEP与△BDP相似,求CE的长;
(2)若CE=2, BD=BC,求ZBPD的正切值;
(3)若tan ZBPD =-,设CE=x, AABC的周长为),,求y关于x的函数关系式.(2010•上海)
・7・
6.已知:的直径AB=S, OB与OO相交于点C、D,的直径CF与03相交于点E,设03 的半径为兀,0E的长
为y.
(1)如图,当点E在线段0C上时,求y关于兀的函数解析式,并写出定义域;
(2)当点E在直径CF上时,如果0E的长为3,求公共弦CD的长;
(3)设0B与AB相交于G,试问AOEG能否为等腰三角形?如果能够,请宜接写岀BC的长度(不必写过程);如果不能,请简要说明理由.(2009.静安区二模)
二、巩固训练:
1、在半径为4的。
0中,点C是以AB为直径的半圆的中点,OD丄AC,垂足为D,点E是射线AB ± 的任意一点,DFIIAB, DF与CE相交于点F,设EF=x, DF=y.
(1)如图1,当点E在射线03上时,求y关于兀的函数解析式,并写出函数定义域;
(2)如图2,当点尸在上时,求线段DF的长.(2013.宁波模拟)
(SD (02)
2、已知:如图,ZVIBC为等边三角形,AB=4g , AH丄BC,垂足为点点D在线段HC上,且
HD = 2,点P为射线上任意一点,以点P为圆心,线段PD的长为半径作OP,设AP = x.
(1)当x = 3吋,求。
P的半径长;
(2)如图2,如果OP与线段AB相交于E、F两点,且EF = y,求y关于x的歯数解析式,并写出它的定义域.(2010.闵行区三模)
3、如图,已知在△ ABC中,AB=15, AC=20, cotA = 2, P是边AB ±的一个动点,OP的半径为定长•当点P 与点B重合时,OP恰好与边AC相切;当点P与点B不重合,且OP与边AC相交于点M和点N
时,设AP=x f MN=y.
(1)求OP的半径;
(2)求),关于x的函数解析式,并写出它的定义域.
4、如图,已知△ABC屮,AB二AC=4^ , BC=4,点。
在BC边上运动,以。
为圆心,0A 为半径的圆与边A3交于点Q (点A除外),设OB=x , AD=y.
(1)求sin ZABC的值;
(2)求y关于x的函数解析式,并写出函数的定义域.(2010.青浦区二模)
5、如图,已知线段A3=10,点C在线段AB上,04、的半径分别为AC、BC, D是OB ±一点, AD交04于E, EC的延长线交<33于F.
(1)求证:BFHAD;
(2)若BD丄AD, AC=x, I)F= y ,求y^x的函数关系式,写出定义域.(2008.奉贤区模拟)
・11.。